compatible.f90 Source File


Contents

Source Code


Source Code

subroutine caxpy(n,ca,cx,incx,cy,incy)
! COMMENT --file caxpy.3m_blas.man
!> \brief \b CAXPY
!
!  =========== DOCUMENTATION ===========
!
! Online html documentation available at
!            http://www.netlib.org/lapack/explore-html/
!
!  Definition:
!  ===========
!
!       SUBROUTINE CAXPY(N,CA,CX,INCX,CY,INCY)
!
!       .. Scalar Arguments ..
!       COMPLEX CA
!       INTEGER INCX,INCY,N
!       ..
!       .. Array Arguments ..
!       COMPLEX CX(*),CY(*)
!       ..
!
!> \par Purpose:
!  =============
!>
!> \verbatim
!>
!>    CAXPY constant times a vector plus a vector.
!> \endverbatim
!
!  Arguments:
!  ==========
!
!> \param[in] N
!> \verbatim
!>          N is INTEGER
!>         number of elements in input vector(s)
!> \endverbatim
!>
!> \param[in] CA
!> \verbatim
!>          CA is COMPLEX
!>           On entry, CA specifies the scalar alpha.
!> \endverbatim
!>
!> \param[in] CX
!> \verbatim
!>          CX is COMPLEX array, dimension ( 1 + ( N - 1 )*abs( INCX ) )
!> \endverbatim
!>
!> \param[in] INCX
!> \verbatim
!>          INCX is INTEGER
!>         storage spacing between elements of CX
!> \endverbatim
!>
!> \param[in,out] CY
!> \verbatim
!>          CY is COMPLEX array, dimension ( 1 + ( N - 1 )*abs( INCY ) )
!> \endverbatim
!>
!> \param[in] INCY
!> \verbatim
!>          INCY is INTEGER
!>         storage spacing between elements of CY
!> \endverbatim
!
!  Authors:
!  ========
!
!> \author Univ. of Tennessee
!> \author Univ. of California Berkeley
!> \author Univ. of Colorado Denver
!> \author NAG Ltd.
!
!> \date November 2017
!
!> \ingroup complex_blas_level1
!
!> \par Further Details:
!  =====================
!>
!> \verbatim
!>
!>     jack dongarra, linpack, 3/11/78.
!>     modified 12/3/93, array(1) declarations changed to array(*)
!> \endverbatim
!>
!  =====================================================================
!
!  -- Reference BLAS level1 routine (version 3.8.0) --
!  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
!  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
!     November 2017
!
!     .. Scalar Arguments ..
!     ..
!     .. Array Arguments ..
!     ..
!
!  =====================================================================
!
!     .. Local Scalars ..
!     ..
!     .. External Functions ..
!     ..
!
!        code for both increments equal to 1
!
!
!        code for unequal increments or equal increments
!          not equal to 1
!
!
! END
use m_blas, only : caxpy_=>caxpy
implicit none
      complex :: ca
      integer :: incx,incy,n
      complex :: cx(*)
      complex :: cy(*)
      call caxpy_(n,ca,cx,incx,cy,incy)
end subroutine caxpy

subroutine CCOPY(N,CX,INCX,CY,INCY)
! COMMENT --file ccopy.3m_blas.man
!> \brief \b CCOPY
!
!  =========== DOCUMENTATION ===========
!
! Online html documentation available at
!            http://www.netlib.org/lapack/explore-html/
!
!  Definition:
!  ===========
!
!       SUBROUTINE CCOPY(N,CX,INCX,CY,INCY)
!
!       .. Scalar Arguments ..
!       INTEGER INCX,INCY,N
!       ..
!       .. Array Arguments ..
!       COMPLEX CX(*),CY(*)
!       ..
!
!
!> \par Purpose:
!  =============
!>
!> \verbatim
!>
!>    CCOPY copies a vector x to a vector y.
!> \endverbatim
!
!  Arguments:
!  ==========
!
!> \param[in] N
!> \verbatim
!>          N is INTEGER
!>         number of elements in input vector(s)
!> \endverbatim
!>
!> \param[in] CX
!> \verbatim
!>          CX is COMPLEX array, dimension ( 1 + ( N - 1 )*abs( INCX ) )
!> \endverbatim
!>
!> \param[in] INCX
!> \verbatim
!>          INCX is INTEGER
!>         storage spacing between elements of CX
!> \endverbatim
!>
!> \param[out] CY
!> \verbatim
!>          CY is COMPLEX array, dimension ( 1 + ( N - 1 )*abs( INCY ) )
!> \endverbatim
!>
!> \param[in] INCY
!> \verbatim
!>          INCY is INTEGER
!>         storage spacing between elements of CY
!> \endverbatim
!
!  Authors:
!  ========
!
!> \author Univ. of Tennessee
!> \author Univ. of California Berkeley
!> \author Univ. of Colorado Denver
!> \author NAG Ltd.
!
!> \date November 2017
!
!> \ingroup complex_blas_level1
!
!> \par Further Details:
!  =====================
!>
!> \verbatim
!>
!>     jack dongarra, linpack, 3/11/78.
!>     modified 12/3/93, array(1) declarations changed to array(*)
!> \endverbatim
!>
!  =====================================================================
!
!  -- Reference BLAS level1 routine (version 3.8.0) --
!  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
!  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
!     November 2017
!
!     .. Scalar Arguments ..
!     ..
!     .. Array Arguments ..
!     ..
!
!  =====================================================================
!
!     .. Local Scalars ..
!     ..
!
!        code for both increments equal to 1
!
!
!        code for unequal increments or equal increments
!          not equal to 1
!
! END
use M_blas, only : ccopy_=>CCOPY
implicit none
      INTEGER INCX,INCY,N
      COMPLEX CX(*),CY(*)
      call CCOPY_(N,CX,INCX,CY,INCY)
end subroutine CCOPY

 COMPLEX FUNCTION CDOTC(N,CX,INCX,CY,INCY)
! COMMENT --file cdotc.3m_blas.man
!> \brief \b CDOTC
!
!  =========== DOCUMENTATION ===========
!
! Online html documentation available at
!            http://www.netlib.org/lapack/explore-html/
!
!  Definition:
!  ===========
!
!       COMPLEX FUNCTION CDOTC(N,CX,INCX,CY,INCY)
!
!       .. Scalar Arguments ..
!       INTEGER INCX,INCY,N
!       ..
!       .. Array Arguments ..
!       COMPLEX CX(*),CY(*)
!       ..
!
!
!> \par Purpose:
!  =============
!>
!> \verbatim
!>
!> CDOTC forms the dot product of two complex vectors
!>      CDOTC = X^H * Y
!>
!> \endverbatim
!
!  Arguments:
!  ==========
!
!> \param[in] N
!> \verbatim
!>          N is INTEGER
!>         number of elements in input vector(s)
!> \endverbatim
!>
!> \param[in] CX
!> \verbatim
!>          CX is COMPLEX array, dimension ( 1 + ( N - 1 )*abs( INCX ) )
!> \endverbatim
!>
!> \param[in] INCX
!> \verbatim
!>          INCX is INTEGER
!>         storage spacing between elements of CX
!> \endverbatim
!>
!> \param[in] CY
!> \verbatim
!>          CY is COMPLEX array, dimension ( 1 + ( N - 1 )*abs( INCY ) )
!> \endverbatim
!>
!> \param[in] INCY
!> \verbatim
!>          INCY is INTEGER
!>         storage spacing between elements of CY
!> \endverbatim
!
!  Authors:
!  ========
!
!> \author Univ. of Tennessee
!> \author Univ. of California Berkeley
!> \author Univ. of Colorado Denver
!> \author NAG Ltd.
!
!> \date November 2017
!
!> \ingroup complex_blas_level1
!
!> \par Further Details:
!  =====================
!>
!> \verbatim
!>
!>     jack dongarra, linpack,  3/11/78.
!>     modified 12/3/93, array(1) declarations changed to array(*)
!> \endverbatim
!>
!  =====================================================================
!
!  -- Reference BLAS level1 routine (version 3.8.0) --
!  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
!  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
!     November 2017
!
!     .. Scalar Arguments ..
!     ..
!     .. Array Arguments ..
!     ..
!
!  =====================================================================
!
!     .. Local Scalars ..
!     ..
!     .. Intrinsic Functions ..
!     ..
!
!        code for both increments equal to 1
!
!
!        code for unequal increments or equal increments
!          not equal to 1
!
! END
use M_blas, only : cdotc_=>CDOTC
implicit none
      INTEGER INCX,INCY,N
      COMPLEX CX(*),CY(*)
      cdotc=CDOTC_(N,CX,INCX,CY,INCY)
      END FUNCTION CDOTC

 COMPLEX FUNCTION CDOTU(N,CX,INCX,CY,INCY)
! COMMENT --file cdotu.3m_blas.man
!> \brief \b CDOTU
!
!  =========== DOCUMENTATION ===========
!
! Online html documentation available at
!            http://www.netlib.org/lapack/explore-html/
!
!  Definition:
!  ===========
!
!       COMPLEX FUNCTION CDOTU(N,CX,INCX,CY,INCY)
!
!       .. Scalar Arguments ..
!       INTEGER INCX,INCY,N
!       ..
!       .. Array Arguments ..
!       COMPLEX CX(*),CY(*)
!       ..
!
!
!> \par Purpose:
!  =============
!>
!> \verbatim
!>
!> CDOTU forms the dot product of two complex vectors
!>      CDOTU = X^T * Y
!>
!> \endverbatim
!
!  Arguments:
!  ==========
!
!> \param[in] N
!> \verbatim
!>          N is INTEGER
!>         number of elements in input vector(s)
!> \endverbatim
!>
!> \param[in] CX
!> \verbatim
!>          CX is COMPLEX array, dimension ( 1 + ( N - 1 )*abs( INCX ) )
!> \endverbatim
!>
!> \param[in] INCX
!> \verbatim
!>          INCX is INTEGER
!>         storage spacing between elements of CX
!> \endverbatim
!>
!> \param[in] CY
!> \verbatim
!>          CY is COMPLEX array, dimension ( 1 + ( N - 1 )*abs( INCY ) )
!> \endverbatim
!>
!> \param[in] INCY
!> \verbatim
!>          INCY is INTEGER
!>         storage spacing between elements of CY
!> \endverbatim
!
!  Authors:
!  ========
!
!> \author Univ. of Tennessee
!> \author Univ. of California Berkeley
!> \author Univ. of Colorado Denver
!> \author NAG Ltd.
!
!> \date November 2017
!
!> \ingroup complex_blas_level1
!
!> \par Further Details:
!  =====================
!>
!> \verbatim
!>
!>     jack dongarra, linpack, 3/11/78.
!>     modified 12/3/93, array(1) declarations changed to array(*)
!> \endverbatim
!>
!  =====================================================================
!
!  -- Reference BLAS level1 routine (version 3.8.0) --
!  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
!  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
!     November 2017
!
!     .. Scalar Arguments ..
!     ..
!     .. Array Arguments ..
!     ..
!
!  =====================================================================
!
!     .. Local Scalars ..
!     ..
!
!        code for both increments equal to 1
!
!
!        code for unequal increments or equal increments
!          not equal to 1
!
! END
use M_blas, only : cdotu_=>CDOTU
implicit none
      INTEGER INCX,INCY,N
      COMPLEX CX(*),CY(*)
      cdotu=CDOTU_(N,CX,INCX,CY,INCY)
      END FUNCTION CDOTU

subroutine CGBMV(TRANS,M,N,KL,KU,ALPHA,A,LDA,X,INCX,BETA,Y,INCY)
! COMMENT --file cgbmv.3m_blas.man
!> \brief \b CGBMV
!
!  =========== DOCUMENTATION ===========
!
! Online html documentation available at
!            http://www.netlib.org/lapack/explore-html/
!
!  Definition:
!  ===========
!
!       SUBROUTINE CGBMV(TRANS,M,N,KL,KU,ALPHA,A,LDA,X,INCX,BETA,Y,INCY)
!
!       .. Scalar Arguments ..
!       COMPLEX ALPHA,BETA
!       INTEGER INCX,INCY,KL,KU,LDA,M,N
!       CHARACTER TRANS
!       ..
!       .. Array Arguments ..
!       COMPLEX A(LDA,*),X(*),Y(*)
!       ..
!
!
!> \par Purpose:
!  =============
!>
!> \verbatim
!>
!> CGBMV  performs one of the matrix-vector operations
!>
!>    y := alpha*A*x + beta*y,   or   y := alpha*A**T*x + beta*y,   or
!>
!>    y := alpha*A**H*x + beta*y,
!>
!> where alpha and beta are scalars, x and y are vectors and A is an
!> m by n band matrix, with kl sub-diagonals and ku super-diagonals.
!> \endverbatim
!
!  Arguments:
!  ==========
!
!> \param[in] TRANS
!> \verbatim
!>          TRANS is CHARACTER*1
!>           On entry, TRANS specifies the operation to be performed as
!>           follows:
!>
!>              TRANS = 'N' or 'n'   y := alpha*A*x + beta*y.
!>
!>              TRANS = 'T' or 't'   y := alpha*A**T*x + beta*y.
!>
!>              TRANS = 'C' or 'c'   y := alpha*A**H*x + beta*y.
!> \endverbatim
!>
!> \param[in] M
!> \verbatim
!>          M is INTEGER
!>           On entry, M specifies the number of rows of the matrix A.
!>           M must be at least zero.
!> \endverbatim
!>
!> \param[in] N
!> \verbatim
!>          N is INTEGER
!>           On entry, N specifies the number of columns of the matrix A.
!>           N must be at least zero.
!> \endverbatim
!>
!> \param[in] KL
!> \verbatim
!>          KL is INTEGER
!>           On entry, KL specifies the number of sub-diagonals of the
!>           matrix A. KL must satisfy  0 .le. KL.
!> \endverbatim
!>
!> \param[in] KU
!> \verbatim
!>          KU is INTEGER
!>           On entry, KU specifies the number of super-diagonals of the
!>           matrix A. KU must satisfy  0 .le. KU.
!> \endverbatim
!>
!> \param[in] ALPHA
!> \verbatim
!>          ALPHA is COMPLEX
!>           On entry, ALPHA specifies the scalar alpha.
!> \endverbatim
!>
!> \param[in] A
!> \verbatim
!>          A is COMPLEX array, dimension ( LDA, N )
!>           Before entry, the leading ( kl + ku + 1 ) by n part of the
!>           array A must contain the matrix of coefficients, supplied
!>           column by column, with the leading diagonal of the matrix in
!>           row ( ku + 1 ) of the array, the first super-diagonal
!>           starting at position 2 in row ku, the first sub-diagonal
!>           starting at position 1 in row ( ku + 2 ), and so on.
!>           Elements in the array A that do not correspond to elements
!>           in the band matrix (such as the top left ku by ku triangle)
!>           are not referenced.
!>           The following program segment will transfer a band matrix
!>           from conventional full matrix storage to band storage:
!>
!>                 DO 20, J = 1, N
!>                    K = KU + 1 - J
!>                    DO 10, I = MAX( 1, J - KU ), MIN( M, J + KL )
!>                       A( K + I, J ) = matrix( I, J )
!>              10    CONTINUE
!>              20 CONTINUE
!> \endverbatim
!>
!> \param[in] LDA
!> \verbatim
!>          LDA is INTEGER
!>           On entry, LDA specifies the first dimension of A as declared
!>           in the calling (sub) program. LDA must be at least
!>           ( kl + ku + 1 ).
!> \endverbatim
!>
!> \param[in] X
!> \verbatim
!>          X is COMPLEX array, dimension at least
!>           ( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n'
!>           and at least
!>           ( 1 + ( m - 1 )*abs( INCX ) ) otherwise.
!>           Before entry, the incremented array X must contain the
!>           vector x.
!> \endverbatim
!>
!> \param[in] INCX
!> \verbatim
!>          INCX is INTEGER
!>           On entry, INCX specifies the increment for the elements of
!>           X. INCX must not be zero.
!> \endverbatim
!>
!> \param[in] BETA
!> \verbatim
!>          BETA is COMPLEX
!>           On entry, BETA specifies the scalar beta. When BETA is
!>           supplied as zero then Y need not be set on input.
!> \endverbatim
!>
!> \param[in,out] Y
!> \verbatim
!>          Y is COMPLEX array, dimension at least
!>           ( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n'
!>           and at least
!>           ( 1 + ( n - 1 )*abs( INCY ) ) otherwise.
!>           Before entry, the incremented array Y must contain the
!>           vector y. On exit, Y is overwritten by the updated vector y.
!> \endverbatim
!>
!> \param[in] INCY
!> \verbatim
!>          INCY is INTEGER
!>           On entry, INCY specifies the increment for the elements of
!>           Y. INCY must not be zero.
!> \endverbatim
!
!  Authors:
!  ========
!
!> \author Univ. of Tennessee
!> \author Univ. of California Berkeley
!> \author Univ. of Colorado Denver
!> \author NAG Ltd.
!
!> \date December 2016
!
!> \ingroup complex_blas_level2
!
!> \par Further Details:
!  =====================
!>
!> \verbatim
!>
!>  Level 2 Blas routine.
!>  The vector and matrix arguments are not referenced when N = 0, or M = 0
!>
!>  -- Written on 22-October-1986.
!>     Jack Dongarra, Argonne National Lab.
!>     Jeremy Du Croz, Nag Central Office.
!>     Sven Hammarling, Nag Central Office.
!>     Richard Hanson, Sandia National Labs.
!> \endverbatim
!>
!  =====================================================================
!
!  -- Reference BLAS level2 routine (version 3.7.0) --
!  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
!  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
!     December 2016
!
!     .. Scalar Arguments ..
!     ..
!     .. Array Arguments ..
!     ..
!
!  =====================================================================
!
!     .. Parameters ..
!     ..
!     .. Local Scalars ..
!     ..
!     .. External Functions ..
!     ..
!     .. External Subroutines ..
!     ..
!     .. Intrinsic Functions ..
!     ..
!
!     Test the input parameters.
!
!
!     Quick return if possible.
!
!
!
!     Set  LENX  and  LENY, the lengths of the vectors x and y, and set
!     up the start points in  X  and  Y.
!
!
!     Start the operations. In this version the elements of A are
!     accessed sequentially with one pass through the band part of A.
!
!     First form  y := beta*y.
!
!
!        Form  y := alpha*A*x + y.
!
!
!        Form  y := alpha*A**T*x + y  or  y := alpha*A**H*x + y.
!
!
!
!     End of CGBMV .
!
! END
use M_blas, only : cgbmv_=>CGBMV
implicit none
      COMPLEX ALPHA,BETA
      INTEGER INCX,INCY,KL,KU,LDA,M,N
      CHARACTER TRANS
      COMPLEX A(LDA,*),X(*),Y(*)
      call CGBMV_(TRANS,M,N,KL,KU,ALPHA,A,LDA,X,INCX,BETA,Y,INCY)
end subroutine CGBMV

subroutine CGEMM(TRANSA,TRANSB,M,N,K,ALPHA,A,LDA,B,LDB,BETA,C,LDC)
! COMMENT --file cgemm.3m_blas.man
!> \brief \b CGEMM
!
!  =========== DOCUMENTATION ===========
!
! Online html documentation available at
!            http://www.netlib.org/lapack/explore-html/
!
!  Definition:
!  ===========
!
!       SUBROUTINE CGEMM(TRANSA,TRANSB,M,N,K,ALPHA,A,LDA,B,LDB,BETA,C,LDC)
!
!       .. Scalar Arguments ..
!       COMPLEX ALPHA,BETA
!       INTEGER K,LDA,LDB,LDC,M,N
!       CHARACTER TRANSA,TRANSB
!       ..
!       .. Array Arguments ..
!       COMPLEX A(LDA,*),B(LDB,*),C(LDC,*)
!       ..
!
!
!> \par Purpose:
!  =============
!>
!> \verbatim
!>
!> CGEMM  performs one of the matrix-matrix operations
!>
!>    C := alpha*op( A )*op( B ) + beta*C,
!>
!> where  op( X ) is one of
!>
!>    op( X ) = X   or   op( X ) = X**T   or   op( X ) = X**H,
!>
!> alpha and beta are scalars, and A, B and C are matrices, with op( A )
!> an m by k matrix,  op( B )  a  k by n matrix and  C an m by n matrix.
!> \endverbatim
!
!  Arguments:
!  ==========
!
!> \param[in] TRANSA
!> \verbatim
!>          TRANSA is CHARACTER*1
!>           On entry, TRANSA specifies the form of op( A ) to be used in
!>           the matrix multiplication as follows:
!>
!>              TRANSA = 'N' or 'n',  op( A ) = A.
!>
!>              TRANSA = 'T' or 't',  op( A ) = A**T.
!>
!>              TRANSA = 'C' or 'c',  op( A ) = A**H.
!> \endverbatim
!>
!> \param[in] TRANSB
!> \verbatim
!>          TRANSB is CHARACTER*1
!>           On entry, TRANSB specifies the form of op( B ) to be used in
!>           the matrix multiplication as follows:
!>
!>              TRANSB = 'N' or 'n',  op( B ) = B.
!>
!>              TRANSB = 'T' or 't',  op( B ) = B**T.
!>
!>              TRANSB = 'C' or 'c',  op( B ) = B**H.
!> \endverbatim
!>
!> \param[in] M
!> \verbatim
!>          M is INTEGER
!>           On entry,  M  specifies  the number  of rows  of the  matrix
!>           op( A )  and of the  matrix  C.  M  must  be at least  zero.
!> \endverbatim
!>
!> \param[in] N
!> \verbatim
!>          N is INTEGER
!>           On entry,  N  specifies the number  of columns of the matrix
!>           op( B ) and the number of columns of the matrix C. N must be
!>           at least zero.
!> \endverbatim
!>
!> \param[in] K
!> \verbatim
!>          K is INTEGER
!>           On entry,  K  specifies  the number of columns of the matrix
!>           op( A ) and the number of rows of the matrix op( B ). K must
!>           be at least  zero.
!> \endverbatim
!>
!> \param[in] ALPHA
!> \verbatim
!>          ALPHA is COMPLEX
!>           On entry, ALPHA specifies the scalar alpha.
!> \endverbatim
!>
!> \param[in] A
!> \verbatim
!>          A is COMPLEX array, dimension ( LDA, ka ), where ka is
!>           k  when  TRANSA = 'N' or 'n',  and is  m  otherwise.
!>           Before entry with  TRANSA = 'N' or 'n',  the leading  m by k
!>           part of the array  A  must contain the matrix  A,  otherwise
!>           the leading  k by m  part of the array  A  must contain  the
!>           matrix A.
!> \endverbatim
!>
!> \param[in] LDA
!> \verbatim
!>          LDA is INTEGER
!>           On entry, LDA specifies the first dimension of A as declared
!>           in the calling (sub) program. When  TRANSA = 'N' or 'n' then
!>           LDA must be at least  max( 1, m ), otherwise  LDA must be at
!>           least  max( 1, k ).
!> \endverbatim
!>
!> \param[in] B
!> \verbatim
!>          B is COMPLEX array, dimension ( LDB, kb ), where kb is
!>           n  when  TRANSB = 'N' or 'n',  and is  k  otherwise.
!>           Before entry with  TRANSB = 'N' or 'n',  the leading  k by n
!>           part of the array  B  must contain the matrix  B,  otherwise
!>           the leading  n by k  part of the array  B  must contain  the
!>           matrix B.
!> \endverbatim
!>
!> \param[in] LDB
!> \verbatim
!>          LDB is INTEGER
!>           On entry, LDB specifies the first dimension of B as declared
!>           in the calling (sub) program. When  TRANSB = 'N' or 'n' then
!>           LDB must be at least  max( 1, k ), otherwise  LDB must be at
!>           least  max( 1, n ).
!> \endverbatim
!>
!> \param[in] BETA
!> \verbatim
!>          BETA is COMPLEX
!>           On entry,  BETA  specifies the scalar  beta.  When  BETA  is
!>           supplied as zero then C need not be set on input.
!> \endverbatim
!>
!> \param[in,out] C
!> \verbatim
!>          C is COMPLEX array, dimension ( LDC, N )
!>           Before entry, the leading  m by n  part of the array  C must
!>           contain the matrix  C,  except when  beta  is zero, in which
!>           case C need not be set on entry.
!>           On exit, the array  C  is overwritten by the  m by n  matrix
!>           ( alpha*op( A )*op( B ) + beta*C ).
!> \endverbatim
!>
!> \param[in] LDC
!> \verbatim
!>          LDC is INTEGER
!>           On entry, LDC specifies the first dimension of C as declared
!>           in  the  calling  (sub)  program.   LDC  must  be  at  least
!>           max( 1, m ).
!> \endverbatim
!
!  Authors:
!  ========
!
!> \author Univ. of Tennessee
!> \author Univ. of California Berkeley
!> \author Univ. of Colorado Denver
!> \author NAG Ltd.
!
!> \date December 2016
!
!> \ingroup complex_blas_level3
!
!> \par Further Details:
!  =====================
!>
!> \verbatim
!>
!>  Level 3 Blas routine.
!>
!>  -- Written on 8-February-1989.
!>     Jack Dongarra, Argonne National Laboratory.
!>     Iain Duff, AERE Harwell.
!>     Jeremy Du Croz, Numerical Algorithms Group Ltd.
!>     Sven Hammarling, Numerical Algorithms Group Ltd.
!> \endverbatim
!>
!  =====================================================================
!
!  -- Reference BLAS level3 routine (version 3.7.0) --
!  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
!  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
!     December 2016
!
!     .. Scalar Arguments ..
!     ..
!     .. Array Arguments ..
!     ..
!
!  =====================================================================
!
!     .. External Functions ..
!     ..
!     .. External Subroutines ..
!     ..
!     .. Intrinsic Functions ..
!     ..
!     .. Local Scalars ..
!     ..
!     .. Parameters ..
!     ..
!
!     Set  NOTA  and  NOTB  as  true if  A  and  B  respectively are not
!     conjugated or transposed, set  CONJA and CONJB  as true if  A  and
!     B  respectively are to be  transposed but  not conjugated  and set
!     NROWA and  NROWB  as the number of rows of  A  and  B  respectively.
!
!
!     Test the input parameters.
!
!
!     Quick return if possible.
!
!
!     And when  alpha.eq.zero.
!
!
!     Start the operations.
!
!
!           Form  C := alpha*A*B + beta*C.
!
!
!           Form  C := alpha*A**H*B + beta*C.
!
!
!           Form  C := alpha*A**T*B + beta*C
!
!
!           Form  C := alpha*A*B**H + beta*C.
!
!
!           Form  C := alpha*A*B**T + beta*C
!
!
!           Form  C := alpha*A**H*B**H + beta*C.
!
!
!           Form  C := alpha*A**H*B**T + beta*C
!
!
!           Form  C := alpha*A**T*B**H + beta*C
!
!
!           Form  C := alpha*A**T*B**T + beta*C
!
!
!
!     End of CGEMM .
!
! END
use M_blas, only : cgemm_=>CGEMM
implicit none
      COMPLEX ALPHA,BETA
      INTEGER K,LDA,LDB,LDC,M,N
      CHARACTER TRANSA,TRANSB
      COMPLEX A(LDA,*),B(LDB,*),C(LDC,*)
      call CGEMM_(TRANSA,TRANSB,M,N,K,ALPHA,A,LDA,B,LDB,BETA,C,LDC)
end subroutine CGEMM

subroutine CGEMV(TRANS,M,N,ALPHA,A,LDA,X,INCX,BETA,Y,INCY)
! COMMENT --file cgemv.3m_blas.man
!> \brief \b CGEMV
!
!  =========== DOCUMENTATION ===========
!
! Online html documentation available at
!            http://www.netlib.org/lapack/explore-html/
!
!  Definition:
!  ===========
!
!       SUBROUTINE CGEMV(TRANS,M,N,ALPHA,A,LDA,X,INCX,BETA,Y,INCY)
!
!       .. Scalar Arguments ..
!       COMPLEX ALPHA,BETA
!       INTEGER INCX,INCY,LDA,M,N
!       CHARACTER TRANS
!       ..
!       .. Array Arguments ..
!       COMPLEX A(LDA,*),X(*),Y(*)
!       ..
!
!
!> \par Purpose:
!  =============
!>
!> \verbatim
!>
!> CGEMV performs one of the matrix-vector operations
!>
!>    y := alpha*A*x + beta*y,   or   y := alpha*A**T*x + beta*y,   or
!>
!>    y := alpha*A**H*x + beta*y,
!>
!> where alpha and beta are scalars, x and y are vectors and A is an
!> m by n matrix.
!> \endverbatim
!
!  Arguments:
!  ==========
!
!> \param[in] TRANS
!> \verbatim
!>          TRANS is CHARACTER*1
!>           On entry, TRANS specifies the operation to be performed as
!>           follows:
!>
!>              TRANS = 'N' or 'n'   y := alpha*A*x + beta*y.
!>
!>              TRANS = 'T' or 't'   y := alpha*A**T*x + beta*y.
!>
!>              TRANS = 'C' or 'c'   y := alpha*A**H*x + beta*y.
!> \endverbatim
!>
!> \param[in] M
!> \verbatim
!>          M is INTEGER
!>           On entry, M specifies the number of rows of the matrix A.
!>           M must be at least zero.
!> \endverbatim
!>
!> \param[in] N
!> \verbatim
!>          N is INTEGER
!>           On entry, N specifies the number of columns of the matrix A.
!>           N must be at least zero.
!> \endverbatim
!>
!> \param[in] ALPHA
!> \verbatim
!>          ALPHA is COMPLEX
!>           On entry, ALPHA specifies the scalar alpha.
!> \endverbatim
!>
!> \param[in] A
!> \verbatim
!>          A is COMPLEX array, dimension ( LDA, N )
!>           Before entry, the leading m by n part of the array A must
!>           contain the matrix of coefficients.
!> \endverbatim
!>
!> \param[in] LDA
!> \verbatim
!>          LDA is INTEGER
!>           On entry, LDA specifies the first dimension of A as declared
!>           in the calling (sub) program. LDA must be at least
!>           max( 1, m ).
!> \endverbatim
!>
!> \param[in] X
!> \verbatim
!>          X is COMPLEX array, dimension at least
!>           ( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n'
!>           and at least
!>           ( 1 + ( m - 1 )*abs( INCX ) ) otherwise.
!>           Before entry, the incremented array X must contain the
!>           vector x.
!> \endverbatim
!>
!> \param[in] INCX
!> \verbatim
!>          INCX is INTEGER
!>           On entry, INCX specifies the increment for the elements of
!>           X. INCX must not be zero.
!> \endverbatim
!>
!> \param[in] BETA
!> \verbatim
!>          BETA is COMPLEX
!>           On entry, BETA specifies the scalar beta. When BETA is
!>           supplied as zero then Y need not be set on input.
!> \endverbatim
!>
!> \param[in,out] Y
!> \verbatim
!>          Y is COMPLEX array, dimension at least
!>           ( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n'
!>           and at least
!>           ( 1 + ( n - 1 )*abs( INCY ) ) otherwise.
!>           Before entry with BETA non-zero, the incremented array Y
!>           must contain the vector y. On exit, Y is overwritten by the
!>           updated vector y.
!> \endverbatim
!>
!> \param[in] INCY
!> \verbatim
!>          INCY is INTEGER
!>           On entry, INCY specifies the increment for the elements of
!>           Y. INCY must not be zero.
!> \endverbatim
!
!  Authors:
!  ========
!
!> \author Univ. of Tennessee
!> \author Univ. of California Berkeley
!> \author Univ. of Colorado Denver
!> \author NAG Ltd.
!
!> \date December 2016
!
!> \ingroup complex_blas_level2
!
!> \par Further Details:
!  =====================
!>
!> \verbatim
!>
!>  Level 2 Blas routine.
!>  The vector and matrix arguments are not referenced when N = 0, or M = 0
!>
!>  -- Written on 22-October-1986.
!>     Jack Dongarra, Argonne National Lab.
!>     Jeremy Du Croz, Nag Central Office.
!>     Sven Hammarling, Nag Central Office.
!>     Richard Hanson, Sandia National Labs.
!> \endverbatim
!>
!  =====================================================================
!
!  -- Reference BLAS level2 routine (version 3.7.0) --
!  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
!  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
!     December 2016
!
!     .. Scalar Arguments ..
!     ..
!     .. Array Arguments ..
!     ..
!
!  =====================================================================
!
!     .. Parameters ..
!     ..
!     .. Local Scalars ..
!     ..
!     .. External Functions ..
!     ..
!     .. External Subroutines ..
!     ..
!     .. Intrinsic Functions ..
!     ..
!
!     Test the input parameters.
!
!
!     Quick return if possible.
!
!
!
!     Set  LENX  and  LENY, the lengths of the vectors x and y, and set
!     up the start points in  X  and  Y.
!
!
!     Start the operations. In this version the elements of A are
!     accessed sequentially with one pass through A.
!
!     First form  y := beta*y.
!
!
!        Form  y := alpha*A*x + y.
!
!
!        Form  y := alpha*A**T*x + y  or  y := alpha*A**H*x + y.
!
!
!
!     End of CGEMV .
!
! END
use M_blas, only : cgemv_=>CGEMV
implicit none
      COMPLEX ALPHA,BETA
      INTEGER INCX,INCY,LDA,M,N
      CHARACTER TRANS
      COMPLEX A(LDA,*),X(*),Y(*)
      call CGEMV_(TRANS,M,N,ALPHA,A,LDA,X,INCX,BETA,Y,INCY)
end subroutine CGEMV

subroutine CGERC(M,N,ALPHA,X,INCX,Y,INCY,A,LDA)
! COMMENT --file cgerc.3m_blas.man
!> \brief \b CGERC
!
!  =========== DOCUMENTATION ===========
!
! Online html documentation available at
!            http://www.netlib.org/lapack/explore-html/
!
!  Definition:
!  ===========
!
!       SUBROUTINE CGERC(M,N,ALPHA,X,INCX,Y,INCY,A,LDA)
!
!       .. Scalar Arguments ..
!       COMPLEX ALPHA
!       INTEGER INCX,INCY,LDA,M,N
!       ..
!       .. Array Arguments ..
!       COMPLEX A(LDA,*),X(*),Y(*)
!       ..
!
!
!> \par Purpose:
!  =============
!>
!> \verbatim
!>
!> CGERC  performs the rank 1 operation
!>
!>    A := alpha*x*y**H + A,
!>
!> where alpha is a scalar, x is an m element vector, y is an n element
!> vector and A is an m by n matrix.
!> \endverbatim
!
!  Arguments:
!  ==========
!
!> \param[in] M
!> \verbatim
!>          M is INTEGER
!>           On entry, M specifies the number of rows of the matrix A.
!>           M must be at least zero.
!> \endverbatim
!>
!> \param[in] N
!> \verbatim
!>          N is INTEGER
!>           On entry, N specifies the number of columns of the matrix A.
!>           N must be at least zero.
!> \endverbatim
!>
!> \param[in] ALPHA
!> \verbatim
!>          ALPHA is COMPLEX
!>           On entry, ALPHA specifies the scalar alpha.
!> \endverbatim
!>
!> \param[in] X
!> \verbatim
!>          X is COMPLEX array, dimension at least
!>           ( 1 + ( m - 1 )*abs( INCX ) ).
!>           Before entry, the incremented array X must contain the m
!>           element vector x.
!> \endverbatim
!>
!> \param[in] INCX
!> \verbatim
!>          INCX is INTEGER
!>           On entry, INCX specifies the increment for the elements of
!>           X. INCX must not be zero.
!> \endverbatim
!>
!> \param[in] Y
!> \verbatim
!>          Y is COMPLEX array, dimension at least
!>           ( 1 + ( n - 1 )*abs( INCY ) ).
!>           Before entry, the incremented array Y must contain the n
!>           element vector y.
!> \endverbatim
!>
!> \param[in] INCY
!> \verbatim
!>          INCY is INTEGER
!>           On entry, INCY specifies the increment for the elements of
!>           Y. INCY must not be zero.
!> \endverbatim
!>
!> \param[in,out] A
!> \verbatim
!>          A is COMPLEX array, dimension ( LDA, N )
!>           Before entry, the leading m by n part of the array A must
!>           contain the matrix of coefficients. On exit, A is
!>           overwritten by the updated matrix.
!> \endverbatim
!>
!> \param[in] LDA
!> \verbatim
!>          LDA is INTEGER
!>           On entry, LDA specifies the first dimension of A as declared
!>           in the calling (sub) program. LDA must be at least
!>           max( 1, m ).
!> \endverbatim
!
!  Authors:
!  ========
!
!> \author Univ. of Tennessee
!> \author Univ. of California Berkeley
!> \author Univ. of Colorado Denver
!> \author NAG Ltd.
!
!> \date December 2016
!
!> \ingroup complex_blas_level2
!
!> \par Further Details:
!  =====================
!>
!> \verbatim
!>
!>  Level 2 Blas routine.
!>
!>  -- Written on 22-October-1986.
!>     Jack Dongarra, Argonne National Lab.
!>     Jeremy Du Croz, Nag Central Office.
!>     Sven Hammarling, Nag Central Office.
!>     Richard Hanson, Sandia National Labs.
!> \endverbatim
!>
!  =====================================================================
!
!  -- Reference BLAS level2 routine (version 3.7.0) --
!  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
!  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
!     December 2016
!
!     .. Scalar Arguments ..
!     ..
!     .. Array Arguments ..
!     ..
!
!  =====================================================================
!
!     .. Parameters ..
!     ..
!     .. Local Scalars ..
!     ..
!     .. External Subroutines ..
!     ..
!     .. Intrinsic Functions ..
!     ..
!
!     Test the input parameters.
!
!
!     Quick return if possible.
!
!
!     Start the operations. In this version the elements of A are
!     accessed sequentially with one pass through A.
!
!
!
!     End of CGERC .
!
! END
use M_blas, only : cgerc_=>CGERC
implicit none
      COMPLEX ALPHA
      INTEGER INCX,INCY,LDA,M,N
      COMPLEX A(LDA,*),X(*),Y(*)
      call CGERC_(M,N,ALPHA,X,INCX,Y,INCY,A,LDA)
end subroutine CGERC

subroutine CGERU(M,N,ALPHA,X,INCX,Y,INCY,A,LDA)
! COMMENT --file cgeru.3m_blas.man
!> \brief \b CGERU
!
!  =========== DOCUMENTATION ===========
!
! Online html documentation available at
!            http://www.netlib.org/lapack/explore-html/
!
!  Definition:
!  ===========
!
!       SUBROUTINE CGERU(M,N,ALPHA,X,INCX,Y,INCY,A,LDA)
!
!       .. Scalar Arguments ..
!       COMPLEX ALPHA
!       INTEGER INCX,INCY,LDA,M,N
!       ..
!       .. Array Arguments ..
!       COMPLEX A(LDA,*),X(*),Y(*)
!       ..
!
!
!> \par Purpose:
!  =============
!>
!> \verbatim
!>
!> CGERU  performs the rank 1 operation
!>
!>    A := alpha*x*y**T + A,
!>
!> where alpha is a scalar, x is an m element vector, y is an n element
!> vector and A is an m by n matrix.
!> \endverbatim
!
!  Arguments:
!  ==========
!
!> \param[in] M
!> \verbatim
!>          M is INTEGER
!>           On entry, M specifies the number of rows of the matrix A.
!>           M must be at least zero.
!> \endverbatim
!>
!> \param[in] N
!> \verbatim
!>          N is INTEGER
!>           On entry, N specifies the number of columns of the matrix A.
!>           N must be at least zero.
!> \endverbatim
!>
!> \param[in] ALPHA
!> \verbatim
!>          ALPHA is COMPLEX
!>           On entry, ALPHA specifies the scalar alpha.
!> \endverbatim
!>
!> \param[in] X
!> \verbatim
!>          X is COMPLEX array, dimension at least
!>           ( 1 + ( m - 1 )*abs( INCX ) ).
!>           Before entry, the incremented array X must contain the m
!>           element vector x.
!> \endverbatim
!>
!> \param[in] INCX
!> \verbatim
!>          INCX is INTEGER
!>           On entry, INCX specifies the increment for the elements of
!>           X. INCX must not be zero.
!> \endverbatim
!>
!> \param[in] Y
!> \verbatim
!>          Y is COMPLEX array, dimension at least
!>           ( 1 + ( n - 1 )*abs( INCY ) ).
!>           Before entry, the incremented array Y must contain the n
!>           element vector y.
!> \endverbatim
!>
!> \param[in] INCY
!> \verbatim
!>          INCY is INTEGER
!>           On entry, INCY specifies the increment for the elements of
!>           Y. INCY must not be zero.
!> \endverbatim
!>
!> \param[in,out] A
!> \verbatim
!>          A is COMPLEX array, dimension ( LDA, N )
!>           Before entry, the leading m by n part of the array A must
!>           contain the matrix of coefficients. On exit, A is
!>           overwritten by the updated matrix.
!> \endverbatim
!>
!> \param[in] LDA
!> \verbatim
!>          LDA is INTEGER
!>           On entry, LDA specifies the first dimension of A as declared
!>           in the calling (sub) program. LDA must be at least
!>           max( 1, m ).
!> \endverbatim
!
!  Authors:
!  ========
!
!> \author Univ. of Tennessee
!> \author Univ. of California Berkeley
!> \author Univ. of Colorado Denver
!> \author NAG Ltd.
!
!> \date December 2016
!
!> \ingroup complex_blas_level2
!
!> \par Further Details:
!  =====================
!>
!> \verbatim
!>
!>  Level 2 Blas routine.
!>
!>  -- Written on 22-October-1986.
!>     Jack Dongarra, Argonne National Lab.
!>     Jeremy Du Croz, Nag Central Office.
!>     Sven Hammarling, Nag Central Office.
!>     Richard Hanson, Sandia National Labs.
!> \endverbatim
!>
!  =====================================================================
!
!  -- Reference BLAS level2 routine (version 3.7.0) --
!  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
!  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
!     December 2016
!
!     .. Scalar Arguments ..
!     ..
!     .. Array Arguments ..
!     ..
!
!  =====================================================================
!
!     .. Parameters ..
!     ..
!     .. Local Scalars ..
!     ..
!     .. External Subroutines ..
!     ..
!     .. Intrinsic Functions ..
!     ..
!
!     Test the input parameters.
!
!
!     Quick return if possible.
!
!
!     Start the operations. In this version the elements of A are
!     accessed sequentially with one pass through A.
!
!
!
!     End of CGERU .
!
! END
use M_blas, only : cgeru_=>CGERU
implicit none
      COMPLEX ALPHA
      INTEGER INCX,INCY,LDA,M,N
      COMPLEX A(LDA,*),X(*),Y(*)
      call CGERU_(M,N,ALPHA,X,INCX,Y,INCY,A,LDA)
end subroutine CGERU

subroutine CHBMV(UPLO,N,K,ALPHA,A,LDA,X,INCX,BETA,Y,INCY)
! COMMENT --file chbmv.3m_blas.man
!> \brief \b CHBMV
!
!  =========== DOCUMENTATION ===========
!
! Online html documentation available at
!            http://www.netlib.org/lapack/explore-html/
!
!  Definition:
!  ===========
!
!       SUBROUTINE CHBMV(UPLO,N,K,ALPHA,A,LDA,X,INCX,BETA,Y,INCY)
!
!       .. Scalar Arguments ..
!       COMPLEX ALPHA,BETA
!       INTEGER INCX,INCY,K,LDA,N
!       CHARACTER UPLO
!       ..
!       .. Array Arguments ..
!       COMPLEX A(LDA,*),X(*),Y(*)
!       ..
!
!
!> \par Purpose:
!  =============
!>
!> \verbatim
!>
!> CHBMV  performs the matrix-vector  operation
!>
!>    y := alpha*A*x + beta*y,
!>
!> where alpha and beta are scalars, x and y are n element vectors and
!> A is an n by n hermitian band matrix, with k super-diagonals.
!> \endverbatim
!
!  Arguments:
!  ==========
!
!> \param[in] UPLO
!> \verbatim
!>          UPLO is CHARACTER*1
!>           On entry, UPLO specifies whether the upper or lower
!>           triangular part of the band matrix A is being supplied as
!>           follows:
!>
!>              UPLO = 'U' or 'u'   The upper triangular part of A is
!>                                  being supplied.
!>
!>              UPLO = 'L' or 'l'   The lower triangular part of A is
!>                                  being supplied.
!> \endverbatim
!>
!> \param[in] N
!> \verbatim
!>          N is INTEGER
!>           On entry, N specifies the order of the matrix A.
!>           N must be at least zero.
!> \endverbatim
!>
!> \param[in] K
!> \verbatim
!>          K is INTEGER
!>           On entry, K specifies the number of super-diagonals of the
!>           matrix A. K must satisfy  0 .le. K.
!> \endverbatim
!>
!> \param[in] ALPHA
!> \verbatim
!>          ALPHA is COMPLEX
!>           On entry, ALPHA specifies the scalar alpha.
!> \endverbatim
!>
!> \param[in] A
!> \verbatim
!>          A is COMPLEX array, dimension ( LDA, N )
!>           Before entry with UPLO = 'U' or 'u', the leading ( k + 1 )
!>           by n part of the array A must contain the upper triangular
!>           band part of the hermitian matrix, supplied column by
!>           column, with the leading diagonal of the matrix in row
!>           ( k + 1 ) of the array, the first super-diagonal starting at
!>           position 2 in row k, and so on. The top left k by k triangle
!>           of the array A is not referenced.
!>           The following program segment will transfer the upper
!>           triangular part of a hermitian band matrix from conventional
!>           full matrix storage to band storage:
!>
!>                 DO 20, J = 1, N
!>                    M = K + 1 - J
!>                    DO 10, I = MAX( 1, J - K ), J
!>                       A( M + I, J ) = matrix( I, J )
!>              10    CONTINUE
!>              20 CONTINUE
!>
!>           Before entry with UPLO = 'L' or 'l', the leading ( k + 1 )
!>           by n part of the array A must contain the lower triangular
!>           band part of the hermitian matrix, supplied column by
!>           column, with the leading diagonal of the matrix in row 1 of
!>           the array, the first sub-diagonal starting at position 1 in
!>           row 2, and so on. The bottom right k by k triangle of the
!>           array A is not referenced.
!>           The following program segment will transfer the lower
!>           triangular part of a hermitian band matrix from conventional
!>           full matrix storage to band storage:
!>
!>                 DO 20, J = 1, N
!>                    M = 1 - J
!>                    DO 10, I = J, MIN( N, J + K )
!>                       A( M + I, J ) = matrix( I, J )
!>              10    CONTINUE
!>              20 CONTINUE
!>
!>           Note that the imaginary parts of the diagonal elements need
!>           not be set and are assumed to be zero.
!> \endverbatim
!>
!> \param[in] LDA
!> \verbatim
!>          LDA is INTEGER
!>           On entry, LDA specifies the first dimension of A as declared
!>           in the calling (sub) program. LDA must be at least
!>           ( k + 1 ).
!> \endverbatim
!>
!> \param[in] X
!> \verbatim
!>          X is COMPLEX array, dimension at least
!>           ( 1 + ( n - 1 )*abs( INCX ) ).
!>           Before entry, the incremented array X must contain the
!>           vector x.
!> \endverbatim
!>
!> \param[in] INCX
!> \verbatim
!>          INCX is INTEGER
!>           On entry, INCX specifies the increment for the elements of
!>           X. INCX must not be zero.
!> \endverbatim
!>
!> \param[in] BETA
!> \verbatim
!>          BETA is COMPLEX
!>           On entry, BETA specifies the scalar beta.
!> \endverbatim
!>
!> \param[in,out] Y
!> \verbatim
!>          Y is COMPLEX array, dimension at least
!>           ( 1 + ( n - 1 )*abs( INCY ) ).
!>           Before entry, the incremented array Y must contain the
!>           vector y. On exit, Y is overwritten by the updated vector y.
!> \endverbatim
!>
!> \param[in] INCY
!> \verbatim
!>          INCY is INTEGER
!>           On entry, INCY specifies the increment for the elements of
!>           Y. INCY must not be zero.
!> \endverbatim
!
!  Authors:
!  ========
!
!> \author Univ. of Tennessee
!> \author Univ. of California Berkeley
!> \author Univ. of Colorado Denver
!> \author NAG Ltd.
!
!> \date December 2016
!
!> \ingroup complex_blas_level2
!
!> \par Further Details:
!  =====================
!>
!> \verbatim
!>
!>  Level 2 Blas routine.
!>  The vector and matrix arguments are not referenced when N = 0, or M = 0
!>
!>  -- Written on 22-October-1986.
!>     Jack Dongarra, Argonne National Lab.
!>     Jeremy Du Croz, Nag Central Office.
!>     Sven Hammarling, Nag Central Office.
!>     Richard Hanson, Sandia National Labs.
!> \endverbatim
!>
!  =====================================================================
!
!  -- Reference BLAS level2 routine (version 3.7.0) --
!  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
!  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
!     December 2016
!
!     .. Scalar Arguments ..
!     ..
!     .. Array Arguments ..
!     ..
!
!  =====================================================================
!
!     .. Parameters ..
!     ..
!     .. Local Scalars ..
!     ..
!     .. External Functions ..
!     ..
!     .. External Subroutines ..
!     ..
!     .. Intrinsic Functions ..
!     ..
!
!     Test the input parameters.
!
!
!     Quick return if possible.
!
!
!     Set up the start points in  X  and  Y.
!
!
!     Start the operations. In this version the elements of the array A
!     are accessed sequentially with one pass through A.
!
!     First form  y := beta*y.
!
!
!        Form  y  when upper triangle of A is stored.
!
!
!        Form  y  when lower triangle of A is stored.
!
!
!
!     End of CHBMV .
!
! END
use M_blas, only : chbmv_=>CHBMV
implicit none
      COMPLEX ALPHA,BETA
      INTEGER INCX,INCY,K,LDA,N
      CHARACTER UPLO
      COMPLEX A(LDA,*),X(*),Y(*)
      call CHBMV_(UPLO,N,K,ALPHA,A,LDA,X,INCX,BETA,Y,INCY)
end subroutine CHBMV

subroutine CHEMM(SIDE,UPLO,M,N,ALPHA,A,LDA,B,LDB,BETA,C,LDC)
! COMMENT --file chemm.3m_blas.man
!> \brief \b CHEMM
!
!  =========== DOCUMENTATION ===========
!
! Online html documentation available at
!            http://www.netlib.org/lapack/explore-html/
!
!  Definition:
!  ===========
!
!       SUBROUTINE CHEMM(SIDE,UPLO,M,N,ALPHA,A,LDA,B,LDB,BETA,C,LDC)
!
!       .. Scalar Arguments ..
!       COMPLEX ALPHA,BETA
!       INTEGER LDA,LDB,LDC,M,N
!       CHARACTER SIDE,UPLO
!       ..
!       .. Array Arguments ..
!       COMPLEX A(LDA,*),B(LDB,*),C(LDC,*)
!       ..
!
!
!> \par Purpose:
!  =============
!>
!> \verbatim
!>
!> CHEMM  performs one of the matrix-matrix operations
!>
!>    C := alpha*A*B + beta*C,
!>
!> or
!>
!>    C := alpha*B*A + beta*C,
!>
!> where alpha and beta are scalars, A is an hermitian matrix and  B and
!> C are m by n matrices.
!> \endverbatim
!
!  Arguments:
!  ==========
!
!> \param[in] SIDE
!> \verbatim
!>          SIDE is CHARACTER*1
!>           On entry,  SIDE  specifies whether  the  hermitian matrix  A
!>           appears on the  left or right  in the  operation as follows:
!>
!>              SIDE = 'L' or 'l'   C := alpha*A*B + beta*C,
!>
!>              SIDE = 'R' or 'r'   C := alpha*B*A + beta*C,
!> \endverbatim
!>
!> \param[in] UPLO
!> \verbatim
!>          UPLO is CHARACTER*1
!>           On  entry,   UPLO  specifies  whether  the  upper  or  lower
!>           triangular  part  of  the  hermitian  matrix   A  is  to  be
!>           referenced as follows:
!>
!>              UPLO = 'U' or 'u'   Only the upper triangular part of the
!>                                  hermitian matrix is to be referenced.
!>
!>              UPLO = 'L' or 'l'   Only the lower triangular part of the
!>                                  hermitian matrix is to be referenced.
!> \endverbatim
!>
!> \param[in] M
!> \verbatim
!>          M is INTEGER
!>           On entry,  M  specifies the number of rows of the matrix  C.
!>           M  must be at least zero.
!> \endverbatim
!>
!> \param[in] N
!> \verbatim
!>          N is INTEGER
!>           On entry, N specifies the number of columns of the matrix C.
!>           N  must be at least zero.
!> \endverbatim
!>
!> \param[in] ALPHA
!> \verbatim
!>          ALPHA is COMPLEX
!>           On entry, ALPHA specifies the scalar alpha.
!> \endverbatim
!>
!> \param[in] A
!> \verbatim
!>          A is COMPLEX array, dimension ( LDA, ka ), where ka is
!>           m  when  SIDE = 'L' or 'l'  and is n  otherwise.
!>           Before entry  with  SIDE = 'L' or 'l',  the  m by m  part of
!>           the array  A  must contain the  hermitian matrix,  such that
!>           when  UPLO = 'U' or 'u', the leading m by m upper triangular
!>           part of the array  A  must contain the upper triangular part
!>           of the  hermitian matrix and the  strictly  lower triangular
!>           part of  A  is not referenced,  and when  UPLO = 'L' or 'l',
!>           the leading  m by m  lower triangular part  of the  array  A
!>           must  contain  the  lower triangular part  of the  hermitian
!>           matrix and the  strictly upper triangular part of  A  is not
!>           referenced.
!>           Before entry  with  SIDE = 'R' or 'r',  the  n by n  part of
!>           the array  A  must contain the  hermitian matrix,  such that
!>           when  UPLO = 'U' or 'u', the leading n by n upper triangular
!>           part of the array  A  must contain the upper triangular part
!>           of the  hermitian matrix and the  strictly  lower triangular
!>           part of  A  is not referenced,  and when  UPLO = 'L' or 'l',
!>           the leading  n by n  lower triangular part  of the  array  A
!>           must  contain  the  lower triangular part  of the  hermitian
!>           matrix and the  strictly upper triangular part of  A  is not
!>           referenced.
!>           Note that the imaginary parts  of the diagonal elements need
!>           not be set, they are assumed to be zero.
!> \endverbatim
!>
!> \param[in] LDA
!> \verbatim
!>          LDA is INTEGER
!>           On entry, LDA specifies the first dimension of A as declared
!>           in the  calling (sub) program. When  SIDE = 'L' or 'l'  then
!>           LDA must be at least  max( 1, m ), otherwise  LDA must be at
!>           least max( 1, n ).
!> \endverbatim
!>
!> \param[in] B
!> \verbatim
!>          B is COMPLEX array, dimension ( LDB, N )
!>           Before entry, the leading  m by n part of the array  B  must
!>           contain the matrix B.
!> \endverbatim
!>
!> \param[in] LDB
!> \verbatim
!>          LDB is INTEGER
!>           On entry, LDB specifies the first dimension of B as declared
!>           in  the  calling  (sub)  program.   LDB  must  be  at  least
!>           max( 1, m ).
!> \endverbatim
!>
!> \param[in] BETA
!> \verbatim
!>          BETA is COMPLEX
!>           On entry,  BETA  specifies the scalar  beta.  When  BETA  is
!>           supplied as zero then C need not be set on input.
!> \endverbatim
!>
!> \param[in,out] C
!> \verbatim
!>          C is COMPLEX array, dimension ( LDC, N )
!>           Before entry, the leading  m by n  part of the array  C must
!>           contain the matrix  C,  except when  beta  is zero, in which
!>           case C need not be set on entry.
!>           On exit, the array  C  is overwritten by the  m by n updated
!>           matrix.
!> \endverbatim
!>
!> \param[in] LDC
!> \verbatim
!>          LDC is INTEGER
!>           On entry, LDC specifies the first dimension of C as declared
!>           in  the  calling  (sub)  program.   LDC  must  be  at  least
!>           max( 1, m ).
!> \endverbatim
!
!  Authors:
!  ========
!
!> \author Univ. of Tennessee
!> \author Univ. of California Berkeley
!> \author Univ. of Colorado Denver
!> \author NAG Ltd.
!
!> \date December 2016
!
!> \ingroup complex_blas_level3
!
!> \par Further Details:
!  =====================
!>
!> \verbatim
!>
!>  Level 3 Blas routine.
!>
!>  -- Written on 8-February-1989.
!>     Jack Dongarra, Argonne National Laboratory.
!>     Iain Duff, AERE Harwell.
!>     Jeremy Du Croz, Numerical Algorithms Group Ltd.
!>     Sven Hammarling, Numerical Algorithms Group Ltd.
!> \endverbatim
!>
!  =====================================================================
!
!  -- Reference BLAS level3 routine (version 3.7.0) --
!  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
!  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
!     December 2016
!
!     .. Scalar Arguments ..
!     ..
!     .. Array Arguments ..
!     ..
!
!  =====================================================================
!
!     .. External Functions ..
!     ..
!     .. External Subroutines ..
!     ..
!     .. Intrinsic Functions ..
!     ..
!     .. Local Scalars ..
!     ..
!     .. Parameters ..
!     ..
!
!     Set NROWA as the number of rows of A.
!
!
!     Test the input parameters.
!
!
!     Quick return if possible.
!
!
!     And when  alpha.eq.zero.
!
!
!     Start the operations.
!
!
!        Form  C := alpha*A*B + beta*C.
!
!
!        Form  C := alpha*B*A + beta*C.
!
!
!
!     End of CHEMM .
!
! END
use M_blas, only : chemm_=>CHEMM
implicit none
      COMPLEX ALPHA,BETA
      INTEGER LDA,LDB,LDC,M,N
      CHARACTER SIDE,UPLO
      COMPLEX A(LDA,*),B(LDB,*),C(LDC,*)
      call CHEMM_(SIDE,UPLO,M,N,ALPHA,A,LDA,B,LDB,BETA,C,LDC)
end subroutine CHEMM

subroutine CHEMV(UPLO,N,ALPHA,A,LDA,X,INCX,BETA,Y,INCY)
! COMMENT --file chemv.3m_blas.man
!> \brief \b CHEMV
!
!  =========== DOCUMENTATION ===========
!
! Online html documentation available at
!            http://www.netlib.org/lapack/explore-html/
!
!  Definition:
!  ===========
!
!       SUBROUTINE CHEMV(UPLO,N,ALPHA,A,LDA,X,INCX,BETA,Y,INCY)
!
!       .. Scalar Arguments ..
!       COMPLEX ALPHA,BETA
!       INTEGER INCX,INCY,LDA,N
!       CHARACTER UPLO
!       ..
!       .. Array Arguments ..
!       COMPLEX A(LDA,*),X(*),Y(*)
!       ..
!
!
!> \par Purpose:
!  =============
!>
!> \verbatim
!>
!> CHEMV  performs the matrix-vector  operation
!>
!>    y := alpha*A*x + beta*y,
!>
!> where alpha and beta are scalars, x and y are n element vectors and
!> A is an n by n hermitian matrix.
!> \endverbatim
!
!  Arguments:
!  ==========
!
!> \param[in] UPLO
!> \verbatim
!>          UPLO is CHARACTER*1
!>           On entry, UPLO specifies whether the upper or lower
!>           triangular part of the array A is to be referenced as
!>           follows:
!>
!>              UPLO = 'U' or 'u'   Only the upper triangular part of A
!>                                  is to be referenced.
!>
!>              UPLO = 'L' or 'l'   Only the lower triangular part of A
!>                                  is to be referenced.
!> \endverbatim
!>
!> \param[in] N
!> \verbatim
!>          N is INTEGER
!>           On entry, N specifies the order of the matrix A.
!>           N must be at least zero.
!> \endverbatim
!>
!> \param[in] ALPHA
!> \verbatim
!>          ALPHA is COMPLEX
!>           On entry, ALPHA specifies the scalar alpha.
!> \endverbatim
!>
!> \param[in] A
!> \verbatim
!>          A is COMPLEX array, dimension ( LDA, N )
!>           Before entry with  UPLO = 'U' or 'u', the leading n by n
!>           upper triangular part of the array A must contain the upper
!>           triangular part of the hermitian matrix and the strictly
!>           lower triangular part of A is not referenced.
!>           Before entry with UPLO = 'L' or 'l', the leading n by n
!>           lower triangular part of the array A must contain the lower
!>           triangular part of the hermitian matrix and the strictly
!>           upper triangular part of A is not referenced.
!>           Note that the imaginary parts of the diagonal elements need
!>           not be set and are assumed to be zero.
!> \endverbatim
!>
!> \param[in] LDA
!> \verbatim
!>          LDA is INTEGER
!>           On entry, LDA specifies the first dimension of A as declared
!>           in the calling (sub) program. LDA must be at least
!>           max( 1, n ).
!> \endverbatim
!>
!> \param[in] X
!> \verbatim
!>          X is COMPLEX array, dimension at least
!>           ( 1 + ( n - 1 )*abs( INCX ) ).
!>           Before entry, the incremented array X must contain the n
!>           element vector x.
!> \endverbatim
!>
!> \param[in] INCX
!> \verbatim
!>          INCX is INTEGER
!>           On entry, INCX specifies the increment for the elements of
!>           X. INCX must not be zero.
!> \endverbatim
!>
!> \param[in] BETA
!> \verbatim
!>          BETA is COMPLEX
!>           On entry, BETA specifies the scalar beta. When BETA is
!>           supplied as zero then Y need not be set on input.
!> \endverbatim
!>
!> \param[in,out] Y
!> \verbatim
!>          Y is COMPLEX array, dimension at least
!>           ( 1 + ( n - 1 )*abs( INCY ) ).
!>           Before entry, the incremented array Y must contain the n
!>           element vector y. On exit, Y is overwritten by the updated
!>           vector y.
!> \endverbatim
!>
!> \param[in] INCY
!> \verbatim
!>          INCY is INTEGER
!>           On entry, INCY specifies the increment for the elements of
!>           Y. INCY must not be zero.
!> \endverbatim
!
!  Authors:
!  ========
!
!> \author Univ. of Tennessee
!> \author Univ. of California Berkeley
!> \author Univ. of Colorado Denver
!> \author NAG Ltd.
!
!> \date December 2016
!
!> \ingroup complex_blas_level2
!
!> \par Further Details:
!  =====================
!>
!> \verbatim
!>
!>  Level 2 Blas routine.
!>  The vector and matrix arguments are not referenced when N = 0, or M = 0
!>
!>  -- Written on 22-October-1986.
!>     Jack Dongarra, Argonne National Lab.
!>     Jeremy Du Croz, Nag Central Office.
!>     Sven Hammarling, Nag Central Office.
!>     Richard Hanson, Sandia National Labs.
!> \endverbatim
!>
!  =====================================================================
!
!  -- Reference BLAS level2 routine (version 3.7.0) --
!  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
!  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
!     December 2016
!
!     .. Scalar Arguments ..
!     ..
!     .. Array Arguments ..
!     ..
!
!  =====================================================================
!
!     .. Parameters ..
!     ..
!     .. Local Scalars ..
!     ..
!     .. External Functions ..
!     ..
!     .. External Subroutines ..
!     ..
!     .. Intrinsic Functions ..
!     ..
!
!     Test the input parameters.
!
!
!     Quick return if possible.
!
!
!     Set up the start points in  X  and  Y.
!
!
!     Start the operations. In this version the elements of A are
!     accessed sequentially with one pass through the triangular part
!     of A.
!
!     First form  y := beta*y.
!
!
!        Form  y  when A is stored in upper triangle.
!
!
!        Form  y  when A is stored in lower triangle.
!
!
!
!     End of CHEMV .
!
! END
use M_blas, only : chemv_=>CHEMV
implicit none
      COMPLEX ALPHA,BETA
      INTEGER INCX,INCY,LDA,N
      CHARACTER UPLO
      COMPLEX A(LDA,*),X(*),Y(*)
      call CHEMV_(UPLO,N,ALPHA,A,LDA,X,INCX,BETA,Y,INCY)
end subroutine CHEMV

subroutine CHER2(UPLO,N,ALPHA,X,INCX,Y,INCY,A,LDA)
! COMMENT --file cher2.3m_blas.man
!> \brief \b CHER2
!
!  =========== DOCUMENTATION ===========
!
! Online html documentation available at
!            http://www.netlib.org/lapack/explore-html/
!
!  Definition:
!  ===========
!
!       SUBROUTINE CHER2(UPLO,N,ALPHA,X,INCX,Y,INCY,A,LDA)
!
!       .. Scalar Arguments ..
!       COMPLEX ALPHA
!       INTEGER INCX,INCY,LDA,N
!       CHARACTER UPLO
!       ..
!       .. Array Arguments ..
!       COMPLEX A(LDA,*),X(*),Y(*)
!       ..
!
!
!> \par Purpose:
!  =============
!>
!> \verbatim
!>
!> CHER2  performs the hermitian rank 2 operation
!>
!>    A := alpha*x*y**H + conjg( alpha )*y*x**H + A,
!>
!> where alpha is a scalar, x and y are n element vectors and A is an n
!> by n hermitian matrix.
!> \endverbatim
!
!  Arguments:
!  ==========
!
!> \param[in] UPLO
!> \verbatim
!>          UPLO is CHARACTER*1
!>           On entry, UPLO specifies whether the upper or lower
!>           triangular part of the array A is to be referenced as
!>           follows:
!>
!>              UPLO = 'U' or 'u'   Only the upper triangular part of A
!>                                  is to be referenced.
!>
!>              UPLO = 'L' or 'l'   Only the lower triangular part of A
!>                                  is to be referenced.
!> \endverbatim
!>
!> \param[in] N
!> \verbatim
!>          N is INTEGER
!>           On entry, N specifies the order of the matrix A.
!>           N must be at least zero.
!> \endverbatim
!>
!> \param[in] ALPHA
!> \verbatim
!>          ALPHA is COMPLEX
!>           On entry, ALPHA specifies the scalar alpha.
!> \endverbatim
!>
!> \param[in] X
!> \verbatim
!>          X is COMPLEX array, dimension at least
!>           ( 1 + ( n - 1 )*abs( INCX ) ).
!>           Before entry, the incremented array X must contain the n
!>           element vector x.
!> \endverbatim
!>
!> \param[in] INCX
!> \verbatim
!>          INCX is INTEGER
!>           On entry, INCX specifies the increment for the elements of
!>           X. INCX must not be zero.
!> \endverbatim
!>
!> \param[in] Y
!> \verbatim
!>          Y is COMPLEX array, dimension at least
!>           ( 1 + ( n - 1 )*abs( INCY ) ).
!>           Before entry, the incremented array Y must contain the n
!>           element vector y.
!> \endverbatim
!>
!> \param[in] INCY
!> \verbatim
!>          INCY is INTEGER
!>           On entry, INCY specifies the increment for the elements of
!>           Y. INCY must not be zero.
!> \endverbatim
!>
!> \param[in,out] A
!> \verbatim
!>          A is COMPLEX array, dimension ( LDA, N )
!>           Before entry with  UPLO = 'U' or 'u', the leading n by n
!>           upper triangular part of the array A must contain the upper
!>           triangular part of the hermitian matrix and the strictly
!>           lower triangular part of A is not referenced. On exit, the
!>           upper triangular part of the array A is overwritten by the
!>           upper triangular part of the updated matrix.
!>           Before entry with UPLO = 'L' or 'l', the leading n by n
!>           lower triangular part of the array A must contain the lower
!>           triangular part of the hermitian matrix and the strictly
!>           upper triangular part of A is not referenced. On exit, the
!>           lower triangular part of the array A is overwritten by the
!>           lower triangular part of the updated matrix.
!>           Note that the imaginary parts of the diagonal elements need
!>           not be set, they are assumed to be zero, and on exit they
!>           are set to zero.
!> \endverbatim
!>
!> \param[in] LDA
!> \verbatim
!>          LDA is INTEGER
!>           On entry, LDA specifies the first dimension of A as declared
!>           in the calling (sub) program. LDA must be at least
!>           max( 1, n ).
!> \endverbatim
!
!  Authors:
!  ========
!
!> \author Univ. of Tennessee
!> \author Univ. of California Berkeley
!> \author Univ. of Colorado Denver
!> \author NAG Ltd.
!
!> \date December 2016
!
!> \ingroup complex_blas_level2
!
!> \par Further Details:
!  =====================
!>
!> \verbatim
!>
!>  Level 2 Blas routine.
!>
!>  -- Written on 22-October-1986.
!>     Jack Dongarra, Argonne National Lab.
!>     Jeremy Du Croz, Nag Central Office.
!>     Sven Hammarling, Nag Central Office.
!>     Richard Hanson, Sandia National Labs.
!> \endverbatim
!>
!  =====================================================================
!
!  -- Reference BLAS level2 routine (version 3.7.0) --
!  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
!  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
!     December 2016
!
!     .. Scalar Arguments ..
!     ..
!     .. Array Arguments ..
!     ..
!
!  =====================================================================
!
!     .. Parameters ..
!     ..
!     .. Local Scalars ..
!     ..
!     .. External Functions ..
!     ..
!     .. External Subroutines ..
!     ..
!     .. Intrinsic Functions ..
!     ..
!
!     Test the input parameters.
!
!
!     Quick return if possible.
!
!
!     Set up the start points in X and Y if the increments are not both
!     unity.
!
!
!     Start the operations. In this version the elements of A are
!     accessed sequentially with one pass through the triangular part
!     of A.
!
!
!        Form  A  when A is stored in the upper triangle.
!
!
!        Form  A  when A is stored in the lower triangle.
!
!
!
!     End of CHER2 .
!
! END
use M_blas, only : cher2_=>CHER2
implicit none
      COMPLEX ALPHA
      INTEGER INCX,INCY,LDA,N
      CHARACTER UPLO
      COMPLEX A(LDA,*),X(*),Y(*)
      call CHER2_(UPLO,N,ALPHA,X,INCX,Y,INCY,A,LDA)
end subroutine CHER2

subroutine CHER2K(UPLO,TRANS,N,K,ALPHA,A,LDA,B,LDB,BETA,C,LDC)
! COMMENT --file cher2k.3m_blas.man
!> \brief \b CHER2K
!
!  =========== DOCUMENTATION ===========
!
! Online html documentation available at
!            http://www.netlib.org/lapack/explore-html/
!
!  Definition:
!  ===========
!
!       SUBROUTINE CHER2K(UPLO,TRANS,N,K,ALPHA,A,LDA,B,LDB,BETA,C,LDC)
!
!       .. Scalar Arguments ..
!       COMPLEX ALPHA
!       REAL BETA
!       INTEGER K,LDA,LDB,LDC,N
!       CHARACTER TRANS,UPLO
!       ..
!       .. Array Arguments ..
!       COMPLEX A(LDA,*),B(LDB,*),C(LDC,*)
!       ..
!
!
!> \par Purpose:
!  =============
!>
!> \verbatim
!>
!> CHER2K  performs one of the hermitian rank 2k operations
!>
!>    C := alpha*A*B**H + conjg( alpha )*B*A**H + beta*C,
!>
!> or
!>
!>    C := alpha*A**H*B + conjg( alpha )*B**H*A + beta*C,
!>
!> where  alpha and beta  are scalars with  beta  real,  C is an  n by n
!> hermitian matrix and  A and B  are  n by k matrices in the first case
!> and  k by n  matrices in the second case.
!> \endverbatim
!
!  Arguments:
!  ==========
!
!> \param[in] UPLO
!> \verbatim
!>          UPLO is CHARACTER*1
!>           On  entry,   UPLO  specifies  whether  the  upper  or  lower
!>           triangular  part  of the  array  C  is to be  referenced  as
!>           follows:
!>
!>              UPLO = 'U' or 'u'   Only the  upper triangular part of  C
!>                                  is to be referenced.
!>
!>              UPLO = 'L' or 'l'   Only the  lower triangular part of  C
!>                                  is to be referenced.
!> \endverbatim
!>
!> \param[in] TRANS
!> \verbatim
!>          TRANS is CHARACTER*1
!>           On entry,  TRANS  specifies the operation to be performed as
!>           follows:
!>
!>              TRANS = 'N' or 'n'    C := alpha*A*B**H          +
!>                                         conjg( alpha )*B*A**H +
!>                                         beta*C.
!>
!>              TRANS = 'C' or 'c'    C := alpha*A**H*B          +
!>                                         conjg( alpha )*B**H*A +
!>                                         beta*C.
!> \endverbatim
!>
!> \param[in] N
!> \verbatim
!>          N is INTEGER
!>           On entry,  N specifies the order of the matrix C.  N must be
!>           at least zero.
!> \endverbatim
!>
!> \param[in] K
!> \verbatim
!>          K is INTEGER
!>           On entry with  TRANS = 'N' or 'n',  K  specifies  the number
!>           of  columns  of the  matrices  A and B,  and on  entry  with
!>           TRANS = 'C' or 'c',  K  specifies  the number of rows of the
!>           matrices  A and B.  K must be at least zero.
!> \endverbatim
!>
!> \param[in] ALPHA
!> \verbatim
!>          ALPHA is COMPLEX
!>           On entry, ALPHA specifies the scalar alpha.
!> \endverbatim
!>
!> \param[in] A
!> \verbatim
!>          A is COMPLEX array, dimension ( LDA, ka ), where ka is
!>           k  when  TRANS = 'N' or 'n',  and is  n  otherwise.
!>           Before entry with  TRANS = 'N' or 'n',  the  leading  n by k
!>           part of the array  A  must contain the matrix  A,  otherwise
!>           the leading  k by n  part of the array  A  must contain  the
!>           matrix A.
!> \endverbatim
!>
!> \param[in] LDA
!> \verbatim
!>          LDA is INTEGER
!>           On entry, LDA specifies the first dimension of A as declared
!>           in  the  calling  (sub)  program.   When  TRANS = 'N' or 'n'
!>           then  LDA must be at least  max( 1, n ), otherwise  LDA must
!>           be at least  max( 1, k ).
!> \endverbatim
!>
!> \param[in] B
!> \verbatim
!>          B is COMPLEX array, dimension ( LDB, kb ), where kb is
!>           k  when  TRANS = 'N' or 'n',  and is  n  otherwise.
!>           Before entry with  TRANS = 'N' or 'n',  the  leading  n by k
!>           part of the array  B  must contain the matrix  B,  otherwise
!>           the leading  k by n  part of the array  B  must contain  the
!>           matrix B.
!> \endverbatim
!>
!> \param[in] LDB
!> \verbatim
!>          LDB is INTEGER
!>           On entry, LDB specifies the first dimension of B as declared
!>           in  the  calling  (sub)  program.   When  TRANS = 'N' or 'n'
!>           then  LDB must be at least  max( 1, n ), otherwise  LDB must
!>           be at least  max( 1, k ).
!> \endverbatim
!>
!> \param[in] BETA
!> \verbatim
!>          BETA is REAL
!>           On entry, BETA specifies the scalar beta.
!> \endverbatim
!>
!> \param[in,out] C
!> \verbatim
!>          C is COMPLEX array, dimension ( LDC, N )
!>           Before entry  with  UPLO = 'U' or 'u',  the leading  n by n
!>           upper triangular part of the array C must contain the upper
!>           triangular part  of the  hermitian matrix  and the strictly
!>           lower triangular part of C is not referenced.  On exit, the
!>           upper triangular part of the array  C is overwritten by the
!>           upper triangular part of the updated matrix.
!>           Before entry  with  UPLO = 'L' or 'l',  the leading  n by n
!>           lower triangular part of the array C must contain the lower
!>           triangular part  of the  hermitian matrix  and the strictly
!>           upper triangular part of C is not referenced.  On exit, the
!>           lower triangular part of the array  C is overwritten by the
!>           lower triangular part of the updated matrix.
!>           Note that the imaginary parts of the diagonal elements need
!>           not be set,  they are assumed to be zero,  and on exit they
!>           are set to zero.
!> \endverbatim
!>
!> \param[in] LDC
!> \verbatim
!>          LDC is INTEGER
!>           On entry, LDC specifies the first dimension of C as declared
!>           in  the  calling  (sub)  program.   LDC  must  be  at  least
!>           max( 1, n ).
!> \endverbatim
!
!  Authors:
!  ========
!
!> \author Univ. of Tennessee
!> \author Univ. of California Berkeley
!> \author Univ. of Colorado Denver
!> \author NAG Ltd.
!
!> \date December 2016
!
!> \ingroup complex_blas_level3
!
!> \par Further Details:
!  =====================
!>
!> \verbatim
!>
!>  Level 3 Blas routine.
!>
!>  -- Written on 8-February-1989.
!>     Jack Dongarra, Argonne National Laboratory.
!>     Iain Duff, AERE Harwell.
!>     Jeremy Du Croz, Numerical Algorithms Group Ltd.
!>     Sven Hammarling, Numerical Algorithms Group Ltd.
!>
!>  -- Modified 8-Nov-93 to set C(J,J) to REAL( C(J,J) ) when BETA = 1.
!>     Ed Anderson, Cray Research Inc.
!> \endverbatim
!>
!  =====================================================================
!
!  -- Reference BLAS level3 routine (version 3.7.0) --
!  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
!  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
!     December 2016
!
!     .. Scalar Arguments ..
!     ..
!     .. Array Arguments ..
!     ..
!
!  =====================================================================
!
!     .. External Functions ..
!     ..
!     .. External Subroutines ..
!     ..
!     .. Intrinsic Functions ..
!     ..
!     .. Local Scalars ..
!     ..
!     .. Parameters ..
!     ..
!
!     Test the input parameters.
!
!
!
!     Quick return if possible.
!
!
!     And when  alpha.eq.zero.
!
!
!     Start the operations.
!
!
!        Form  C := alpha*A*B**H + conjg( alpha )*B*A**H +
!                   C.
!
!
!        Form  C := alpha*A**H*B + conjg( alpha )*B**H*A +
!                   C.
!
!
!
!     End of CHER2K.
!
! END
use M_blas, only : cher2k_=>CHER2K
implicit none
      COMPLEX ALPHA
      REAL BETA
      INTEGER K,LDA,LDB,LDC,N
      CHARACTER TRANS,UPLO
      COMPLEX A(LDA,*),B(LDB,*),C(LDC,*)
      call CHER2K_(UPLO,TRANS,N,K,ALPHA,A,LDA,B,LDB,BETA,C,LDC)
end subroutine CHER2K

subroutine CHER(UPLO,N,ALPHA,X,INCX,A,LDA)
! COMMENT --file cher.3m_blas.man
!> \brief \b CHER
!
!  =========== DOCUMENTATION ===========
!
! Online html documentation available at
!            http://www.netlib.org/lapack/explore-html/
!
!  Definition:
!  ===========
!
!       SUBROUTINE CHER(UPLO,N,ALPHA,X,INCX,A,LDA)
!
!       .. Scalar Arguments ..
!       REAL ALPHA
!       INTEGER INCX,LDA,N
!       CHARACTER UPLO
!       ..
!       .. Array Arguments ..
!       COMPLEX A(LDA,*),X(*)
!       ..
!
!
!> \par Purpose:
!  =============
!>
!> \verbatim
!>
!> CHER   performs the hermitian rank 1 operation
!>
!>    A := alpha*x*x**H + A,
!>
!> where alpha is a real scalar, x is an n element vector and A is an
!> n by n hermitian matrix.
!> \endverbatim
!
!  Arguments:
!  ==========
!
!> \param[in] UPLO
!> \verbatim
!>          UPLO is CHARACTER*1
!>           On entry, UPLO specifies whether the upper or lower
!>           triangular part of the array A is to be referenced as
!>           follows:
!>
!>              UPLO = 'U' or 'u'   Only the upper triangular part of A
!>                                  is to be referenced.
!>
!>              UPLO = 'L' or 'l'   Only the lower triangular part of A
!>                                  is to be referenced.
!> \endverbatim
!>
!> \param[in] N
!> \verbatim
!>          N is INTEGER
!>           On entry, N specifies the order of the matrix A.
!>           N must be at least zero.
!> \endverbatim
!>
!> \param[in] ALPHA
!> \verbatim
!>          ALPHA is REAL
!>           On entry, ALPHA specifies the scalar alpha.
!> \endverbatim
!>
!> \param[in] X
!> \verbatim
!>          X is COMPLEX array, dimension at least
!>           ( 1 + ( n - 1 )*abs( INCX ) ).
!>           Before entry, the incremented array X must contain the n
!>           element vector x.
!> \endverbatim
!>
!> \param[in] INCX
!> \verbatim
!>          INCX is INTEGER
!>           On entry, INCX specifies the increment for the elements of
!>           X. INCX must not be zero.
!> \endverbatim
!>
!> \param[in,out] A
!> \verbatim
!>          A is COMPLEX array, dimension ( LDA, N )
!>           Before entry with  UPLO = 'U' or 'u', the leading n by n
!>           upper triangular part of the array A must contain the upper
!>           triangular part of the hermitian matrix and the strictly
!>           lower triangular part of A is not referenced. On exit, the
!>           upper triangular part of the array A is overwritten by the
!>           upper triangular part of the updated matrix.
!>           Before entry with UPLO = 'L' or 'l', the leading n by n
!>           lower triangular part of the array A must contain the lower
!>           triangular part of the hermitian matrix and the strictly
!>           upper triangular part of A is not referenced. On exit, the
!>           lower triangular part of the array A is overwritten by the
!>           lower triangular part of the updated matrix.
!>           Note that the imaginary parts of the diagonal elements need
!>           not be set, they are assumed to be zero, and on exit they
!>           are set to zero.
!> \endverbatim
!>
!> \param[in] LDA
!> \verbatim
!>          LDA is INTEGER
!>           On entry, LDA specifies the first dimension of A as declared
!>           in the calling (sub) program. LDA must be at least
!>           max( 1, n ).
!> \endverbatim
!
!  Authors:
!  ========
!
!> \author Univ. of Tennessee
!> \author Univ. of California Berkeley
!> \author Univ. of Colorado Denver
!> \author NAG Ltd.
!
!> \date December 2016
!
!> \ingroup complex_blas_level2
!
!> \par Further Details:
!  =====================
!>
!> \verbatim
!>
!>  Level 2 Blas routine.
!>
!>  -- Written on 22-October-1986.
!>     Jack Dongarra, Argonne National Lab.
!>     Jeremy Du Croz, Nag Central Office.
!>     Sven Hammarling, Nag Central Office.
!>     Richard Hanson, Sandia National Labs.
!> \endverbatim
!>
!  =====================================================================
!
!  -- Reference BLAS level2 routine (version 3.7.0) --
!  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
!  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
!     December 2016
!
!     .. Scalar Arguments ..
!     ..
!     .. Array Arguments ..
!     ..
!
!  =====================================================================
!
!     .. Parameters ..
!     ..
!     .. Local Scalars ..
!     ..
!     .. External Functions ..
!     ..
!     .. External Subroutines ..
!     ..
!     .. Intrinsic Functions ..
!     ..
!
!     Test the input parameters.
!
!
!     Quick return if possible.
!
!
!     Set the start point in X if the increment is not unity.
!
!
!     Start the operations. In this version the elements of A are
!     accessed sequentially with one pass through the triangular part
!     of A.
!
!
!        Form  A  when A is stored in upper triangle.
!
!
!        Form  A  when A is stored in lower triangle.
!
!
!
!     End of CHER  .
!
! END
use M_blas, only : cher_=>CHER
implicit none
      REAL ALPHA
      INTEGER INCX,LDA,N
      CHARACTER UPLO
      COMPLEX A(LDA,*),X(*)
      call CHER_(UPLO,N,ALPHA,X,INCX,A,LDA)
end subroutine CHER

subroutine CHERK(UPLO,TRANS,N,K,ALPHA,A,LDA,BETA,C,LDC)
! COMMENT --file cherk.3m_blas.man
!> \brief \b CHERK
!
!  =========== DOCUMENTATION ===========
!
! Online html documentation available at
!            http://www.netlib.org/lapack/explore-html/
!
!  Definition:
!  ===========
!
!       SUBROUTINE CHERK(UPLO,TRANS,N,K,ALPHA,A,LDA,BETA,C,LDC)
!
!       .. Scalar Arguments ..
!       REAL ALPHA,BETA
!       INTEGER K,LDA,LDC,N
!       CHARACTER TRANS,UPLO
!       ..
!       .. Array Arguments ..
!       COMPLEX A(LDA,*),C(LDC,*)
!       ..
!
!
!> \par Purpose:
!  =============
!>
!> \verbatim
!>
!> CHERK  performs one of the hermitian rank k operations
!>
!>    C := alpha*A*A**H + beta*C,
!>
!> or
!>
!>    C := alpha*A**H*A + beta*C,
!>
!> where  alpha and beta  are  real scalars,  C is an  n by n  hermitian
!> matrix and  A  is an  n by k  matrix in the  first case and a  k by n
!> matrix in the second case.
!> \endverbatim
!
!  Arguments:
!  ==========
!
!> \param[in] UPLO
!> \verbatim
!>          UPLO is CHARACTER*1
!>           On  entry,   UPLO  specifies  whether  the  upper  or  lower
!>           triangular  part  of the  array  C  is to be  referenced  as
!>           follows:
!>
!>              UPLO = 'U' or 'u'   Only the  upper triangular part of  C
!>                                  is to be referenced.
!>
!>              UPLO = 'L' or 'l'   Only the  lower triangular part of  C
!>                                  is to be referenced.
!> \endverbatim
!>
!> \param[in] TRANS
!> \verbatim
!>          TRANS is CHARACTER*1
!>           On entry,  TRANS  specifies the operation to be performed as
!>           follows:
!>
!>              TRANS = 'N' or 'n'   C := alpha*A*A**H + beta*C.
!>
!>              TRANS = 'C' or 'c'   C := alpha*A**H*A + beta*C.
!> \endverbatim
!>
!> \param[in] N
!> \verbatim
!>          N is INTEGER
!>           On entry,  N specifies the order of the matrix C.  N must be
!>           at least zero.
!> \endverbatim
!>
!> \param[in] K
!> \verbatim
!>          K is INTEGER
!>           On entry with  TRANS = 'N' or 'n',  K  specifies  the number
!>           of  columns   of  the   matrix   A,   and  on   entry   with
!>           TRANS = 'C' or 'c',  K  specifies  the number of rows of the
!>           matrix A.  K must be at least zero.
!> \endverbatim
!>
!> \param[in] ALPHA
!> \verbatim
!>          ALPHA is REAL
!>           On entry, ALPHA specifies the scalar alpha.
!> \endverbatim
!>
!> \param[in] A
!> \verbatim
!>          A is COMPLEX array, dimension ( LDA, ka ), where ka is
!>           k  when  TRANS = 'N' or 'n',  and is  n  otherwise.
!>           Before entry with  TRANS = 'N' or 'n',  the  leading  n by k
!>           part of the array  A  must contain the matrix  A,  otherwise
!>           the leading  k by n  part of the array  A  must contain  the
!>           matrix A.
!> \endverbatim
!>
!> \param[in] LDA
!> \verbatim
!>          LDA is INTEGER
!>           On entry, LDA specifies the first dimension of A as declared
!>           in  the  calling  (sub)  program.   When  TRANS = 'N' or 'n'
!>           then  LDA must be at least  max( 1, n ), otherwise  LDA must
!>           be at least  max( 1, k ).
!> \endverbatim
!>
!> \param[in] BETA
!> \verbatim
!>          BETA is REAL
!>           On entry, BETA specifies the scalar beta.
!> \endverbatim
!>
!> \param[in,out] C
!> \verbatim
!>          C is COMPLEX array, dimension ( LDC, N )
!>           Before entry  with  UPLO = 'U' or 'u',  the leading  n by n
!>           upper triangular part of the array C must contain the upper
!>           triangular part  of the  hermitian matrix  and the strictly
!>           lower triangular part of C is not referenced.  On exit, the
!>           upper triangular part of the array  C is overwritten by the
!>           upper triangular part of the updated matrix.
!>           Before entry  with  UPLO = 'L' or 'l',  the leading  n by n
!>           lower triangular part of the array C must contain the lower
!>           triangular part  of the  hermitian matrix  and the strictly
!>           upper triangular part of C is not referenced.  On exit, the
!>           lower triangular part of the array  C is overwritten by the
!>           lower triangular part of the updated matrix.
!>           Note that the imaginary parts of the diagonal elements need
!>           not be set,  they are assumed to be zero,  and on exit they
!>           are set to zero.
!> \endverbatim
!>
!> \param[in] LDC
!> \verbatim
!>          LDC is INTEGER
!>           On entry, LDC specifies the first dimension of C as declared
!>           in  the  calling  (sub)  program.   LDC  must  be  at  least
!>           max( 1, n ).
!> \endverbatim
!
!  Authors:
!  ========
!
!> \author Univ. of Tennessee
!> \author Univ. of California Berkeley
!> \author Univ. of Colorado Denver
!> \author NAG Ltd.
!
!> \date December 2016
!
!> \ingroup complex_blas_level3
!
!> \par Further Details:
!  =====================
!>
!> \verbatim
!>
!>  Level 3 Blas routine.
!>
!>  -- Written on 8-February-1989.
!>     Jack Dongarra, Argonne National Laboratory.
!>     Iain Duff, AERE Harwell.
!>     Jeremy Du Croz, Numerical Algorithms Group Ltd.
!>     Sven Hammarling, Numerical Algorithms Group Ltd.
!>
!>  -- Modified 8-Nov-93 to set C(J,J) to REAL( C(J,J) ) when BETA = 1.
!>     Ed Anderson, Cray Research Inc.
!> \endverbatim
!>
!  =====================================================================
!
!  -- Reference BLAS level3 routine (version 3.7.0) --
!  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
!  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
!     December 2016
!
!     .. Scalar Arguments ..
!     ..
!     .. Array Arguments ..
!     ..
!
!  =====================================================================
!
!     .. External Functions ..
!     ..
!     .. External Subroutines ..
!     ..
!     .. Intrinsic Functions ..
!     ..
!     .. Local Scalars ..
!     ..
!     .. Parameters ..
!     ..
!
!     Test the input parameters.
!
!
!
!     Quick return if possible.
!
!
!     And when  alpha.eq.zero.
!
!
!     Start the operations.
!
!
!        Form  C := alpha*A*A**H + beta*C.
!
!
!        Form  C := alpha*A**H*A + beta*C.
!
!
!
!     End of CHERK .
!
! END
use M_blas, only : cherk_=>CHERK
implicit none
      REAL ALPHA,BETA
      INTEGER K,LDA,LDC,N
      CHARACTER TRANS,UPLO
      COMPLEX A(LDA,*),C(LDC,*)
      call CHERK_(UPLO,TRANS,N,K,ALPHA,A,LDA,BETA,C,LDC)
end subroutine CHERK

subroutine CHPMV(UPLO,N,ALPHA,AP,X,INCX,BETA,Y,INCY)
! COMMENT --file chpmv.3m_blas.man
!> \brief \b CHPMV
!
!  =========== DOCUMENTATION ===========
!
! Online html documentation available at
!            http://www.netlib.org/lapack/explore-html/
!
!  Definition:
!  ===========
!
!       SUBROUTINE CHPMV(UPLO,N,ALPHA,AP,X,INCX,BETA,Y,INCY)
!
!       .. Scalar Arguments ..
!       COMPLEX ALPHA,BETA
!       INTEGER INCX,INCY,N
!       CHARACTER UPLO
!       ..
!       .. Array Arguments ..
!       COMPLEX AP(*),X(*),Y(*)
!       ..
!
!
!> \par Purpose:
!  =============
!>
!> \verbatim
!>
!> CHPMV  performs the matrix-vector operation
!>
!>    y := alpha*A*x + beta*y,
!>
!> where alpha and beta are scalars, x and y are n element vectors and
!> A is an n by n hermitian matrix, supplied in packed form.
!> \endverbatim
!
!  Arguments:
!  ==========
!
!> \param[in] UPLO
!> \verbatim
!>          UPLO is CHARACTER*1
!>           On entry, UPLO specifies whether the upper or lower
!>           triangular part of the matrix A is supplied in the packed
!>           array AP as follows:
!>
!>              UPLO = 'U' or 'u'   The upper triangular part of A is
!>                                  supplied in AP.
!>
!>              UPLO = 'L' or 'l'   The lower triangular part of A is
!>                                  supplied in AP.
!> \endverbatim
!>
!> \param[in] N
!> \verbatim
!>          N is INTEGER
!>           On entry, N specifies the order of the matrix A.
!>           N must be at least zero.
!> \endverbatim
!>
!> \param[in] ALPHA
!> \verbatim
!>          ALPHA is COMPLEX
!>           On entry, ALPHA specifies the scalar alpha.
!> \endverbatim
!>
!> \param[in] AP
!> \verbatim
!>          AP is COMPLEX array, dimension at least
!>           ( ( n*( n + 1 ) )/2 ).
!>           Before entry with UPLO = 'U' or 'u', the array AP must
!>           contain the upper triangular part of the hermitian matrix
!>           packed sequentially, column by column, so that AP( 1 )
!>           contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 )
!>           and a( 2, 2 ) respectively, and so on.
!>           Before entry with UPLO = 'L' or 'l', the array AP must
!>           contain the lower triangular part of the hermitian matrix
!>           packed sequentially, column by column, so that AP( 1 )
!>           contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 )
!>           and a( 3, 1 ) respectively, and so on.
!>           Note that the imaginary parts of the diagonal elements need
!>           not be set and are assumed to be zero.
!> \endverbatim
!>
!> \param[in] X
!> \verbatim
!>          X is COMPLEX array, dimension at least
!>           ( 1 + ( n - 1 )*abs( INCX ) ).
!>           Before entry, the incremented array X must contain the n
!>           element vector x.
!> \endverbatim
!>
!> \param[in] INCX
!> \verbatim
!>          INCX is INTEGER
!>           On entry, INCX specifies the increment for the elements of
!>           X. INCX must not be zero.
!> \endverbatim
!>
!> \param[in] BETA
!> \verbatim
!>          BETA is COMPLEX
!>           On entry, BETA specifies the scalar beta. When BETA is
!>           supplied as zero then Y need not be set on input.
!> \endverbatim
!>
!> \param[in,out] Y
!> \verbatim
!>          Y is COMPLEX array, dimension at least
!>           ( 1 + ( n - 1 )*abs( INCY ) ).
!>           Before entry, the incremented array Y must contain the n
!>           element vector y. On exit, Y is overwritten by the updated
!>           vector y.
!> \endverbatim
!>
!> \param[in] INCY
!> \verbatim
!>          INCY is INTEGER
!>           On entry, INCY specifies the increment for the elements of
!>           Y. INCY must not be zero.
!> \endverbatim
!
!  Authors:
!  ========
!
!> \author Univ. of Tennessee
!> \author Univ. of California Berkeley
!> \author Univ. of Colorado Denver
!> \author NAG Ltd.
!
!> \date December 2016
!
!> \ingroup complex_blas_level2
!
!> \par Further Details:
!  =====================
!>
!> \verbatim
!>
!>  Level 2 Blas routine.
!>  The vector and matrix arguments are not referenced when N = 0, or M = 0
!>
!>  -- Written on 22-October-1986.
!>     Jack Dongarra, Argonne National Lab.
!>     Jeremy Du Croz, Nag Central Office.
!>     Sven Hammarling, Nag Central Office.
!>     Richard Hanson, Sandia National Labs.
!> \endverbatim
!>
!  =====================================================================
!
!  -- Reference BLAS level2 routine (version 3.7.0) --
!  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
!  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
!     December 2016
!
!     .. Scalar Arguments ..
!     ..
!     .. Array Arguments ..
!     ..
!
!  =====================================================================
!
!     .. Parameters ..
!     ..
!     .. Local Scalars ..
!     ..
!     .. External Functions ..
!     ..
!     .. External Subroutines ..
!     ..
!     .. Intrinsic Functions ..
!     ..
!
!     Test the input parameters.
!
!
!     Quick return if possible.
!
!
!     Set up the start points in  X  and  Y.
!
!
!     Start the operations. In this version the elements of the array AP
!     are accessed sequentially with one pass through AP.
!
!     First form  y := beta*y.
!
!
!        Form  y  when AP contains the upper triangle.
!
!
!        Form  y  when AP contains the lower triangle.
!
!
!
!     End of CHPMV .
!
! END
use M_blas, only : chpmv_=>CHPMV
implicit none
      COMPLEX ALPHA,BETA
      INTEGER INCX,INCY,N
      CHARACTER UPLO
      COMPLEX AP(*),X(*),Y(*)
      call CHPMV_(UPLO,N,ALPHA,AP,X,INCX,BETA,Y,INCY)
end subroutine CHPMV

subroutine CHPR2(UPLO,N,ALPHA,X,INCX,Y,INCY,AP)
! COMMENT --file chpr2.3m_blas.man
!> \brief \b CHPR2
!
!  =========== DOCUMENTATION ===========
!
! Online html documentation available at
!            http://www.netlib.org/lapack/explore-html/
!
!  Definition:
!  ===========
!
!       SUBROUTINE CHPR2(UPLO,N,ALPHA,X,INCX,Y,INCY,AP)
!
!       .. Scalar Arguments ..
!       COMPLEX ALPHA
!       INTEGER INCX,INCY,N
!       CHARACTER UPLO
!       ..
!       .. Array Arguments ..
!       COMPLEX AP(*),X(*),Y(*)
!       ..
!
!
!> \par Purpose:
!  =============
!>
!> \verbatim
!>
!> CHPR2  performs the hermitian rank 2 operation
!>
!>    A := alpha*x*y**H + conjg( alpha )*y*x**H + A,
!>
!> where alpha is a scalar, x and y are n element vectors and A is an
!> n by n hermitian matrix, supplied in packed form.
!> \endverbatim
!
!  Arguments:
!  ==========
!
!> \param[in] UPLO
!> \verbatim
!>          UPLO is CHARACTER*1
!>           On entry, UPLO specifies whether the upper or lower
!>           triangular part of the matrix A is supplied in the packed
!>           array AP as follows:
!>
!>              UPLO = 'U' or 'u'   The upper triangular part of A is
!>                                  supplied in AP.
!>
!>              UPLO = 'L' or 'l'   The lower triangular part of A is
!>                                  supplied in AP.
!> \endverbatim
!>
!> \param[in] N
!> \verbatim
!>          N is INTEGER
!>           On entry, N specifies the order of the matrix A.
!>           N must be at least zero.
!> \endverbatim
!>
!> \param[in] ALPHA
!> \verbatim
!>          ALPHA is COMPLEX
!>           On entry, ALPHA specifies the scalar alpha.
!> \endverbatim
!>
!> \param[in] X
!> \verbatim
!>          X is COMPLEX array, dimension at least
!>           ( 1 + ( n - 1 )*abs( INCX ) ).
!>           Before entry, the incremented array X must contain the n
!>           element vector x.
!> \endverbatim
!>
!> \param[in] INCX
!> \verbatim
!>          INCX is INTEGER
!>           On entry, INCX specifies the increment for the elements of
!>           X. INCX must not be zero.
!> \endverbatim
!>
!> \param[in] Y
!> \verbatim
!>          Y is COMPLEX array, dimension at least
!>           ( 1 + ( n - 1 )*abs( INCY ) ).
!>           Before entry, the incremented array Y must contain the n
!>           element vector y.
!> \endverbatim
!>
!> \param[in] INCY
!> \verbatim
!>          INCY is INTEGER
!>           On entry, INCY specifies the increment for the elements of
!>           Y. INCY must not be zero.
!> \endverbatim
!>
!> \param[in,out] AP
!> \verbatim
!>          AP is COMPLEX array, dimension at least
!>           ( ( n*( n + 1 ) )/2 ).
!>           Before entry with  UPLO = 'U' or 'u', the array AP must
!>           contain the upper triangular part of the hermitian matrix
!>           packed sequentially, column by column, so that AP( 1 )
!>           contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 )
!>           and a( 2, 2 ) respectively, and so on. On exit, the array
!>           AP is overwritten by the upper triangular part of the
!>           updated matrix.
!>           Before entry with UPLO = 'L' or 'l', the array AP must
!>           contain the lower triangular part of the hermitian matrix
!>           packed sequentially, column by column, so that AP( 1 )
!>           contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 )
!>           and a( 3, 1 ) respectively, and so on. On exit, the array
!>           AP is overwritten by the lower triangular part of the
!>           updated matrix.
!>           Note that the imaginary parts of the diagonal elements need
!>           not be set, they are assumed to be zero, and on exit they
!>           are set to zero.
!> \endverbatim
!
!  Authors:
!  ========
!
!> \author Univ. of Tennessee
!> \author Univ. of California Berkeley
!> \author Univ. of Colorado Denver
!> \author NAG Ltd.
!
!> \date December 2016
!
!> \ingroup complex_blas_level2
!
!> \par Further Details:
!  =====================
!>
!> \verbatim
!>
!>  Level 2 Blas routine.
!>
!>  -- Written on 22-October-1986.
!>     Jack Dongarra, Argonne National Lab.
!>     Jeremy Du Croz, Nag Central Office.
!>     Sven Hammarling, Nag Central Office.
!>     Richard Hanson, Sandia National Labs.
!> \endverbatim
!>
!  =====================================================================
!
!  -- Reference BLAS level2 routine (version 3.7.0) --
!  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
!  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
!     December 2016
!
!     .. Scalar Arguments ..
!     ..
!     .. Array Arguments ..
!     ..
!
!  =====================================================================
!
!     .. Parameters ..
!     ..
!     .. Local Scalars ..
!     ..
!     .. External Functions ..
!     ..
!     .. External Subroutines ..
!     ..
!     .. Intrinsic Functions ..
!     ..
!
!     Test the input parameters.
!
!
!     Quick return if possible.
!
!
!     Set up the start points in X and Y if the increments are not both
!     unity.
!
!
!     Start the operations. In this version the elements of the array AP
!     are accessed sequentially with one pass through AP.
!
!
!        Form  A  when upper triangle is stored in AP.
!
!
!        Form  A  when lower triangle is stored in AP.
!
!
!
!     End of CHPR2 .
!
! END
use M_blas, only : chpr2_=>CHPR2
implicit none
      COMPLEX ALPHA
      INTEGER INCX,INCY,N
      CHARACTER UPLO
      COMPLEX AP(*),X(*),Y(*)
      call CHPR2_(UPLO,N,ALPHA,X,INCX,Y,INCY,AP)
end subroutine CHPR2

subroutine CHPR(UPLO,N,ALPHA,X,INCX,AP)
! COMMENT --file chpr.3m_blas.man
!> \brief \b CHPR
!
!  =========== DOCUMENTATION ===========
!
! Online html documentation available at
!            http://www.netlib.org/lapack/explore-html/
!
!  Definition:
!  ===========
!
!       SUBROUTINE CHPR(UPLO,N,ALPHA,X,INCX,AP)
!
!       .. Scalar Arguments ..
!       REAL ALPHA
!       INTEGER INCX,N
!       CHARACTER UPLO
!       ..
!       .. Array Arguments ..
!       COMPLEX AP(*),X(*)
!       ..
!
!
!> \par Purpose:
!  =============
!>
!> \verbatim
!>
!> CHPR    performs the hermitian rank 1 operation
!>
!>    A := alpha*x*x**H + A,
!>
!> where alpha is a real scalar, x is an n element vector and A is an
!> n by n hermitian matrix, supplied in packed form.
!> \endverbatim
!
!  Arguments:
!  ==========
!
!> \param[in] UPLO
!> \verbatim
!>          UPLO is CHARACTER*1
!>           On entry, UPLO specifies whether the upper or lower
!>           triangular part of the matrix A is supplied in the packed
!>           array AP as follows:
!>
!>              UPLO = 'U' or 'u'   The upper triangular part of A is
!>                                  supplied in AP.
!>
!>              UPLO = 'L' or 'l'   The lower triangular part of A is
!>                                  supplied in AP.
!> \endverbatim
!>
!> \param[in] N
!> \verbatim
!>          N is INTEGER
!>           On entry, N specifies the order of the matrix A.
!>           N must be at least zero.
!> \endverbatim
!>
!> \param[in] ALPHA
!> \verbatim
!>          ALPHA is REAL
!>           On entry, ALPHA specifies the scalar alpha.
!> \endverbatim
!>
!> \param[in] X
!> \verbatim
!>          X is COMPLEX array, dimension at least
!>           ( 1 + ( n - 1 )*abs( INCX ) ).
!>           Before entry, the incremented array X must contain the n
!>           element vector x.
!> \endverbatim
!>
!> \param[in] INCX
!> \verbatim
!>          INCX is INTEGER
!>           On entry, INCX specifies the increment for the elements of
!>           X. INCX must not be zero.
!> \endverbatim
!>
!> \param[in,out] AP
!> \verbatim
!>          AP is COMPLEX array, dimension at least
!>           ( ( n*( n + 1 ) )/2 ).
!>           Before entry with  UPLO = 'U' or 'u', the array AP must
!>           contain the upper triangular part of the hermitian matrix
!>           packed sequentially, column by column, so that AP( 1 )
!>           contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 )
!>           and a( 2, 2 ) respectively, and so on. On exit, the array
!>           AP is overwritten by the upper triangular part of the
!>           updated matrix.
!>           Before entry with UPLO = 'L' or 'l', the array AP must
!>           contain the lower triangular part of the hermitian matrix
!>           packed sequentially, column by column, so that AP( 1 )
!>           contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 )
!>           and a( 3, 1 ) respectively, and so on. On exit, the array
!>           AP is overwritten by the lower triangular part of the
!>           updated matrix.
!>           Note that the imaginary parts of the diagonal elements need
!>           not be set, they are assumed to be zero, and on exit they
!>           are set to zero.
!> \endverbatim
!
!  Authors:
!  ========
!
!> \author Univ. of Tennessee
!> \author Univ. of California Berkeley
!> \author Univ. of Colorado Denver
!> \author NAG Ltd.
!
!> \date December 2016
!
!> \ingroup complex_blas_level2
!
!> \par Further Details:
!  =====================
!>
!> \verbatim
!>
!>  Level 2 Blas routine.
!>
!>  -- Written on 22-October-1986.
!>     Jack Dongarra, Argonne National Lab.
!>     Jeremy Du Croz, Nag Central Office.
!>     Sven Hammarling, Nag Central Office.
!>     Richard Hanson, Sandia National Labs.
!> \endverbatim
!>
!  =====================================================================
!
!  -- Reference BLAS level2 routine (version 3.7.0) --
!  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
!  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
!     December 2016
!
!     .. Scalar Arguments ..
!     ..
!     .. Array Arguments ..
!     ..
!
!  =====================================================================
!
!     .. Parameters ..
!     ..
!     .. Local Scalars ..
!     ..
!     .. External Functions ..
!     ..
!     .. External Subroutines ..
!     ..
!     .. Intrinsic Functions ..
!     ..
!
!     Test the input parameters.
!
!
!     Quick return if possible.
!
!
!     Set the start point in X if the increment is not unity.
!
!
!     Start the operations. In this version the elements of the array AP
!     are accessed sequentially with one pass through AP.
!
!
!        Form  A  when upper triangle is stored in AP.
!
!
!        Form  A  when lower triangle is stored in AP.
!
!
!
!     End of CHPR  .
!
! END
use M_blas, only : chpr_=>CHPR
implicit none
      REAL ALPHA
      INTEGER INCX,N
      CHARACTER UPLO
      COMPLEX AP(*),X(*)
      call CHPR_(UPLO,N,ALPHA,X,INCX,AP)
end subroutine CHPR

subroutine CROTG(CA,CB,C,S)
! COMMENT --file crotg.3m_blas.man
!> \brief \b CROTG
!
!  =========== DOCUMENTATION ===========
!
! Online html documentation available at
!            http://www.netlib.org/lapack/explore-html/
!
!  Definition:
!  ===========
!
!       SUBROUTINE CROTG(CA,CB,C,S)
!
!       .. Scalar Arguments ..
!       COMPLEX CA,CB,S
!       REAL C
!       ..
!
!
!> \par Purpose:
!  =============
!>
!> \verbatim
!>
!> CROTG determines a complex Givens rotation.
!> \endverbatim
!
!  Arguments:
!  ==========
!
!> \param[in,out] CA
!> \verbatim
!>          CA is COMPLEX
!> \endverbatim
!>
!> \param[in] CB
!> \verbatim
!>          CB is COMPLEX
!> \endverbatim
!>
!> \param[out] C
!> \verbatim
!>          C is REAL
!> \endverbatim
!>
!> \param[out] S
!> \verbatim
!>          S is COMPLEX
!> \endverbatim
!
!  Authors:
!  ========
!
!> \author Univ. of Tennessee
!> \author Univ. of California Berkeley
!> \author Univ. of Colorado Denver
!> \author NAG Ltd.
!
!> \date November 2017
!
!> \ingroup complex_blas_level1
!
!  =====================================================================
!
!  -- Reference BLAS level1 routine (version 3.8.0) --
!  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
!  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
!     November 2017
!
!     .. Scalar Arguments ..
!     ..
!
!  =====================================================================
!
!     .. Local Scalars ..
!     ..
!     .. Intrinsic Functions ..
!     ..
! END
use M_blas, only : crotg_=>CROTG
implicit none
      COMPLEX CA,CB,S
      REAL C
      call CROTG_(CA,CB,C,S)
end subroutine CROTG

subroutine CSCAL(N,CA,CX,INCX)
! COMMENT --file cscal.3m_blas.man
!> \brief \b CSCAL
!
!  =========== DOCUMENTATION ===========
!
! Online html documentation available at
!            http://www.netlib.org/lapack/explore-html/
!
!  Definition:
!  ===========
!
!       SUBROUTINE CSCAL(N,CA,CX,INCX)
!
!       .. Scalar Arguments ..
!       COMPLEX CA
!       INTEGER INCX,N
!       ..
!       .. Array Arguments ..
!       COMPLEX CX(*)
!       ..
!
!
!> \par Purpose:
!  =============
!>
!> \verbatim
!>
!>    CSCAL scales a vector by a constant.
!> \endverbatim
!
!  Arguments:
!  ==========
!
!> \param[in] N
!> \verbatim
!>          N is INTEGER
!>         number of elements in input vector(s)
!> \endverbatim
!>
!> \param[in] CA
!> \verbatim
!>          CA is COMPLEX
!>           On entry, CA specifies the scalar alpha.
!> \endverbatim
!>
!> \param[in,out] CX
!> \verbatim
!>          CX is COMPLEX array, dimension ( 1 + ( N - 1 )*abs( INCX ) )
!> \endverbatim
!>
!> \param[in] INCX
!> \verbatim
!>          INCX is INTEGER
!>         storage spacing between elements of CX
!> \endverbatim
!
!  Authors:
!  ========
!
!> \author Univ. of Tennessee
!> \author Univ. of California Berkeley
!> \author Univ. of Colorado Denver
!> \author NAG Ltd.
!
!> \date November 2017
!
!> \ingroup complex_blas_level1
!
!> \par Further Details:
!  =====================
!>
!> \verbatim
!>
!>     jack dongarra, linpack,  3/11/78.
!>     modified 3/93 to return if incx .le. 0.
!>     modified 12/3/93, array(1) declarations changed to array(*)
!> \endverbatim
!>
!  =====================================================================
!
!  -- Reference BLAS level1 routine (version 3.8.0) --
!  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
!  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
!     November 2017
!
!     .. Scalar Arguments ..
!     ..
!     .. Array Arguments ..
!     ..
!
!  =====================================================================
!
!     .. Local Scalars ..
!     ..
!
!        code for increment equal to 1
!
!
!        code for increment not equal to 1
!
! END
use M_blas, only : cscal_=>CSCAL
implicit none
      COMPLEX CA
      INTEGER INCX,N
      COMPLEX CX(*)
      call CSCAL_(N,CA,CX,INCX)
end subroutine CSCAL

subroutine CSROT( N, CX, INCX, CY, INCY, C, S )
! COMMENT --file csrot.3m_blas.man
!> \brief \b CSROT
!
!  =========== DOCUMENTATION ===========
!
! Online html documentation available at
!            http://www.netlib.org/lapack/explore-html/
!
!  Definition:
!  ===========
!
!       SUBROUTINE CSROT( N, CX, INCX, CY, INCY, C, S )
!
!       .. Scalar Arguments ..
!       INTEGER           INCX, INCY, N
!       REAL              C, S
!       ..
!       .. Array Arguments ..
!       COMPLEX           CX( * ), CY( * )
!       ..
!
!
!> \par Purpose:
!  =============
!>
!> \verbatim
!>
!> CSROT applies a plane rotation, where the cos and sin (c and s) are real
!> and the vectors cx and cy are complex.
!> jack dongarra, linpack, 3/11/78.
!> \endverbatim
!
!  Arguments:
!  ==========
!
!> \param[in] N
!> \verbatim
!>          N is INTEGER
!>           On entry, N specifies the order of the vectors cx and cy.
!>           N must be at least zero.
!> \endverbatim
!>
!> \param[in,out] CX
!> \verbatim
!>          CX is COMPLEX array, dimension at least
!>           ( 1 + ( N - 1 )*abs( INCX ) ).
!>           Before entry, the incremented array CX must contain the n
!>           element vector cx. On exit, CX is overwritten by the updated
!>           vector cx.
!> \endverbatim
!>
!> \param[in] INCX
!> \verbatim
!>          INCX is INTEGER
!>           On entry, INCX specifies the increment for the elements of
!>           CX. INCX must not be zero.
!> \endverbatim
!>
!> \param[in,out] CY
!> \verbatim
!>          CY is COMPLEX array, dimension at least
!>           ( 1 + ( N - 1 )*abs( INCY ) ).
!>           Before entry, the incremented array CY must contain the n
!>           element vector cy. On exit, CY is overwritten by the updated
!>           vector cy.
!> \endverbatim
!>
!> \param[in] INCY
!> \verbatim
!>          INCY is INTEGER
!>           On entry, INCY specifies the increment for the elements of
!>           CY. INCY must not be zero.
!> \endverbatim
!>
!> \param[in] C
!> \verbatim
!>          C is REAL
!>           On entry, C specifies the cosine, cos.
!> \endverbatim
!>
!> \param[in] S
!> \verbatim
!>          S is REAL
!>           On entry, S specifies the sine, sin.
!> \endverbatim
!
!  Authors:
!  ========
!
!> \author Univ. of Tennessee
!> \author Univ. of California Berkeley
!> \author Univ. of Colorado Denver
!> \author NAG Ltd.
!
!> \date December 2016
!
!> \ingroup complex_blas_level1
!
!  =====================================================================
!
!  -- Reference BLAS level1 routine (version 3.7.0) --
!  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
!  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
!     December 2016
!
!     .. Scalar Arguments ..
!     ..
!     .. Array Arguments ..
!     ..
!
!  =====================================================================
!
!     .. Local Scalars ..
!     ..
!     .. Executable Statements ..
!
!
!        code for both increments equal to 1
!
!
!        code for unequal increments or equal increments not equal
!          to 1
!
! END
use M_blas, only : csrot_=>CSROT
implicit none
      INTEGER           INCX, INCY, N
      REAL              C, S
      COMPLEX           CX( * ), CY( * )
      call CSROT_( N, CX, INCX, CY, INCY, C, S )
end subroutine CSROT

subroutine CSSCAL(N,SA,CX,INCX)
! COMMENT --file csscal.3m_blas.man
!> \brief \b CSSCAL
!
!  =========== DOCUMENTATION ===========
!
! Online html documentation available at
!            http://www.netlib.org/lapack/explore-html/
!
!  Definition:
!  ===========
!
!       SUBROUTINE CSSCAL(N,SA,CX,INCX)
!
!       .. Scalar Arguments ..
!       REAL SA
!       INTEGER INCX,N
!       ..
!       .. Array Arguments ..
!       COMPLEX CX(*)
!       ..
!
!
!> \par Purpose:
!  =============
!>
!> \verbatim
!>
!>    CSSCAL scales a complex vector by a real constant.
!> \endverbatim
!
!  Arguments:
!  ==========
!
!> \param[in] N
!> \verbatim
!>          N is INTEGER
!>         number of elements in input vector(s)
!> \endverbatim
!>
!> \param[in] SA
!> \verbatim
!>          SA is REAL
!>           On entry, SA specifies the scalar alpha.
!> \endverbatim
!>
!> \param[in,out] CX
!> \verbatim
!>          CX is COMPLEX array, dimension ( 1 + ( N - 1 )*abs( INCX ) )
!> \endverbatim
!>
!> \param[in] INCX
!> \verbatim
!>          INCX is INTEGER
!>         storage spacing between elements of CX
!> \endverbatim
!
!  Authors:
!  ========
!
!> \author Univ. of Tennessee
!> \author Univ. of California Berkeley
!> \author Univ. of Colorado Denver
!> \author NAG Ltd.
!
!> \date November 2017
!
!> \ingroup complex_blas_level1
!
!> \par Further Details:
!  =====================
!>
!> \verbatim
!>
!>     jack dongarra, linpack, 3/11/78.
!>     modified 3/93 to return if incx .le. 0.
!>     modified 12/3/93, array(1) declarations changed to array(*)
!> \endverbatim
!>
!  =====================================================================
!
!  -- Reference BLAS level1 routine (version 3.8.0) --
!  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
!  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
!     November 2017
!
!     .. Scalar Arguments ..
!     ..
!     .. Array Arguments ..
!     ..
!
!  =====================================================================
!
!     .. Local Scalars ..
!     ..
!     .. Intrinsic Functions ..
!     ..
!
!        code for increment equal to 1
!
!
!        code for increment not equal to 1
!
! END
use M_blas, only : csscal_=>CSSCAL
implicit none
      REAL SA
      INTEGER INCX,N
      COMPLEX CX(*)
      call CSSCAL_(N,SA,CX,INCX)
end subroutine CSSCAL

subroutine CSWAP(N,CX,INCX,CY,INCY)
! COMMENT --file cswap.3m_blas.man
!> \brief \b CSWAP
!
!  =========== DOCUMENTATION ===========
!
! Online html documentation available at
!            http://www.netlib.org/lapack/explore-html/
!
!  Definition:
!  ===========
!
!       SUBROUTINE CSWAP(N,CX,INCX,CY,INCY)
!
!       .. Scalar Arguments ..
!       INTEGER INCX,INCY,N
!       ..
!       .. Array Arguments ..
!       COMPLEX CX(*),CY(*)
!       ..
!
!
!> \par Purpose:
!  =============
!>
!> \verbatim
!>
!>   CSWAP interchanges two vectors.
!> \endverbatim
!
!  Arguments:
!  ==========
!
!> \param[in] N
!> \verbatim
!>          N is INTEGER
!>         number of elements in input vector(s)
!> \endverbatim
!>
!> \param[in,out] CX
!> \verbatim
!>          CX is COMPLEX array, dimension ( 1 + ( N - 1 )*abs( INCX ) )
!> \endverbatim
!>
!> \param[in] INCX
!> \verbatim
!>          INCX is INTEGER
!>         storage spacing between elements of CX
!> \endverbatim
!>
!> \param[in,out] CY
!> \verbatim
!>          CY is COMPLEX array, dimension ( 1 + ( N - 1 )*abs( INCY ) )
!> \endverbatim
!>
!> \param[in] INCY
!> \verbatim
!>          INCY is INTEGER
!>         storage spacing between elements of CY
!> \endverbatim
!
!  Authors:
!  ========
!
!> \author Univ. of Tennessee
!> \author Univ. of California Berkeley
!> \author Univ. of Colorado Denver
!> \author NAG Ltd.
!
!> \date November 2017
!
!> \ingroup complex_blas_level1
!
!> \par Further Details:
!  =====================
!>
!> \verbatim
!>
!>     jack dongarra, linpack, 3/11/78.
!>     modified 12/3/93, array(1) declarations changed to array(*)
!> \endverbatim
!>
!  =====================================================================
!
!  -- Reference BLAS level1 routine (version 3.8.0) --
!  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
!  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
!     November 2017
!
!     .. Scalar Arguments ..
!     ..
!     .. Array Arguments ..
!     ..
!
!  =====================================================================
!
!     .. Local Scalars ..
!     ..
!
!       code for both increments equal to 1
!
!       code for unequal increments or equal increments not equal
!         to 1
!
! END
use M_blas, only : cswap_=>CSWAP
implicit none
      INTEGER INCX,INCY,N
      COMPLEX CX(*),CY(*)
      call CSWAP_(N,CX,INCX,CY,INCY)
end subroutine CSWAP

subroutine CSYMM(SIDE,UPLO,M,N,ALPHA,A,LDA,B,LDB,BETA,C,LDC)
! COMMENT --file csymm.3m_blas.man
!> \brief \b CSYMM
!
!  =========== DOCUMENTATION ===========
!
! Online html documentation available at
!            http://www.netlib.org/lapack/explore-html/
!
!  Definition:
!  ===========
!
!       SUBROUTINE CSYMM(SIDE,UPLO,M,N,ALPHA,A,LDA,B,LDB,BETA,C,LDC)
!
!       .. Scalar Arguments ..
!       COMPLEX ALPHA,BETA
!       INTEGER LDA,LDB,LDC,M,N
!       CHARACTER SIDE,UPLO
!       ..
!       .. Array Arguments ..
!       COMPLEX A(LDA,*),B(LDB,*),C(LDC,*)
!       ..
!
!
!> \par Purpose:
!  =============
!>
!> \verbatim
!>
!> CSYMM  performs one of the matrix-matrix operations
!>
!>    C := alpha*A*B + beta*C,
!>
!> or
!>
!>    C := alpha*B*A + beta*C,
!>
!> where  alpha and beta are scalars, A is a symmetric matrix and  B and
!> C are m by n matrices.
!> \endverbatim
!
!  Arguments:
!  ==========
!
!> \param[in] SIDE
!> \verbatim
!>          SIDE is CHARACTER*1
!>           On entry,  SIDE  specifies whether  the  symmetric matrix  A
!>           appears on the  left or right  in the  operation as follows:
!>
!>              SIDE = 'L' or 'l'   C := alpha*A*B + beta*C,
!>
!>              SIDE = 'R' or 'r'   C := alpha*B*A + beta*C,
!> \endverbatim
!>
!> \param[in] UPLO
!> \verbatim
!>          UPLO is CHARACTER*1
!>           On  entry,   UPLO  specifies  whether  the  upper  or  lower
!>           triangular  part  of  the  symmetric  matrix   A  is  to  be
!>           referenced as follows:
!>
!>              UPLO = 'U' or 'u'   Only the upper triangular part of the
!>                                  symmetric matrix is to be referenced.
!>
!>              UPLO = 'L' or 'l'   Only the lower triangular part of the
!>                                  symmetric matrix is to be referenced.
!> \endverbatim
!>
!> \param[in] M
!> \verbatim
!>          M is INTEGER
!>           On entry,  M  specifies the number of rows of the matrix  C.
!>           M  must be at least zero.
!> \endverbatim
!>
!> \param[in] N
!> \verbatim
!>          N is INTEGER
!>           On entry, N specifies the number of columns of the matrix C.
!>           N  must be at least zero.
!> \endverbatim
!>
!> \param[in] ALPHA
!> \verbatim
!>          ALPHA is COMPLEX
!>           On entry, ALPHA specifies the scalar alpha.
!> \endverbatim
!>
!> \param[in] A
!> \verbatim
!>          A is COMPLEX array, dimension ( LDA, ka ), where ka is
!>           m  when  SIDE = 'L' or 'l'  and is n  otherwise.
!>           Before entry  with  SIDE = 'L' or 'l',  the  m by m  part of
!>           the array  A  must contain the  symmetric matrix,  such that
!>           when  UPLO = 'U' or 'u', the leading m by m upper triangular
!>           part of the array  A  must contain the upper triangular part
!>           of the  symmetric matrix and the  strictly  lower triangular
!>           part of  A  is not referenced,  and when  UPLO = 'L' or 'l',
!>           the leading  m by m  lower triangular part  of the  array  A
!>           must  contain  the  lower triangular part  of the  symmetric
!>           matrix and the  strictly upper triangular part of  A  is not
!>           referenced.
!>           Before entry  with  SIDE = 'R' or 'r',  the  n by n  part of
!>           the array  A  must contain the  symmetric matrix,  such that
!>           when  UPLO = 'U' or 'u', the leading n by n upper triangular
!>           part of the array  A  must contain the upper triangular part
!>           of the  symmetric matrix and the  strictly  lower triangular
!>           part of  A  is not referenced,  and when  UPLO = 'L' or 'l',
!>           the leading  n by n  lower triangular part  of the  array  A
!>           must  contain  the  lower triangular part  of the  symmetric
!>           matrix and the  strictly upper triangular part of  A  is not
!>           referenced.
!> \endverbatim
!>
!> \param[in] LDA
!> \verbatim
!>          LDA is INTEGER
!>           On entry, LDA specifies the first dimension of A as declared
!>           in the  calling (sub) program. When  SIDE = 'L' or 'l'  then
!>           LDA must be at least  max( 1, m ), otherwise  LDA must be at
!>           least max( 1, n ).
!> \endverbatim
!>
!> \param[in] B
!> \verbatim
!>          B is COMPLEX array, dimension ( LDB, N )
!>           Before entry, the leading  m by n part of the array  B  must
!>           contain the matrix B.
!> \endverbatim
!>
!> \param[in] LDB
!> \verbatim
!>          LDB is INTEGER
!>           On entry, LDB specifies the first dimension of B as declared
!>           in  the  calling  (sub)  program.   LDB  must  be  at  least
!>           max( 1, m ).
!> \endverbatim
!>
!> \param[in] BETA
!> \verbatim
!>          BETA is COMPLEX
!>           On entry,  BETA  specifies the scalar  beta.  When  BETA  is
!>           supplied as zero then C need not be set on input.
!> \endverbatim
!>
!> \param[in,out] C
!> \verbatim
!>          C is COMPLEX array, dimension ( LDC, N )
!>           Before entry, the leading  m by n  part of the array  C must
!>           contain the matrix  C,  except when  beta  is zero, in which
!>           case C need not be set on entry.
!>           On exit, the array  C  is overwritten by the  m by n updated
!>           matrix.
!> \endverbatim
!>
!> \param[in] LDC
!> \verbatim
!>          LDC is INTEGER
!>           On entry, LDC specifies the first dimension of C as declared
!>           in  the  calling  (sub)  program.   LDC  must  be  at  least
!>           max( 1, m ).
!> \endverbatim
!
!  Authors:
!  ========
!
!> \author Univ. of Tennessee
!> \author Univ. of California Berkeley
!> \author Univ. of Colorado Denver
!> \author NAG Ltd.
!
!> \date December 2016
!
!> \ingroup complex_blas_level3
!
!> \par Further Details:
!  =====================
!>
!> \verbatim
!>
!>  Level 3 Blas routine.
!>
!>  -- Written on 8-February-1989.
!>     Jack Dongarra, Argonne National Laboratory.
!>     Iain Duff, AERE Harwell.
!>     Jeremy Du Croz, Numerical Algorithms Group Ltd.
!>     Sven Hammarling, Numerical Algorithms Group Ltd.
!> \endverbatim
!>
!  =====================================================================
!
!  -- Reference BLAS level3 routine (version 3.7.0) --
!  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
!  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
!     December 2016
!
!     .. Scalar Arguments ..
!     ..
!     .. Array Arguments ..
!     ..
!
!  =====================================================================
!
!     .. External Functions ..
!     ..
!     .. External Subroutines ..
!     ..
!     .. Intrinsic Functions ..
!     ..
!     .. Local Scalars ..
!     ..
!     .. Parameters ..
!     ..
!
!     Set NROWA as the number of rows of A.
!
!
!     Test the input parameters.
!
!
!     Quick return if possible.
!
!
!     And when  alpha.eq.zero.
!
!
!     Start the operations.
!
!
!        Form  C := alpha*A*B + beta*C.
!
!
!        Form  C := alpha*B*A + beta*C.
!
!
!
!     End of CSYMM .
!
! END
use M_blas, only : csymm_=>CSYMM
implicit none
      COMPLEX ALPHA,BETA
      INTEGER LDA,LDB,LDC,M,N
      CHARACTER SIDE,UPLO
      COMPLEX A(LDA,*),B(LDB,*),C(LDC,*)
      call CSYMM_(SIDE,UPLO,M,N,ALPHA,A,LDA,B,LDB,BETA,C,LDC)
end subroutine CSYMM

subroutine CSYR2K(UPLO,TRANS,N,K,ALPHA,A,LDA,B,LDB,BETA,C,LDC)
! COMMENT --file csyr2k.3m_blas.man
!> \brief \b CSYR2K
!
!  =========== DOCUMENTATION ===========
!
! Online html documentation available at
!            http://www.netlib.org/lapack/explore-html/
!
!  Definition:
!  ===========
!
!       SUBROUTINE CSYR2K(UPLO,TRANS,N,K,ALPHA,A,LDA,B,LDB,BETA,C,LDC)
!
!       .. Scalar Arguments ..
!       COMPLEX ALPHA,BETA
!       INTEGER K,LDA,LDB,LDC,N
!       CHARACTER TRANS,UPLO
!       ..
!       .. Array Arguments ..
!       COMPLEX A(LDA,*),B(LDB,*),C(LDC,*)
!       ..
!
!
!> \par Purpose:
!  =============
!>
!> \verbatim
!>
!> CSYR2K  performs one of the symmetric rank 2k operations
!>
!>    C := alpha*A*B**T + alpha*B*A**T + beta*C,
!>
!> or
!>
!>    C := alpha*A**T*B + alpha*B**T*A + beta*C,
!>
!> where  alpha and beta  are scalars,  C is an  n by n symmetric matrix
!> and  A and B  are  n by k  matrices  in the  first  case  and  k by n
!> matrices in the second case.
!> \endverbatim
!
!  Arguments:
!  ==========
!
!> \param[in] UPLO
!> \verbatim
!>          UPLO is CHARACTER*1
!>           On  entry,   UPLO  specifies  whether  the  upper  or  lower
!>           triangular  part  of the  array  C  is to be  referenced  as
!>           follows:
!>
!>              UPLO = 'U' or 'u'   Only the  upper triangular part of  C
!>                                  is to be referenced.
!>
!>              UPLO = 'L' or 'l'   Only the  lower triangular part of  C
!>                                  is to be referenced.
!> \endverbatim
!>
!> \param[in] TRANS
!> \verbatim
!>          TRANS is CHARACTER*1
!>           On entry,  TRANS  specifies the operation to be performed as
!>           follows:
!>
!>              TRANS = 'N' or 'n'    C := alpha*A*B**T + alpha*B*A**T +
!>                                         beta*C.
!>
!>              TRANS = 'T' or 't'    C := alpha*A**T*B + alpha*B**T*A +
!>                                         beta*C.
!> \endverbatim
!>
!> \param[in] N
!> \verbatim
!>          N is INTEGER
!>           On entry,  N specifies the order of the matrix C.  N must be
!>           at least zero.
!> \endverbatim
!>
!> \param[in] K
!> \verbatim
!>          K is INTEGER
!>           On entry with  TRANS = 'N' or 'n',  K  specifies  the number
!>           of  columns  of the  matrices  A and B,  and on  entry  with
!>           TRANS = 'T' or 't',  K  specifies  the number of rows of the
!>           matrices  A and B.  K must be at least zero.
!> \endverbatim
!>
!> \param[in] ALPHA
!> \verbatim
!>          ALPHA is COMPLEX
!>           On entry, ALPHA specifies the scalar alpha.
!> \endverbatim
!>
!> \param[in] A
!> \verbatim
!>          A is COMPLEX array, dimension ( LDA, ka ), where ka is
!>           k  when  TRANS = 'N' or 'n',  and is  n  otherwise.
!>           Before entry with  TRANS = 'N' or 'n',  the  leading  n by k
!>           part of the array  A  must contain the matrix  A,  otherwise
!>           the leading  k by n  part of the array  A  must contain  the
!>           matrix A.
!> \endverbatim
!>
!> \param[in] LDA
!> \verbatim
!>          LDA is INTEGER
!>           On entry, LDA specifies the first dimension of A as declared
!>           in  the  calling  (sub)  program.   When  TRANS = 'N' or 'n'
!>           then  LDA must be at least  max( 1, n ), otherwise  LDA must
!>           be at least  max( 1, k ).
!> \endverbatim
!>
!> \param[in] B
!> \verbatim
!>          B is COMPLEX array, dimension ( LDB, kb ), where kb is
!>           k  when  TRANS = 'N' or 'n',  and is  n  otherwise.
!>           Before entry with  TRANS = 'N' or 'n',  the  leading  n by k
!>           part of the array  B  must contain the matrix  B,  otherwise
!>           the leading  k by n  part of the array  B  must contain  the
!>           matrix B.
!> \endverbatim
!>
!> \param[in] LDB
!> \verbatim
!>          LDB is INTEGER
!>           On entry, LDB specifies the first dimension of B as declared
!>           in  the  calling  (sub)  program.   When  TRANS = 'N' or 'n'
!>           then  LDB must be at least  max( 1, n ), otherwise  LDB must
!>           be at least  max( 1, k ).
!> \endverbatim
!>
!> \param[in] BETA
!> \verbatim
!>          BETA is COMPLEX
!>           On entry, BETA specifies the scalar beta.
!> \endverbatim
!>
!> \param[in,out] C
!> \verbatim
!>          C is COMPLEX array, dimension ( LDC, N )
!>           Before entry  with  UPLO = 'U' or 'u',  the leading  n by n
!>           upper triangular part of the array C must contain the upper
!>           triangular part  of the  symmetric matrix  and the strictly
!>           lower triangular part of C is not referenced.  On exit, the
!>           upper triangular part of the array  C is overwritten by the
!>           upper triangular part of the updated matrix.
!>           Before entry  with  UPLO = 'L' or 'l',  the leading  n by n
!>           lower triangular part of the array C must contain the lower
!>           triangular part  of the  symmetric matrix  and the strictly
!>           upper triangular part of C is not referenced.  On exit, the
!>           lower triangular part of the array  C is overwritten by the
!>           lower triangular part of the updated matrix.
!> \endverbatim
!>
!> \param[in] LDC
!> \verbatim
!>          LDC is INTEGER
!>           On entry, LDC specifies the first dimension of C as declared
!>           in  the  calling  (sub)  program.   LDC  must  be  at  least
!>           max( 1, n ).
!> \endverbatim
!
!  Authors:
!  ========
!
!> \author Univ. of Tennessee
!> \author Univ. of California Berkeley
!> \author Univ. of Colorado Denver
!> \author NAG Ltd.
!
!> \date December 2016
!
!> \ingroup complex_blas_level3
!
!> \par Further Details:
!  =====================
!>
!> \verbatim
!>
!>  Level 3 Blas routine.
!>
!>  -- Written on 8-February-1989.
!>     Jack Dongarra, Argonne National Laboratory.
!>     Iain Duff, AERE Harwell.
!>     Jeremy Du Croz, Numerical Algorithms Group Ltd.
!>     Sven Hammarling, Numerical Algorithms Group Ltd.
!> \endverbatim
!>
!  =====================================================================
!
!  -- Reference BLAS level3 routine (version 3.7.0) --
!  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
!  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
!     December 2016
!
!     .. Scalar Arguments ..
!     ..
!     .. Array Arguments ..
!     ..
!
!  =====================================================================
!
!     .. External Functions ..
!     ..
!     .. External Subroutines ..
!     ..
!     .. Intrinsic Functions ..
!     ..
!     .. Local Scalars ..
!     ..
!     .. Parameters ..
!     ..
!
!     Test the input parameters.
!
!
!
!     Quick return if possible.
!
!
!     And when  alpha.eq.zero.
!
!
!     Start the operations.
!
!
!        Form  C := alpha*A*B**T + alpha*B*A**T + C.
!
!
!        Form  C := alpha*A**T*B + alpha*B**T*A + C.
!
!
!
!     End of CSYR2K.
!
! END
use M_blas, only : csyr2k_=>CSYR2K
implicit none
      COMPLEX ALPHA,BETA
      INTEGER K,LDA,LDB,LDC,N
      CHARACTER TRANS,UPLO
      COMPLEX A(LDA,*),B(LDB,*),C(LDC,*)
    call CSYR2K_(UPLO,TRANS,N,K,ALPHA,A,LDA,B,LDB,BETA,C,LDC)
end subroutine CSYR2K

subroutine CSYRK(UPLO,TRANS,N,K,ALPHA,A,LDA,BETA,C,LDC)
! COMMENT --file csyrk.3m_blas.man
!> \brief \b CSYRK
!
!  =========== DOCUMENTATION ===========
!
! Online html documentation available at
!            http://www.netlib.org/lapack/explore-html/
!
!  Definition:
!  ===========
!
!       SUBROUTINE CSYRK(UPLO,TRANS,N,K,ALPHA,A,LDA,BETA,C,LDC)
!
!       .. Scalar Arguments ..
!       COMPLEX ALPHA,BETA
!       INTEGER K,LDA,LDC,N
!       CHARACTER TRANS,UPLO
!       ..
!       .. Array Arguments ..
!       COMPLEX A(LDA,*),C(LDC,*)
!       ..
!
!
!> \par Purpose:
!  =============
!>
!> \verbatim
!>
!> CSYRK  performs one of the symmetric rank k operations
!>
!>    C := alpha*A*A**T + beta*C,
!>
!> or
!>
!>    C := alpha*A**T*A + beta*C,
!>
!> where  alpha and beta  are scalars,  C is an  n by n symmetric matrix
!> and  A  is an  n by k  matrix in the first case and a  k by n  matrix
!> in the second case.
!> \endverbatim
!
!  Arguments:
!  ==========
!
!> \param[in] UPLO
!> \verbatim
!>          UPLO is CHARACTER*1
!>           On  entry,   UPLO  specifies  whether  the  upper  or  lower
!>           triangular  part  of the  array  C  is to be  referenced  as
!>           follows:
!>
!>              UPLO = 'U' or 'u'   Only the  upper triangular part of  C
!>                                  is to be referenced.
!>
!>              UPLO = 'L' or 'l'   Only the  lower triangular part of  C
!>                                  is to be referenced.
!> \endverbatim
!>
!> \param[in] TRANS
!> \verbatim
!>          TRANS is CHARACTER*1
!>           On entry,  TRANS  specifies the operation to be performed as
!>           follows:
!>
!>              TRANS = 'N' or 'n'   C := alpha*A*A**T + beta*C.
!>
!>              TRANS = 'T' or 't'   C := alpha*A**T*A + beta*C.
!> \endverbatim
!>
!> \param[in] N
!> \verbatim
!>          N is INTEGER
!>           On entry,  N specifies the order of the matrix C.  N must be
!>           at least zero.
!> \endverbatim
!>
!> \param[in] K
!> \verbatim
!>          K is INTEGER
!>           On entry with  TRANS = 'N' or 'n',  K  specifies  the number
!>           of  columns   of  the   matrix   A,   and  on   entry   with
!>           TRANS = 'T' or 't',  K  specifies  the number of rows of the
!>           matrix A.  K must be at least zero.
!> \endverbatim
!>
!> \param[in] ALPHA
!> \verbatim
!>          ALPHA is COMPLEX
!>           On entry, ALPHA specifies the scalar alpha.
!> \endverbatim
!>
!> \param[in] A
!> \verbatim
!>          A is COMPLEX array, dimension ( LDA, ka ), where ka is
!>           k  when  TRANS = 'N' or 'n',  and is  n  otherwise.
!>           Before entry with  TRANS = 'N' or 'n',  the  leading  n by k
!>           part of the array  A  must contain the matrix  A,  otherwise
!>           the leading  k by n  part of the array  A  must contain  the
!>           matrix A.
!> \endverbatim
!>
!> \param[in] LDA
!> \verbatim
!>          LDA is INTEGER
!>           On entry, LDA specifies the first dimension of A as declared
!>           in  the  calling  (sub)  program.   When  TRANS = 'N' or 'n'
!>           then  LDA must be at least  max( 1, n ), otherwise  LDA must
!>           be at least  max( 1, k ).
!> \endverbatim
!>
!> \param[in] BETA
!> \verbatim
!>          BETA is COMPLEX
!>           On entry, BETA specifies the scalar beta.
!> \endverbatim
!>
!> \param[in,out] C
!> \verbatim
!>          C is COMPLEX array, dimension ( LDC, N )
!>           Before entry  with  UPLO = 'U' or 'u',  the leading  n by n
!>           upper triangular part of the array C must contain the upper
!>           triangular part  of the  symmetric matrix  and the strictly
!>           lower triangular part of C is not referenced.  On exit, the
!>           upper triangular part of the array  C is overwritten by the
!>           upper triangular part of the updated matrix.
!>           Before entry  with  UPLO = 'L' or 'l',  the leading  n by n
!>           lower triangular part of the array C must contain the lower
!>           triangular part  of the  symmetric matrix  and the strictly
!>           upper triangular part of C is not referenced.  On exit, the
!>           lower triangular part of the array  C is overwritten by the
!>           lower triangular part of the updated matrix.
!> \endverbatim
!>
!> \param[in] LDC
!> \verbatim
!>          LDC is INTEGER
!>           On entry, LDC specifies the first dimension of C as declared
!>           in  the  calling  (sub)  program.   LDC  must  be  at  least
!>           max( 1, n ).
!> \endverbatim
!
!  Authors:
!  ========
!
!> \author Univ. of Tennessee
!> \author Univ. of California Berkeley
!> \author Univ. of Colorado Denver
!> \author NAG Ltd.
!
!> \date December 2016
!
!> \ingroup complex_blas_level3
!
!> \par Further Details:
!  =====================
!>
!> \verbatim
!>
!>  Level 3 Blas routine.
!>
!>  -- Written on 8-February-1989.
!>     Jack Dongarra, Argonne National Laboratory.
!>     Iain Duff, AERE Harwell.
!>     Jeremy Du Croz, Numerical Algorithms Group Ltd.
!>     Sven Hammarling, Numerical Algorithms Group Ltd.
!> \endverbatim
!>
!  =====================================================================
!
!  -- Reference BLAS level3 routine (version 3.7.0) --
!  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
!  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
!     December 2016
!
!     .. Scalar Arguments ..
!     ..
!     .. Array Arguments ..
!     ..
!
!  =====================================================================
!
!     .. External Functions ..
!     ..
!     .. External Subroutines ..
!     ..
!     .. Intrinsic Functions ..
!     ..
!     .. Local Scalars ..
!     ..
!     .. Parameters ..
!     ..
!
!     Test the input parameters.
!
!
!
!     Quick return if possible.
!
!
!     And when  alpha.eq.zero.
!
!
!     Start the operations.
!
!
!        Form  C := alpha*A*A**T + beta*C.
!
!
!        Form  C := alpha*A**T*A + beta*C.
!
!
!
!     End of CSYRK .
!
! END
use M_blas, only : csyrk_=>CSYRK
implicit none
      COMPLEX ALPHA,BETA
      INTEGER K,LDA,LDC,N
      CHARACTER TRANS,UPLO
      COMPLEX A(LDA,*),C(LDC,*)
    call CSYRK_(UPLO,TRANS,N,K,ALPHA,A,LDA,BETA,C,LDC)
end subroutine CSYRK

subroutine CTBMV(UPLO,TRANS,DIAG,N,K,A,LDA,X,INCX)
! COMMENT --file ctbmv.3m_blas.man
!> \brief \b CTBMV
!
!  =========== DOCUMENTATION ===========
!
! Online html documentation available at
!            http://www.netlib.org/lapack/explore-html/
!
!  Definition:
!  ===========
!
!       SUBROUTINE CTBMV(UPLO,TRANS,DIAG,N,K,A,LDA,X,INCX)
!
!       .. Scalar Arguments ..
!       INTEGER INCX,K,LDA,N
!       CHARACTER DIAG,TRANS,UPLO
!       ..
!       .. Array Arguments ..
!       COMPLEX A(LDA,*),X(*)
!       ..
!
!
!> \par Purpose:
!  =============
!>
!> \verbatim
!>
!> CTBMV  performs one of the matrix-vector operations
!>
!>    x := A*x,   or   x := A**T*x,   or   x := A**H*x,
!>
!> where x is an n element vector and  A is an n by n unit, or non-unit,
!> upper or lower triangular band matrix, with ( k + 1 ) diagonals.
!> \endverbatim
!
!  Arguments:
!  ==========
!
!> \param[in] UPLO
!> \verbatim
!>          UPLO is CHARACTER*1
!>           On entry, UPLO specifies whether the matrix is an upper or
!>           lower triangular matrix as follows:
!>
!>              UPLO = 'U' or 'u'   A is an upper triangular matrix.
!>
!>              UPLO = 'L' or 'l'   A is a lower triangular matrix.
!> \endverbatim
!>
!> \param[in] TRANS
!> \verbatim
!>          TRANS is CHARACTER*1
!>           On entry, TRANS specifies the operation to be performed as
!>           follows:
!>
!>              TRANS = 'N' or 'n'   x := A*x.
!>
!>              TRANS = 'T' or 't'   x := A**T*x.
!>
!>              TRANS = 'C' or 'c'   x := A**H*x.
!> \endverbatim
!>
!> \param[in] DIAG
!> \verbatim
!>          DIAG is CHARACTER*1
!>           On entry, DIAG specifies whether or not A is unit
!>           triangular as follows:
!>
!>              DIAG = 'U' or 'u'   A is assumed to be unit triangular.
!>
!>              DIAG = 'N' or 'n'   A is not assumed to be unit
!>                                  triangular.
!> \endverbatim
!>
!> \param[in] N
!> \verbatim
!>          N is INTEGER
!>           On entry, N specifies the order of the matrix A.
!>           N must be at least zero.
!> \endverbatim
!>
!> \param[in] K
!> \verbatim
!>          K is INTEGER
!>           On entry with UPLO = 'U' or 'u', K specifies the number of
!>           super-diagonals of the matrix A.
!>           On entry with UPLO = 'L' or 'l', K specifies the number of
!>           sub-diagonals of the matrix A.
!>           K must satisfy  0 .le. K.
!> \endverbatim
!>
!> \param[in] A
!> \verbatim
!>          A is COMPLEX array, dimension ( LDA, N ).
!>           Before entry with UPLO = 'U' or 'u', the leading ( k + 1 )
!>           by n part of the array A must contain the upper triangular
!>           band part of the matrix of coefficients, supplied column by
!>           column, with the leading diagonal of the matrix in row
!>           ( k + 1 ) of the array, the first super-diagonal starting at
!>           position 2 in row k, and so on. The top left k by k triangle
!>           of the array A is not referenced.
!>           The following program segment will transfer an upper
!>           triangular band matrix from conventional full matrix storage
!>           to band storage:
!>
!>                 DO 20, J = 1, N
!>                    M = K + 1 - J
!>                    DO 10, I = MAX( 1, J - K ), J
!>                       A( M + I, J ) = matrix( I, J )
!>              10    CONTINUE
!>              20 CONTINUE
!>
!>           Before entry with UPLO = 'L' or 'l', the leading ( k + 1 )
!>           by n part of the array A must contain the lower triangular
!>           band part of the matrix of coefficients, supplied column by
!>           column, with the leading diagonal of the matrix in row 1 of
!>           the array, the first sub-diagonal starting at position 1 in
!>           row 2, and so on. The bottom right k by k triangle of the
!>           array A is not referenced.
!>           The following program segment will transfer a lower
!>           triangular band matrix from conventional full matrix storage
!>           to band storage:
!>
!>                 DO 20, J = 1, N
!>                    M = 1 - J
!>                    DO 10, I = J, MIN( N, J + K )
!>                       A( M + I, J ) = matrix( I, J )
!>              10    CONTINUE
!>              20 CONTINUE
!>
!>           Note that when DIAG = 'U' or 'u' the elements of the array A
!>           corresponding to the diagonal elements of the matrix are not
!>           referenced, but are assumed to be unity.
!> \endverbatim
!>
!> \param[in] LDA
!> \verbatim
!>          LDA is INTEGER
!>           On entry, LDA specifies the first dimension of A as declared
!>           in the calling (sub) program. LDA must be at least
!>           ( k + 1 ).
!> \endverbatim
!>
!> \param[in,out] X
!> \verbatim
!>          X is COMPLEX array, dimension at least
!>           ( 1 + ( n - 1 )*abs( INCX ) ).
!>           Before entry, the incremented array X must contain the n
!>           element vector x. On exit, X is overwritten with the
!>           transformed vector x.
!> \endverbatim
!>
!> \param[in] INCX
!> \verbatim
!>          INCX is INTEGER
!>           On entry, INCX specifies the increment for the elements of
!>           X. INCX must not be zero.
!> \endverbatim
!
!  Authors:
!  ========
!
!> \author Univ. of Tennessee
!> \author Univ. of California Berkeley
!> \author Univ. of Colorado Denver
!> \author NAG Ltd.
!
!> \date December 2016
!
!> \ingroup complex_blas_level2
!
!> \par Further Details:
!  =====================
!>
!> \verbatim
!>
!>  Level 2 Blas routine.
!>  The vector and matrix arguments are not referenced when N = 0, or M = 0
!>
!>  -- Written on 22-October-1986.
!>     Jack Dongarra, Argonne National Lab.
!>     Jeremy Du Croz, Nag Central Office.
!>     Sven Hammarling, Nag Central Office.
!>     Richard Hanson, Sandia National Labs.
!> \endverbatim
!>
!  =====================================================================
!
!  -- Reference BLAS level2 routine (version 3.7.0) --
!  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
!  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
!     December 2016
!
!     .. Scalar Arguments ..
!     ..
!     .. Array Arguments ..
!     ..
!
!  =====================================================================
!
!     .. Parameters ..
!     ..
!     .. Local Scalars ..
!     ..
!     .. External Functions ..
!     ..
!     .. External Subroutines ..
!     ..
!     .. Intrinsic Functions ..
!     ..
!
!     Test the input parameters.
!
!
!     Quick return if possible.
!
!
!
!     Set up the start point in X if the increment is not unity. This
!     will be  ( N - 1 )*INCX   too small for descending loops.
!
!
!     Start the operations. In this version the elements of A are
!     accessed sequentially with one pass through A.
!
!
!         Form  x := A*x.
!
!
!        Form  x := A**T*x  or  x := A**H*x.
!
!
!
!     End of CTBMV .
!
! END
use M_blas, only : ctbmv_=>CTBMV
implicit none
      INTEGER INCX,K,LDA,N
      CHARACTER DIAG,TRANS,UPLO
      COMPLEX A(LDA,*),X(*)
    call CTBMV_(UPLO,TRANS,DIAG,N,K,A,LDA,X,INCX)
end subroutine CTBMV

subroutine CTBSV(UPLO,TRANS,DIAG,N,K,A,LDA,X,INCX)
! COMMENT --file ctbsv.3m_blas.man
!> \brief \b CTBSV
!
!  =========== DOCUMENTATION ===========
!
! Online html documentation available at
!            http://www.netlib.org/lapack/explore-html/
!
!  Definition:
!  ===========
!
!       SUBROUTINE CTBSV(UPLO,TRANS,DIAG,N,K,A,LDA,X,INCX)
!
!       .. Scalar Arguments ..
!       INTEGER INCX,K,LDA,N
!       CHARACTER DIAG,TRANS,UPLO
!       ..
!       .. Array Arguments ..
!       COMPLEX A(LDA,*),X(*)
!       ..
!
!
!> \par Purpose:
!  =============
!>
!> \verbatim
!>
!> CTBSV  solves one of the systems of equations
!>
!>    A*x = b,   or   A**T*x = b,   or   A**H*x = b,
!>
!> where b and x are n element vectors and A is an n by n unit, or
!> non-unit, upper or lower triangular band matrix, with ( k + 1 )
!> diagonals.
!>
!> No test for singularity or near-singularity is included in this
!> routine. Such tests must be performed before calling this routine.
!> \endverbatim
!
!  Arguments:
!  ==========
!
!> \param[in] UPLO
!> \verbatim
!>          UPLO is CHARACTER*1
!>           On entry, UPLO specifies whether the matrix is an upper or
!>           lower triangular matrix as follows:
!>
!>              UPLO = 'U' or 'u'   A is an upper triangular matrix.
!>
!>              UPLO = 'L' or 'l'   A is a lower triangular matrix.
!> \endverbatim
!>
!> \param[in] TRANS
!> \verbatim
!>          TRANS is CHARACTER*1
!>           On entry, TRANS specifies the equations to be solved as
!>           follows:
!>
!>              TRANS = 'N' or 'n'   A*x = b.
!>
!>              TRANS = 'T' or 't'   A**T*x = b.
!>
!>              TRANS = 'C' or 'c'   A**H*x = b.
!> \endverbatim
!>
!> \param[in] DIAG
!> \verbatim
!>          DIAG is CHARACTER*1
!>           On entry, DIAG specifies whether or not A is unit
!>           triangular as follows:
!>
!>              DIAG = 'U' or 'u'   A is assumed to be unit triangular.
!>
!>              DIAG = 'N' or 'n'   A is not assumed to be unit
!>                                  triangular.
!> \endverbatim
!>
!> \param[in] N
!> \verbatim
!>          N is INTEGER
!>           On entry, N specifies the order of the matrix A.
!>           N must be at least zero.
!> \endverbatim
!>
!> \param[in] K
!> \verbatim
!>          K is INTEGER
!>           On entry with UPLO = 'U' or 'u', K specifies the number of
!>           super-diagonals of the matrix A.
!>           On entry with UPLO = 'L' or 'l', K specifies the number of
!>           sub-diagonals of the matrix A.
!>           K must satisfy  0 .le. K.
!> \endverbatim
!>
!> \param[in] A
!> \verbatim
!>          A is COMPLEX array, dimension ( LDA, N )
!>           Before entry with UPLO = 'U' or 'u', the leading ( k + 1 )
!>           by n part of the array A must contain the upper triangular
!>           band part of the matrix of coefficients, supplied column by
!>           column, with the leading diagonal of the matrix in row
!>           ( k + 1 ) of the array, the first super-diagonal starting at
!>           position 2 in row k, and so on. The top left k by k triangle
!>           of the array A is not referenced.
!>           The following program segment will transfer an upper
!>           triangular band matrix from conventional full matrix storage
!>           to band storage:
!>
!>                 DO 20, J = 1, N
!>                    M = K + 1 - J
!>                    DO 10, I = MAX( 1, J - K ), J
!>                       A( M + I, J ) = matrix( I, J )
!>              10    CONTINUE
!>              20 CONTINUE
!>
!>           Before entry with UPLO = 'L' or 'l', the leading ( k + 1 )
!>           by n part of the array A must contain the lower triangular
!>           band part of the matrix of coefficients, supplied column by
!>           column, with the leading diagonal of the matrix in row 1 of
!>           the array, the first sub-diagonal starting at position 1 in
!>           row 2, and so on. The bottom right k by k triangle of the
!>           array A is not referenced.
!>           The following program segment will transfer a lower
!>           triangular band matrix from conventional full matrix storage
!>           to band storage:
!>
!>                 DO 20, J = 1, N
!>                    M = 1 - J
!>                    DO 10, I = J, MIN( N, J + K )
!>                       A( M + I, J ) = matrix( I, J )
!>              10    CONTINUE
!>              20 CONTINUE
!>
!>           Note that when DIAG = 'U' or 'u' the elements of the array A
!>           corresponding to the diagonal elements of the matrix are not
!>           referenced, but are assumed to be unity.
!> \endverbatim
!>
!> \param[in] LDA
!> \verbatim
!>          LDA is INTEGER
!>           On entry, LDA specifies the first dimension of A as declared
!>           in the calling (sub) program. LDA must be at least
!>           ( k + 1 ).
!> \endverbatim
!>
!> \param[in,out] X
!> \verbatim
!>          X is COMPLEX array, dimension at least
!>           ( 1 + ( n - 1 )*abs( INCX ) ).
!>           Before entry, the incremented array X must contain the n
!>           element right-hand side vector b. On exit, X is overwritten
!>           with the solution vector x.
!> \endverbatim
!>
!> \param[in] INCX
!> \verbatim
!>          INCX is INTEGER
!>           On entry, INCX specifies the increment for the elements of
!>           X. INCX must not be zero.
!> \endverbatim
!
!  Authors:
!  ========
!
!> \author Univ. of Tennessee
!> \author Univ. of California Berkeley
!> \author Univ. of Colorado Denver
!> \author NAG Ltd.
!
!> \date December 2016
!
!> \ingroup complex_blas_level2
!
!> \par Further Details:
!  =====================
!>
!> \verbatim
!>
!>  Level 2 Blas routine.
!>
!>  -- Written on 22-October-1986.
!>     Jack Dongarra, Argonne National Lab.
!>     Jeremy Du Croz, Nag Central Office.
!>     Sven Hammarling, Nag Central Office.
!>     Richard Hanson, Sandia National Labs.
!> \endverbatim
!>
!  =====================================================================
!
!  -- Reference BLAS level2 routine (version 3.7.0) --
!  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
!  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
!     December 2016
!
!     .. Scalar Arguments ..
!     ..
!     .. Array Arguments ..
!     ..
!
!  =====================================================================
!
!     .. Parameters ..
!     ..
!     .. Local Scalars ..
!     ..
!     .. External Functions ..
!     ..
!     .. External Subroutines ..
!     ..
!     .. Intrinsic Functions ..
!     ..
!
!     Test the input parameters.
!
!
!     Quick return if possible.
!
!
!
!     Set up the start point in X if the increment is not unity. This
!     will be  ( N - 1 )*INCX  too small for descending loops.
!
!
!     Start the operations. In this version the elements of A are
!     accessed by sequentially with one pass through A.
!
!
!        Form  x := inv( A )*x.
!
!
!        Form  x := inv( A**T )*x  or  x := inv( A**H )*x.
!
!
!
!     End of CTBSV .
!
! END
use M_blas, only : ctbsv_=>CTBSV
implicit none
      INTEGER INCX,K,LDA,N
      CHARACTER DIAG,TRANS,UPLO
      COMPLEX A(LDA,*),X(*)
    call CTBSV_(UPLO,TRANS,DIAG,N,K,A,LDA,X,INCX)
end subroutine CTBSV

subroutine CTPMV(UPLO,TRANS,DIAG,N,AP,X,INCX)
! COMMENT --file ctpmv.3m_blas.man
!> \brief \b CTPMV
!
!  =========== DOCUMENTATION ===========
!
! Online html documentation available at
!            http://www.netlib.org/lapack/explore-html/
!
!  Definition:
!  ===========
!
!       SUBROUTINE CTPMV(UPLO,TRANS,DIAG,N,AP,X,INCX)
!
!       .. Scalar Arguments ..
!       INTEGER INCX,N
!       CHARACTER DIAG,TRANS,UPLO
!       ..
!       .. Array Arguments ..
!       COMPLEX AP(*),X(*)
!       ..
!
!
!> \par Purpose:
!  =============
!>
!> \verbatim
!>
!> CTPMV  performs one of the matrix-vector operations
!>
!>    x := A*x,   or   x := A**T*x,   or   x := A**H*x,
!>
!> where x is an n element vector and  A is an n by n unit, or non-unit,
!> upper or lower triangular matrix, supplied in packed form.
!> \endverbatim
!
!  Arguments:
!  ==========
!
!> \param[in] UPLO
!> \verbatim
!>          UPLO is CHARACTER*1
!>           On entry, UPLO specifies whether the matrix is an upper or
!>           lower triangular matrix as follows:
!>
!>              UPLO = 'U' or 'u'   A is an upper triangular matrix.
!>
!>              UPLO = 'L' or 'l'   A is a lower triangular matrix.
!> \endverbatim
!>
!> \param[in] TRANS
!> \verbatim
!>          TRANS is CHARACTER*1
!>           On entry, TRANS specifies the operation to be performed as
!>           follows:
!>
!>              TRANS = 'N' or 'n'   x := A*x.
!>
!>              TRANS = 'T' or 't'   x := A**T*x.
!>
!>              TRANS = 'C' or 'c'   x := A**H*x.
!> \endverbatim
!>
!> \param[in] DIAG
!> \verbatim
!>          DIAG is CHARACTER*1
!>           On entry, DIAG specifies whether or not A is unit
!>           triangular as follows:
!>
!>              DIAG = 'U' or 'u'   A is assumed to be unit triangular.
!>
!>              DIAG = 'N' or 'n'   A is not assumed to be unit
!>                                  triangular.
!> \endverbatim
!>
!> \param[in] N
!> \verbatim
!>          N is INTEGER
!>           On entry, N specifies the order of the matrix A.
!>           N must be at least zero.
!> \endverbatim
!>
!> \param[in] AP
!> \verbatim
!>          AP is COMPLEX array, dimension at least
!>           ( ( n*( n + 1 ) )/2 ).
!>           Before entry with  UPLO = 'U' or 'u', the array AP must
!>           contain the upper triangular matrix packed sequentially,
!>           column by column, so that AP( 1 ) contains a( 1, 1 ),
!>           AP( 2 ) and AP( 3 ) contain a( 1, 2 ) and a( 2, 2 )
!>           respectively, and so on.
!>           Before entry with UPLO = 'L' or 'l', the array AP must
!>           contain the lower triangular matrix packed sequentially,
!>           column by column, so that AP( 1 ) contains a( 1, 1 ),
!>           AP( 2 ) and AP( 3 ) contain a( 2, 1 ) and a( 3, 1 )
!>           respectively, and so on.
!>           Note that when  DIAG = 'U' or 'u', the diagonal elements of
!>           A are not referenced, but are assumed to be unity.
!> \endverbatim
!>
!> \param[in,out] X
!> \verbatim
!>          X is COMPLEX array, dimension at least
!>           ( 1 + ( n - 1 )*abs( INCX ) ).
!>           Before entry, the incremented array X must contain the n
!>           element vector x. On exit, X is overwritten with the
!>           transformed vector x.
!> \endverbatim
!>
!> \param[in] INCX
!> \verbatim
!>          INCX is INTEGER
!>           On entry, INCX specifies the increment for the elements of
!>           X. INCX must not be zero.
!> \endverbatim
!
!  Authors:
!  ========
!
!> \author Univ. of Tennessee
!> \author Univ. of California Berkeley
!> \author Univ. of Colorado Denver
!> \author NAG Ltd.
!
!> \date December 2016
!
!> \ingroup complex_blas_level2
!
!> \par Further Details:
!  =====================
!>
!> \verbatim
!>
!>  Level 2 Blas routine.
!>  The vector and matrix arguments are not referenced when N = 0, or M = 0
!>
!>  -- Written on 22-October-1986.
!>     Jack Dongarra, Argonne National Lab.
!>     Jeremy Du Croz, Nag Central Office.
!>     Sven Hammarling, Nag Central Office.
!>     Richard Hanson, Sandia National Labs.
!> \endverbatim
!>
!  =====================================================================
!
!  -- Reference BLAS level2 routine (version 3.7.0) --
!  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
!  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
!     December 2016
!
!     .. Scalar Arguments ..
!     ..
!     .. Array Arguments ..
!     ..
!
!  =====================================================================
!
!     .. Parameters ..
!     ..
!     .. Local Scalars ..
!     ..
!     .. External Functions ..
!     ..
!     .. External Subroutines ..
!     ..
!     .. Intrinsic Functions ..
!     ..
!
!     Test the input parameters.
!
!
!     Quick return if possible.
!
!
!
!     Set up the start point in X if the increment is not unity. This
!     will be  ( N - 1 )*INCX  too small for descending loops.
!
!
!     Start the operations. In this version the elements of AP are
!     accessed sequentially with one pass through AP.
!
!
!        Form  x:= A*x.
!
!
!        Form  x := A**T*x  or  x := A**H*x.
!
!
!
!     End of CTPMV .
!
! END
use M_blas, only : ctpmv_=>CTPMV
implicit none
      INTEGER INCX,N
      CHARACTER DIAG,TRANS,UPLO
      COMPLEX AP(*),X(*)
    call CTPMV_(UPLO,TRANS,DIAG,N,AP,X,INCX)
end subroutine CTPMV

subroutine CTPSV(UPLO,TRANS,DIAG,N,AP,X,INCX)
! COMMENT --file ctpsv.3m_blas.man
!> \brief \b CTPSV
!
!  =========== DOCUMENTATION ===========
!
! Online html documentation available at
!            http://www.netlib.org/lapack/explore-html/
!
!  Definition:
!  ===========
!
!       SUBROUTINE CTPSV(UPLO,TRANS,DIAG,N,AP,X,INCX)
!
!       .. Scalar Arguments ..
!       INTEGER INCX,N
!       CHARACTER DIAG,TRANS,UPLO
!       ..
!       .. Array Arguments ..
!       COMPLEX AP(*),X(*)
!       ..
!
!
!> \par Purpose:
!  =============
!>
!> \verbatim
!>
!> CTPSV  solves one of the systems of equations
!>
!>    A*x = b,   or   A**T*x = b,   or   A**H*x = b,
!>
!> where b and x are n element vectors and A is an n by n unit, or
!> non-unit, upper or lower triangular matrix, supplied in packed form.
!>
!> No test for singularity or near-singularity is included in this
!> routine. Such tests must be performed before calling this routine.
!> \endverbatim
!
!  Arguments:
!  ==========
!
!> \param[in] UPLO
!> \verbatim
!>          UPLO is CHARACTER*1
!>           On entry, UPLO specifies whether the matrix is an upper or
!>           lower triangular matrix as follows:
!>
!>              UPLO = 'U' or 'u'   A is an upper triangular matrix.
!>
!>              UPLO = 'L' or 'l'   A is a lower triangular matrix.
!> \endverbatim
!>
!> \param[in] TRANS
!> \verbatim
!>          TRANS is CHARACTER*1
!>           On entry, TRANS specifies the equations to be solved as
!>           follows:
!>
!>              TRANS = 'N' or 'n'   A*x = b.
!>
!>              TRANS = 'T' or 't'   A**T*x = b.
!>
!>              TRANS = 'C' or 'c'   A**H*x = b.
!> \endverbatim
!>
!> \param[in] DIAG
!> \verbatim
!>          DIAG is CHARACTER*1
!>           On entry, DIAG specifies whether or not A is unit
!>           triangular as follows:
!>
!>              DIAG = 'U' or 'u'   A is assumed to be unit triangular.
!>
!>              DIAG = 'N' or 'n'   A is not assumed to be unit
!>                                  triangular.
!> \endverbatim
!>
!> \param[in] N
!> \verbatim
!>          N is INTEGER
!>           On entry, N specifies the order of the matrix A.
!>           N must be at least zero.
!> \endverbatim
!>
!> \param[in] AP
!> \verbatim
!>          AP is COMPLEX array, dimension at least
!>           ( ( n*( n + 1 ) )/2 ).
!>           Before entry with  UPLO = 'U' or 'u', the array AP must
!>           contain the upper triangular matrix packed sequentially,
!>           column by column, so that AP( 1 ) contains a( 1, 1 ),
!>           AP( 2 ) and AP( 3 ) contain a( 1, 2 ) and a( 2, 2 )
!>           respectively, and so on.
!>           Before entry with UPLO = 'L' or 'l', the array AP must
!>           contain the lower triangular matrix packed sequentially,
!>           column by column, so that AP( 1 ) contains a( 1, 1 ),
!>           AP( 2 ) and AP( 3 ) contain a( 2, 1 ) and a( 3, 1 )
!>           respectively, and so on.
!>           Note that when  DIAG = 'U' or 'u', the diagonal elements of
!>           A are not referenced, but are assumed to be unity.
!> \endverbatim
!>
!> \param[in,out] X
!> \verbatim
!>          X is COMPLEX array, dimension at least
!>           ( 1 + ( n - 1 )*abs( INCX ) ).
!>           Before entry, the incremented array X must contain the n
!>           element right-hand side vector b. On exit, X is overwritten
!>           with the solution vector x.
!> \endverbatim
!>
!> \param[in] INCX
!> \verbatim
!>          INCX is INTEGER
!>           On entry, INCX specifies the increment for the elements of
!>           X. INCX must not be zero.
!> \endverbatim
!
!  Authors:
!  ========
!
!> \author Univ. of Tennessee
!> \author Univ. of California Berkeley
!> \author Univ. of Colorado Denver
!> \author NAG Ltd.
!
!> \date December 2016
!
!> \ingroup complex_blas_level2
!
!> \par Further Details:
!  =====================
!>
!> \verbatim
!>
!>  Level 2 Blas routine.
!>
!>  -- Written on 22-October-1986.
!>     Jack Dongarra, Argonne National Lab.
!>     Jeremy Du Croz, Nag Central Office.
!>     Sven Hammarling, Nag Central Office.
!>     Richard Hanson, Sandia National Labs.
!> \endverbatim
!>
!  =====================================================================
!
!  -- Reference BLAS level2 routine (version 3.7.0) --
!  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
!  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
!     December 2016
!
!     .. Scalar Arguments ..
!     ..
!     .. Array Arguments ..
!     ..
!
!  =====================================================================
!
!     .. Parameters ..
!     ..
!     .. Local Scalars ..
!     ..
!     .. External Functions ..
!     ..
!     .. External Subroutines ..
!     ..
!     .. Intrinsic Functions ..
!     ..
!
!     Test the input parameters.
!
!
!     Quick return if possible.
!
!
!
!     Set up the start point in X if the increment is not unity. This
!     will be  ( N - 1 )*INCX  too small for descending loops.
!
!
!     Start the operations. In this version the elements of AP are
!     accessed sequentially with one pass through AP.
!
!
!        Form  x := inv( A )*x.
!
!
!        Form  x := inv( A**T )*x  or  x := inv( A**H )*x.
!
!
!
!     End of CTPSV .
!
! END
use M_blas, only : ctpsv_=>CTPSV
implicit none
      INTEGER INCX,N
      CHARACTER DIAG,TRANS,UPLO
      COMPLEX AP(*),X(*)
    call CTPSV_(UPLO,TRANS,DIAG,N,AP,X,INCX)
end subroutine CTPSV

subroutine CTRMM(SIDE,UPLO,TRANSA,DIAG,M,N,ALPHA,A,LDA,B,LDB)
! COMMENT --file ctrmm.3m_blas.man
!> \brief \b CTRMM
!
!  =========== DOCUMENTATION ===========
!
! Online html documentation available at
!            http://www.netlib.org/lapack/explore-html/
!
!  Definition:
!  ===========
!
!       SUBROUTINE CTRMM(SIDE,UPLO,TRANSA,DIAG,M,N,ALPHA,A,LDA,B,LDB)
!
!       .. Scalar Arguments ..
!       COMPLEX ALPHA
!       INTEGER LDA,LDB,M,N
!       CHARACTER DIAG,SIDE,TRANSA,UPLO
!       ..
!       .. Array Arguments ..
!       COMPLEX A(LDA,*),B(LDB,*)
!       ..
!
!
!> \par Purpose:
!  =============
!>
!> \verbatim
!>
!> CTRMM  performs one of the matrix-matrix operations
!>
!>    B := alpha*op( A )*B,   or   B := alpha*B*op( A )
!>
!> where  alpha  is a scalar,  B  is an m by n matrix,  A  is a unit, or
!> non-unit,  upper or lower triangular matrix  and  op( A )  is one  of
!>
!>    op( A ) = A   or   op( A ) = A**T   or   op( A ) = A**H.
!> \endverbatim
!
!  Arguments:
!  ==========
!
!> \param[in] SIDE
!> \verbatim
!>          SIDE is CHARACTER*1
!>           On entry,  SIDE specifies whether  op( A ) multiplies B from
!>           the left or right as follows:
!>
!>              SIDE = 'L' or 'l'   B := alpha*op( A )*B.
!>
!>              SIDE = 'R' or 'r'   B := alpha*B*op( A ).
!> \endverbatim
!>
!> \param[in] UPLO
!> \verbatim
!>          UPLO is CHARACTER*1
!>           On entry, UPLO specifies whether the matrix A is an upper or
!>           lower triangular matrix as follows:
!>
!>              UPLO = 'U' or 'u'   A is an upper triangular matrix.
!>
!>              UPLO = 'L' or 'l'   A is a lower triangular matrix.
!> \endverbatim
!>
!> \param[in] TRANSA
!> \verbatim
!>          TRANSA is CHARACTER*1
!>           On entry, TRANSA specifies the form of op( A ) to be used in
!>           the matrix multiplication as follows:
!>
!>              TRANSA = 'N' or 'n'   op( A ) = A.
!>
!>              TRANSA = 'T' or 't'   op( A ) = A**T.
!>
!>              TRANSA = 'C' or 'c'   op( A ) = A**H.
!> \endverbatim
!>
!> \param[in] DIAG
!> \verbatim
!>          DIAG is CHARACTER*1
!>           On entry, DIAG specifies whether or not A is unit triangular
!>           as follows:
!>
!>              DIAG = 'U' or 'u'   A is assumed to be unit triangular.
!>
!>              DIAG = 'N' or 'n'   A is not assumed to be unit
!>                                  triangular.
!> \endverbatim
!>
!> \param[in] M
!> \verbatim
!>          M is INTEGER
!>           On entry, M specifies the number of rows of B. M must be at
!>           least zero.
!> \endverbatim
!>
!> \param[in] N
!> \verbatim
!>          N is INTEGER
!>           On entry, N specifies the number of columns of B.  N must be
!>           at least zero.
!> \endverbatim
!>
!> \param[in] ALPHA
!> \verbatim
!>          ALPHA is COMPLEX
!>           On entry,  ALPHA specifies the scalar  alpha. When  alpha is
!>           zero then  A is not referenced and  B need not be set before
!>           entry.
!> \endverbatim
!>
!> \param[in] A
!> \verbatim
!>          A is COMPLEX array, dimension ( LDA, k ), where k is m
!>           when  SIDE = 'L' or 'l'  and is  n  when  SIDE = 'R' or 'r'.
!>           Before entry  with  UPLO = 'U' or 'u',  the  leading  k by k
!>           upper triangular part of the array  A must contain the upper
!>           triangular matrix  and the strictly lower triangular part of
!>           A is not referenced.
!>           Before entry  with  UPLO = 'L' or 'l',  the  leading  k by k
!>           lower triangular part of the array  A must contain the lower
!>           triangular matrix  and the strictly upper triangular part of
!>           A is not referenced.
!>           Note that when  DIAG = 'U' or 'u',  the diagonal elements of
!>           A  are not referenced either,  but are assumed to be  unity.
!> \endverbatim
!>
!> \param[in] LDA
!> \verbatim
!>          LDA is INTEGER
!>           On entry, LDA specifies the first dimension of A as declared
!>           in the calling (sub) program.  When  SIDE = 'L' or 'l'  then
!>           LDA  must be at least  max( 1, m ),  when  SIDE = 'R' or 'r'
!>           then LDA must be at least max( 1, n ).
!> \endverbatim
!>
!> \param[in,out] B
!> \verbatim
!>          B is COMPLEX array, dimension ( LDB, N ).
!>           Before entry,  the leading  m by n part of the array  B must
!>           contain the matrix  B,  and  on exit  is overwritten  by the
!>           transformed matrix.
!> \endverbatim
!>
!> \param[in] LDB
!> \verbatim
!>          LDB is INTEGER
!>           On entry, LDB specifies the first dimension of B as declared
!>           in  the  calling  (sub)  program.   LDB  must  be  at  least
!>           max( 1, m ).
!> \endverbatim
!
!  Authors:
!  ========
!
!> \author Univ. of Tennessee
!> \author Univ. of California Berkeley
!> \author Univ. of Colorado Denver
!> \author NAG Ltd.
!
!> \date December 2016
!
!> \ingroup complex_blas_level3
!
!> \par Further Details:
!  =====================
!>
!> \verbatim
!>
!>  Level 3 Blas routine.
!>
!>  -- Written on 8-February-1989.
!>     Jack Dongarra, Argonne National Laboratory.
!>     Iain Duff, AERE Harwell.
!>     Jeremy Du Croz, Numerical Algorithms Group Ltd.
!>     Sven Hammarling, Numerical Algorithms Group Ltd.
!> \endverbatim
!>
!  =====================================================================
!
!  -- Reference BLAS level3 routine (version 3.7.0) --
!  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
!  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
!     December 2016
!
!     .. Scalar Arguments ..
!     ..
!     .. Array Arguments ..
!     ..
!
!  =====================================================================
!
!     .. External Functions ..
!     ..
!     .. External Subroutines ..
!     ..
!     .. Intrinsic Functions ..
!     ..
!     .. Local Scalars ..
!     ..
!     .. Parameters ..
!     ..
!
!     Test the input parameters.
!
!
!
!     Quick return if possible.
!
!
!     And when  alpha.eq.zero.
!
!
!     Start the operations.
!
!
!           Form  B := alpha*A*B.
!
!
!           Form  B := alpha*A**T*B   or   B := alpha*A**H*B.
!
!
!           Form  B := alpha*B*A.
!
!
!           Form  B := alpha*B*A**T   or   B := alpha*B*A**H.
!
!
!
!     End of CTRMM .
!
! END
use M_blas, only : ctrmm_=>CTRMM
implicit none
      COMPLEX ALPHA
      INTEGER LDA,LDB,M,N
      CHARACTER DIAG,SIDE,TRANSA,UPLO
      COMPLEX A(LDA,*),B(LDB,*)
    call CTRMM_(SIDE,UPLO,TRANSA,DIAG,M,N,ALPHA,A,LDA,B,LDB)
end subroutine CTRMM

subroutine CTRMV(UPLO,TRANS,DIAG,N,A,LDA,X,INCX)
! COMMENT --file ctrmv.3m_blas.man
!> \brief \b CTRMV
!
!  =========== DOCUMENTATION ===========
!
! Online html documentation available at
!            http://www.netlib.org/lapack/explore-html/
!
!  Definition:
!  ===========
!
!       SUBROUTINE CTRMV(UPLO,TRANS,DIAG,N,A,LDA,X,INCX)
!
!       .. Scalar Arguments ..
!       INTEGER INCX,LDA,N
!       CHARACTER DIAG,TRANS,UPLO
!       ..
!       .. Array Arguments ..
!       COMPLEX A(LDA,*),X(*)
!       ..
!
!
!> \par Purpose:
!  =============
!>
!> \verbatim
!>
!> CTRMV  performs one of the matrix-vector operations
!>
!>    x := A*x,   or   x := A**T*x,   or   x := A**H*x,
!>
!> where x is an n element vector and  A is an n by n unit, or non-unit,
!> upper or lower triangular matrix.
!> \endverbatim
!
!  Arguments:
!  ==========
!
!> \param[in] UPLO
!> \verbatim
!>          UPLO is CHARACTER*1
!>           On entry, UPLO specifies whether the matrix is an upper or
!>           lower triangular matrix as follows:
!>
!>              UPLO = 'U' or 'u'   A is an upper triangular matrix.
!>
!>              UPLO = 'L' or 'l'   A is a lower triangular matrix.
!> \endverbatim
!>
!> \param[in] TRANS
!> \verbatim
!>          TRANS is CHARACTER*1
!>           On entry, TRANS specifies the operation to be performed as
!>           follows:
!>
!>              TRANS = 'N' or 'n'   x := A*x.
!>
!>              TRANS = 'T' or 't'   x := A**T*x.
!>
!>              TRANS = 'C' or 'c'   x := A**H*x.
!> \endverbatim
!>
!> \param[in] DIAG
!> \verbatim
!>          DIAG is CHARACTER*1
!>           On entry, DIAG specifies whether or not A is unit
!>           triangular as follows:
!>
!>              DIAG = 'U' or 'u'   A is assumed to be unit triangular.
!>
!>              DIAG = 'N' or 'n'   A is not assumed to be unit
!>                                  triangular.
!> \endverbatim
!>
!> \param[in] N
!> \verbatim
!>          N is INTEGER
!>           On entry, N specifies the order of the matrix A.
!>           N must be at least zero.
!> \endverbatim
!>
!> \param[in] A
!> \verbatim
!>          A is COMPLEX array, dimension ( LDA, N ).
!>           Before entry with  UPLO = 'U' or 'u', the leading n by n
!>           upper triangular part of the array A must contain the upper
!>           triangular matrix and the strictly lower triangular part of
!>           A is not referenced.
!>           Before entry with UPLO = 'L' or 'l', the leading n by n
!>           lower triangular part of the array A must contain the lower
!>           triangular matrix and the strictly upper triangular part of
!>           A is not referenced.
!>           Note that when  DIAG = 'U' or 'u', the diagonal elements of
!>           A are not referenced either, but are assumed to be unity.
!> \endverbatim
!>
!> \param[in] LDA
!> \verbatim
!>          LDA is INTEGER
!>           On entry, LDA specifies the first dimension of A as declared
!>           in the calling (sub) program. LDA must be at least
!>           max( 1, n ).
!> \endverbatim
!>
!> \param[in,out] X
!> \verbatim
!>          X is COMPLEX array, dimension at least
!>           ( 1 + ( n - 1 )*abs( INCX ) ).
!>           Before entry, the incremented array X must contain the n
!>           element vector x. On exit, X is overwritten with the
!>           transformed vector x.
!> \endverbatim
!>
!> \param[in] INCX
!> \verbatim
!>          INCX is INTEGER
!>           On entry, INCX specifies the increment for the elements of
!>           X. INCX must not be zero.
!> \endverbatim
!
!  Authors:
!  ========
!
!> \author Univ. of Tennessee
!> \author Univ. of California Berkeley
!> \author Univ. of Colorado Denver
!> \author NAG Ltd.
!
!> \date December 2016
!
!> \ingroup complex_blas_level2
!
!> \par Further Details:
!  =====================
!>
!> \verbatim
!>
!>  Level 2 Blas routine.
!>  The vector and matrix arguments are not referenced when N = 0, or M = 0
!>
!>  -- Written on 22-October-1986.
!>     Jack Dongarra, Argonne National Lab.
!>     Jeremy Du Croz, Nag Central Office.
!>     Sven Hammarling, Nag Central Office.
!>     Richard Hanson, Sandia National Labs.
!> \endverbatim
!>
!  =====================================================================
!
!  -- Reference BLAS level2 routine (version 3.7.0) --
!  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
!  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
!     December 2016
!
!     .. Scalar Arguments ..
!     ..
!     .. Array Arguments ..
!     ..
!
!  =====================================================================
!
!     .. Parameters ..
!     ..
!     .. Local Scalars ..
!     ..
!     .. External Functions ..
!     ..
!     .. External Subroutines ..
!     ..
!     .. Intrinsic Functions ..
!     ..
!
!     Test the input parameters.
!
!
!     Quick return if possible.
!
!
!
!     Set up the start point in X if the increment is not unity. This
!     will be  ( N - 1 )*INCX  too small for descending loops.
!
!
!     Start the operations. In this version the elements of A are
!     accessed sequentially with one pass through A.
!
!
!        Form  x := A*x.
!
!
!        Form  x := A**T*x  or  x := A**H*x.
!
!
!
!     End of CTRMV .
!
! END
use M_blas, only : ctrmv_=>CTRMV
implicit none
      INTEGER INCX,LDA,N
      CHARACTER DIAG,TRANS,UPLO
      COMPLEX A(LDA,*),X(*)
    call CTRMV_(UPLO,TRANS,DIAG,N,A,LDA,X,INCX)
end subroutine CTRMV

subroutine CTRSM(SIDE,UPLO,TRANSA,DIAG,M,N,ALPHA,A,LDA,B,LDB)
! COMMENT --file ctrsm.3m_blas.man
!> \brief \b CTRSM
!
!  =========== DOCUMENTATION ===========
!
! Online html documentation available at
!            http://www.netlib.org/lapack/explore-html/
!
!  Definition:
!  ===========
!
!       SUBROUTINE CTRSM(SIDE,UPLO,TRANSA,DIAG,M,N,ALPHA,A,LDA,B,LDB)
!
!       .. Scalar Arguments ..
!       COMPLEX ALPHA
!       INTEGER LDA,LDB,M,N
!       CHARACTER DIAG,SIDE,TRANSA,UPLO
!       ..
!       .. Array Arguments ..
!       COMPLEX A(LDA,*),B(LDB,*)
!       ..
!
!
!> \par Purpose:
!  =============
!>
!> \verbatim
!>
!> CTRSM  solves one of the matrix equations
!>
!>    op( A )*X = alpha*B,   or   X*op( A ) = alpha*B,
!>
!> where alpha is a scalar, X and B are m by n matrices, A is a unit, or
!> non-unit,  upper or lower triangular matrix  and  op( A )  is one  of
!>
!>    op( A ) = A   or   op( A ) = A**T   or   op( A ) = A**H.
!>
!> The matrix X is overwritten on B.
!> \endverbatim
!
!  Arguments:
!  ==========
!
!> \param[in] SIDE
!> \verbatim
!>          SIDE is CHARACTER*1
!>           On entry, SIDE specifies whether op( A ) appears on the left
!>           or right of X as follows:
!>
!>              SIDE = 'L' or 'l'   op( A )*X = alpha*B.
!>
!>              SIDE = 'R' or 'r'   X*op( A ) = alpha*B.
!> \endverbatim
!>
!> \param[in] UPLO
!> \verbatim
!>          UPLO is CHARACTER*1
!>           On entry, UPLO specifies whether the matrix A is an upper or
!>           lower triangular matrix as follows:
!>
!>              UPLO = 'U' or 'u'   A is an upper triangular matrix.
!>
!>              UPLO = 'L' or 'l'   A is a lower triangular matrix.
!> \endverbatim
!>
!> \param[in] TRANSA
!> \verbatim
!>          TRANSA is CHARACTER*1
!>           On entry, TRANSA specifies the form of op( A ) to be used in
!>           the matrix multiplication as follows:
!>
!>              TRANSA = 'N' or 'n'   op( A ) = A.
!>
!>              TRANSA = 'T' or 't'   op( A ) = A**T.
!>
!>              TRANSA = 'C' or 'c'   op( A ) = A**H.
!> \endverbatim
!>
!> \param[in] DIAG
!> \verbatim
!>          DIAG is CHARACTER*1
!>           On entry, DIAG specifies whether or not A is unit triangular
!>           as follows:
!>
!>              DIAG = 'U' or 'u'   A is assumed to be unit triangular.
!>
!>              DIAG = 'N' or 'n'   A is not assumed to be unit
!>                                  triangular.
!> \endverbatim
!>
!> \param[in] M
!> \verbatim
!>          M is INTEGER
!>           On entry, M specifies the number of rows of B. M must be at
!>           least zero.
!> \endverbatim
!>
!> \param[in] N
!> \verbatim
!>          N is INTEGER
!>           On entry, N specifies the number of columns of B.  N must be
!>           at least zero.
!> \endverbatim
!>
!> \param[in] ALPHA
!> \verbatim
!>          ALPHA is COMPLEX
!>           On entry,  ALPHA specifies the scalar  alpha. When  alpha is
!>           zero then  A is not referenced and  B need not be set before
!>           entry.
!> \endverbatim
!>
!> \param[in] A
!> \verbatim
!>          A is COMPLEX array, dimension ( LDA, k ),
!>           where k is m when SIDE = 'L' or 'l'
!>             and k is n when SIDE = 'R' or 'r'.
!>           Before entry  with  UPLO = 'U' or 'u',  the  leading  k by k
!>           upper triangular part of the array  A must contain the upper
!>           triangular matrix  and the strictly lower triangular part of
!>           A is not referenced.
!>           Before entry  with  UPLO = 'L' or 'l',  the  leading  k by k
!>           lower triangular part of the array  A must contain the lower
!>           triangular matrix  and the strictly upper triangular part of
!>           A is not referenced.
!>           Note that when  DIAG = 'U' or 'u',  the diagonal elements of
!>           A  are not referenced either,  but are assumed to be  unity.
!> \endverbatim
!>
!> \param[in] LDA
!> \verbatim
!>          LDA is INTEGER
!>           On entry, LDA specifies the first dimension of A as declared
!>           in the calling (sub) program.  When  SIDE = 'L' or 'l'  then
!>           LDA  must be at least  max( 1, m ),  when  SIDE = 'R' or 'r'
!>           then LDA must be at least max( 1, n ).
!> \endverbatim
!>
!> \param[in,out] B
!> \verbatim
!>          B is COMPLEX array, dimension ( LDB, N )
!>           Before entry,  the leading  m by n part of the array  B must
!>           contain  the  right-hand  side  matrix  B,  and  on exit  is
!>           overwritten by the solution matrix  X.
!> \endverbatim
!>
!> \param[in] LDB
!> \verbatim
!>          LDB is INTEGER
!>           On entry, LDB specifies the first dimension of B as declared
!>           in  the  calling  (sub)  program.   LDB  must  be  at  least
!>           max( 1, m ).
!> \endverbatim
!
!  Authors:
!  ========
!
!> \author Univ. of Tennessee
!> \author Univ. of California Berkeley
!> \author Univ. of Colorado Denver
!> \author NAG Ltd.
!
!> \date December 2016
!
!> \ingroup complex_blas_level3
!
!> \par Further Details:
!  =====================
!>
!> \verbatim
!>
!>  Level 3 Blas routine.
!>
!>  -- Written on 8-February-1989.
!>     Jack Dongarra, Argonne National Laboratory.
!>     Iain Duff, AERE Harwell.
!>     Jeremy Du Croz, Numerical Algorithms Group Ltd.
!>     Sven Hammarling, Numerical Algorithms Group Ltd.
!> \endverbatim
!>
!  =====================================================================
!
!  -- Reference BLAS level3 routine (version 3.7.0) --
!  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
!  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
!     December 2016
!
!     .. Scalar Arguments ..
!     ..
!     .. Array Arguments ..
!     ..
!
!  =====================================================================
!
!     .. External Functions ..
!     ..
!     .. External Subroutines ..
!     ..
!     .. Intrinsic Functions ..
!     ..
!     .. Local Scalars ..
!     ..
!     .. Parameters ..
!     ..
!
!     Test the input parameters.
!
!
!
!     Quick return if possible.
!
!
!     And when  alpha.eq.zero.
!
!
!     Start the operations.
!
!
!           Form  B := alpha*inv( A )*B.
!
!
!           Form  B := alpha*inv( A**T )*B
!           or    B := alpha*inv( A**H )*B.
!
!
!           Form  B := alpha*B*inv( A ).
!
!
!           Form  B := alpha*B*inv( A**T )
!           or    B := alpha*B*inv( A**H ).
!
!
!
!     End of CTRSM .
!
! END
use M_blas, only : ctrsm_=>CTRSM
implicit none
      COMPLEX ALPHA
      INTEGER LDA,LDB,M,N
      CHARACTER DIAG,SIDE,TRANSA,UPLO
      COMPLEX A(LDA,*),B(LDB,*)
    call CTRSM_(SIDE,UPLO,TRANSA,DIAG,M,N,ALPHA,A,LDA,B,LDB)
end subroutine CTRSM

subroutine CTRSV(UPLO,TRANS,DIAG,N,A,LDA,X,INCX)
! COMMENT --file ctrsv.3m_blas.man
!> \brief \b CTRSV
!
!  =========== DOCUMENTATION ===========
!
! Online html documentation available at
!            http://www.netlib.org/lapack/explore-html/
!
!  Definition:
!  ===========
!
!       SUBROUTINE CTRSV(UPLO,TRANS,DIAG,N,A,LDA,X,INCX)
!
!       .. Scalar Arguments ..
!       INTEGER INCX,LDA,N
!       CHARACTER DIAG,TRANS,UPLO
!       ..
!       .. Array Arguments ..
!       COMPLEX A(LDA,*),X(*)
!       ..
!
!
!> \par Purpose:
!  =============
!>
!> \verbatim
!>
!> CTRSV  solves one of the systems of equations
!>
!>    A*x = b,   or   A**T*x = b,   or   A**H*x = b,
!>
!> where b and x are n element vectors and A is an n by n unit, or
!> non-unit, upper or lower triangular matrix.
!>
!> No test for singularity or near-singularity is included in this
!> routine. Such tests must be performed before calling this routine.
!> \endverbatim
!
!  Arguments:
!  ==========
!
!> \param[in] UPLO
!> \verbatim
!>          UPLO is CHARACTER*1
!>           On entry, UPLO specifies whether the matrix is an upper or
!>           lower triangular matrix as follows:
!>
!>              UPLO = 'U' or 'u'   A is an upper triangular matrix.
!>
!>              UPLO = 'L' or 'l'   A is a lower triangular matrix.
!> \endverbatim
!>
!> \param[in] TRANS
!> \verbatim
!>          TRANS is CHARACTER*1
!>           On entry, TRANS specifies the equations to be solved as
!>           follows:
!>
!>              TRANS = 'N' or 'n'   A*x = b.
!>
!>              TRANS = 'T' or 't'   A**T*x = b.
!>
!>              TRANS = 'C' or 'c'   A**H*x = b.
!> \endverbatim
!>
!> \param[in] DIAG
!> \verbatim
!>          DIAG is CHARACTER*1
!>           On entry, DIAG specifies whether or not A is unit
!>           triangular as follows:
!>
!>              DIAG = 'U' or 'u'   A is assumed to be unit triangular.
!>
!>              DIAG = 'N' or 'n'   A is not assumed to be unit
!>                                  triangular.
!> \endverbatim
!>
!> \param[in] N
!> \verbatim
!>          N is INTEGER
!>           On entry, N specifies the order of the matrix A.
!>           N must be at least zero.
!> \endverbatim
!>
!> \param[in] A
!> \verbatim
!>          A is COMPLEX array, dimension ( LDA, N )
!>           Before entry with  UPLO = 'U' or 'u', the leading n by n
!>           upper triangular part of the array A must contain the upper
!>           triangular matrix and the strictly lower triangular part of
!>           A is not referenced.
!>           Before entry with UPLO = 'L' or 'l', the leading n by n
!>           lower triangular part of the array A must contain the lower
!>           triangular matrix and the strictly upper triangular part of
!>           A is not referenced.
!>           Note that when  DIAG = 'U' or 'u', the diagonal elements of
!>           A are not referenced either, but are assumed to be unity.
!> \endverbatim
!>
!> \param[in] LDA
!> \verbatim
!>          LDA is INTEGER
!>           On entry, LDA specifies the first dimension of A as declared
!>           in the calling (sub) program. LDA must be at least
!>           max( 1, n ).
!> \endverbatim
!>
!> \param[in,out] X
!> \verbatim
!>          X is COMPLEX array, dimension at least
!>           ( 1 + ( n - 1 )*abs( INCX ) ).
!>           Before entry, the incremented array X must contain the n
!>           element right-hand side vector b. On exit, X is overwritten
!>           with the solution vector x.
!> \endverbatim
!>
!> \param[in] INCX
!> \verbatim
!>          INCX is INTEGER
!>           On entry, INCX specifies the increment for the elements of
!>           X. INCX must not be zero.
!> \endverbatim
!
!  Authors:
!  ========
!
!> \author Univ. of Tennessee
!> \author Univ. of California Berkeley
!> \author Univ. of Colorado Denver
!> \author NAG Ltd.
!
!> \date December 2016
!
!> \ingroup complex_blas_level2
!
!> \par Further Details:
!  =====================
!>
!> \verbatim
!>
!>  Level 2 Blas routine.
!>
!>  -- Written on 22-October-1986.
!>     Jack Dongarra, Argonne National Lab.
!>     Jeremy Du Croz, Nag Central Office.
!>     Sven Hammarling, Nag Central Office.
!>     Richard Hanson, Sandia National Labs.
!> \endverbatim
!>
!  =====================================================================
!
!  -- Reference BLAS level2 routine (version 3.7.0) --
!  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
!  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
!     December 2016
!
!     .. Scalar Arguments ..
!     ..
!     .. Array Arguments ..
!     ..
!
!  =====================================================================
!
!     .. Parameters ..
!     ..
!     .. Local Scalars ..
!     ..
!     .. External Functions ..
!     ..
!     .. External Subroutines ..
!     ..
!     .. Intrinsic Functions ..
!     ..
!
!     Test the input parameters.
!
!
!     Quick return if possible.
!
!
!
!     Set up the start point in X if the increment is not unity. This
!     will be  ( N - 1 )*INCX  too small for descending loops.
!
!
!     Start the operations. In this version the elements of A are
!     accessed sequentially with one pass through A.
!
!
!        Form  x := inv( A )*x.
!
!
!        Form  x := inv( A**T )*x  or  x := inv( A**H )*x.
!
!
!
!     End of CTRSV .
!
! END
use M_blas, only : ctrsv_=>CTRSV
implicit none
      INTEGER INCX,LDA,N
      CHARACTER DIAG,TRANS,UPLO
      COMPLEX A(LDA,*),X(*)
    call CTRSV_(UPLO,TRANS,DIAG,N,A,LDA,X,INCX)
end subroutine CTRSV

 DOUBLE PRECISION FUNCTION DASUM(N,DX,INCX)
! COMMENT --file dasum.3m_blas.man
!> \brief \b DASUM
!
!  =========== DOCUMENTATION ===========
!
! Online html documentation available at
!            http://www.netlib.org/lapack/explore-html/
!
!  Definition:
!  ===========
!
!       DOUBLE PRECISION FUNCTION DASUM(N,DX,INCX)
!
!       .. Scalar Arguments ..
!       INTEGER INCX,N
!       ..
!       .. Array Arguments ..
!       DOUBLE PRECISION DX(*)
!       ..
!
!
!> \par Purpose:
!  =============
!>
!> \verbatim
!>
!>    DASUM takes the sum of the absolute values.
!> \endverbatim
!
!  Arguments:
!  ==========
!
!> \param[in] N
!> \verbatim
!>          N is INTEGER
!>         number of elements in input vector(s)
!> \endverbatim
!>
!> \param[in] DX
!> \verbatim
!>          DX is DOUBLE PRECISION array, dimension ( 1 + ( N - 1 )*abs( INCX ) )
!> \endverbatim
!>
!> \param[in] INCX
!> \verbatim
!>          INCX is INTEGER
!>         storage spacing between elements of DX
!> \endverbatim
!
!  Authors:
!  ========
!
!> \author Univ. of Tennessee
!> \author Univ. of California Berkeley
!> \author Univ. of Colorado Denver
!> \author NAG Ltd.
!
!> \date November 2017
!
!> \ingroup double_blas_level1
!
!> \par Further Details:
!  =====================
!>
!> \verbatim
!>
!>     jack dongarra, linpack, 3/11/78.
!>     modified 3/93 to return if incx .le. 0.
!>     modified 12/3/93, array(1) declarations changed to array(*)
!> \endverbatim
!>
!  =====================================================================
!
!  -- Reference BLAS level1 routine (version 3.8.0) --
!  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
!  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
!     November 2017
!
!     .. Scalar Arguments ..
!     ..
!     .. Array Arguments ..
!     ..
!
!  =====================================================================
!
!     .. Local Scalars ..
!     ..
!     .. Intrinsic Functions ..
!     ..
!        code for increment equal to 1
!
!
!        clean-up loop
!
!
!        code for increment not equal to 1
!
! END
use M_blas, only : dasum_=>DASUM
implicit none
      INTEGER INCX,N
      DOUBLE PRECISION DX(*)
      dasum=DASUM_(N,DX,INCX)
      END FUNCTION DASUM

subroutine DAXPY(N,DA,DX,INCX,DY,INCY)
! COMMENT --file daxpy.3m_blas.man
!> \brief \b DAXPY
!
!  =========== DOCUMENTATION ===========
!
! Online html documentation available at
!            http://www.netlib.org/lapack/explore-html/
!
!  Definition:
!  ===========
!
!       SUBROUTINE DAXPY(N,DA,DX,INCX,DY,INCY)
!
!       .. Scalar Arguments ..
!       DOUBLE PRECISION DA
!       INTEGER INCX,INCY,N
!       ..
!       .. Array Arguments ..
!       DOUBLE PRECISION DX(*),DY(*)
!       ..
!
!
!> \par Purpose:
!  =============
!>
!> \verbatim
!>
!>    DAXPY constant times a vector plus a vector.
!>    uses unrolled loops for increments equal to one.
!> \endverbatim
!
!  Arguments:
!  ==========
!
!> \param[in] N
!> \verbatim
!>          N is INTEGER
!>         number of elements in input vector(s)
!> \endverbatim
!>
!> \param[in] DA
!> \verbatim
!>          DA is DOUBLE PRECISION
!>           On entry, DA specifies the scalar alpha.
!> \endverbatim
!>
!> \param[in] DX
!> \verbatim
!>          DX is DOUBLE PRECISION array, dimension ( 1 + ( N - 1 )*abs( INCX ) )
!> \endverbatim
!>
!> \param[in] INCX
!> \verbatim
!>          INCX is INTEGER
!>         storage spacing between elements of DX
!> \endverbatim
!>
!> \param[in,out] DY
!> \verbatim
!>          DY is DOUBLE PRECISION array, dimension ( 1 + ( N - 1 )*abs( INCY ) )
!> \endverbatim
!>
!> \param[in] INCY
!> \verbatim
!>          INCY is INTEGER
!>         storage spacing between elements of DY
!> \endverbatim
!
!  Authors:
!  ========
!
!> \author Univ. of Tennessee
!> \author Univ. of California Berkeley
!> \author Univ. of Colorado Denver
!> \author NAG Ltd.
!
!> \date November 2017
!
!> \ingroup double_blas_level1
!
!> \par Further Details:
!  =====================
!>
!> \verbatim
!>
!>     jack dongarra, linpack, 3/11/78.
!>     modified 12/3/93, array(1) declarations changed to array(*)
!> \endverbatim
!>
!  =====================================================================
!
!  -- Reference BLAS level1 routine (version 3.8.0) --
!  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
!  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
!     November 2017
!
!     .. Scalar Arguments ..
!     ..
!     .. Array Arguments ..
!     ..
!
!  =====================================================================
!
!     .. Local Scalars ..
!     ..
!     .. Intrinsic Functions ..
!     ..
!
!        code for both increments equal to 1
!
!
!        clean-up loop
!
!
!        code for unequal increments or equal increments
!          not equal to 1
!
! END
use M_blas, only : daxpy_=>DAXPY
implicit none
      DOUBLE PRECISION DA
      INTEGER INCX,INCY,N
      DOUBLE PRECISION DX(*),DY(*)
    call DAXPY_(N,DA,DX,INCX,DY,INCY)
end subroutine DAXPY

 DOUBLE PRECISION FUNCTION DCABS1(Z)
! COMMENT --file dcabs1.3m_blas.man
!> \brief \b DCABS1
!
!  =========== DOCUMENTATION ===========
!
! Online html documentation available at
!            http://www.netlib.org/lapack/explore-html/
!
!  Definition:
!  ===========
!
!       DOUBLE PRECISION FUNCTION DCABS1(Z)
!
!       .. Scalar Arguments ..
!       COMPLEX*16 Z
!       ..
!       ..
!
!
!> \par Purpose:
!  =============
!>
!> \verbatim
!>
!> DCABS1 computes |Re(.)| + |Im(.)| of a double complex number
!> \endverbatim
!
!  Arguments:
!  ==========
!
!> \param[in] Z
!> \verbatim
!>          Z is COMPLEX*16
!> \endverbatim
!
!  Authors:
!  ========
!
!> \author Univ. of Tennessee
!> \author Univ. of California Berkeley
!> \author Univ. of Colorado Denver
!> \author NAG Ltd.
!
!> \date November 2017
!
!> \ingroup double_blas_level1
!
!  =====================================================================
!
!  -- Reference BLAS level1 routine (version 3.8.0) --
!  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
!  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
!     November 2017
!
!     .. Scalar Arguments ..
!     ..
!     ..
!  =====================================================================
!
!     .. Intrinsic Functions ..
!
! END
use M_blas, only : dcabs1_=>DCABS1
implicit none
      COMPLEX*16 Z
      dcabs1=DCABS1_(Z)
      END FUNCTION DCABS1

subroutine DCOPY(N,DX,INCX,DY,INCY)
! COMMENT --file dcopy.3m_blas.man
!> \brief \b DCOPY
!
!  =========== DOCUMENTATION ===========
!
! Online html documentation available at
!            http://www.netlib.org/lapack/explore-html/
!
!  Definition:
!  ===========
!
!       SUBROUTINE DCOPY(N,DX,INCX,DY,INCY)
!
!       .. Scalar Arguments ..
!       INTEGER INCX,INCY,N
!       ..
!       .. Array Arguments ..
!       DOUBLE PRECISION DX(*),DY(*)
!       ..
!
!
!> \par Purpose:
!  =============
!>
!> \verbatim
!>
!>    DCOPY copies a vector, x, to a vector, y.
!>    uses unrolled loops for increments equal to 1.
!> \endverbatim
!
!  Arguments:
!  ==========
!
!> \param[in] N
!> \verbatim
!>          N is INTEGER
!>         number of elements in input vector(s)
!> \endverbatim
!>
!> \param[in] DX
!> \verbatim
!>          DX is DOUBLE PRECISION array, dimension ( 1 + ( N - 1 )*abs( INCX ) )
!> \endverbatim
!>
!> \param[in] INCX
!> \verbatim
!>          INCX is INTEGER
!>         storage spacing between elements of DX
!> \endverbatim
!>
!> \param[out] DY
!> \verbatim
!>          DY is DOUBLE PRECISION array, dimension ( 1 + ( N - 1 )*abs( INCY ) )
!> \endverbatim
!>
!> \param[in] INCY
!> \verbatim
!>          INCY is INTEGER
!>         storage spacing between elements of DY
!> \endverbatim
!
!  Authors:
!  ========
!
!> \author Univ. of Tennessee
!> \author Univ. of California Berkeley
!> \author Univ. of Colorado Denver
!> \author NAG Ltd.
!
!> \date November 2017
!
!> \ingroup double_blas_level1
!
!> \par Further Details:
!  =====================
!>
!> \verbatim
!>
!>     jack dongarra, linpack, 3/11/78.
!>     modified 12/3/93, array(1) declarations changed to array(*)
!> \endverbatim
!>
!  =====================================================================
!
!  -- Reference BLAS level1 routine (version 3.8.0) --
!  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
!  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
!     November 2017
!
!     .. Scalar Arguments ..
!     ..
!     .. Array Arguments ..
!     ..
!
!  =====================================================================
!
!     .. Local Scalars ..
!     ..
!     .. Intrinsic Functions ..
!     ..
!
!        code for both increments equal to 1
!
!
!        clean-up loop
!
!
!        code for unequal increments or equal increments
!          not equal to 1
!
! END
use M_blas, only : dcopy_=>DCOPY
implicit none
      INTEGER INCX,INCY,N
      DOUBLE PRECISION DX(*),DY(*)
      call DCOPY_(N,DX,INCX,DY,INCY)
end subroutine DCOPY

 DOUBLE PRECISION FUNCTION DDOT(N,DX,INCX,DY,INCY)
! COMMENT --file ddot.3m_blas.man
!> \brief \b DDOT
!
!  =========== DOCUMENTATION ===========
!
! Online html documentation available at
!            http://www.netlib.org/lapack/explore-html/
!
!  Definition:
!  ===========
!
!       DOUBLE PRECISION FUNCTION DDOT(N,DX,INCX,DY,INCY)
!
!       .. Scalar Arguments ..
!       INTEGER INCX,INCY,N
!       ..
!       .. Array Arguments ..
!       DOUBLE PRECISION DX(*),DY(*)
!       ..
!
!
!> \par Purpose:
!  =============
!>
!> \verbatim
!>
!>    DDOT forms the dot product of two vectors.
!>    uses unrolled loops for increments equal to one.
!> \endverbatim
!
!  Arguments:
!  ==========
!
!> \param[in] N
!> \verbatim
!>          N is INTEGER
!>         number of elements in input vector(s)
!> \endverbatim
!>
!> \param[in] DX
!> \verbatim
!>          DX is DOUBLE PRECISION array, dimension ( 1 + ( N - 1 )*abs( INCX ) )
!> \endverbatim
!>
!> \param[in] INCX
!> \verbatim
!>          INCX is INTEGER
!>         storage spacing between elements of DX
!> \endverbatim
!>
!> \param[in] DY
!> \verbatim
!>          DY is DOUBLE PRECISION array, dimension ( 1 + ( N - 1 )*abs( INCY ) )
!> \endverbatim
!>
!> \param[in] INCY
!> \verbatim
!>          INCY is INTEGER
!>         storage spacing between elements of DY
!> \endverbatim
!
!  Authors:
!  ========
!
!> \author Univ. of Tennessee
!> \author Univ. of California Berkeley
!> \author Univ. of Colorado Denver
!> \author NAG Ltd.
!
!> \date November 2017
!
!> \ingroup double_blas_level1
!
!> \par Further Details:
!  =====================
!>
!> \verbatim
!>
!>     jack dongarra, linpack, 3/11/78.
!>     modified 12/3/93, array(1) declarations changed to array(*)
!> \endverbatim
!>
!  =====================================================================
!
!  -- Reference BLAS level1 routine (version 3.8.0) --
!  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
!  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
!     November 2017
!
!     .. Scalar Arguments ..
!     ..
!     .. Array Arguments ..
!     ..
!
!  =====================================================================
!
!     .. Local Scalars ..
!     ..
!     .. Intrinsic Functions ..
!     ..
!
!        code for both increments equal to 1
!
!
!        clean-up loop
!
!
!        code for unequal increments or equal increments
!          not equal to 1
!
! END
use M_blas, only : ddot_=>DDOT
implicit none
      INTEGER INCX,INCY,N
      DOUBLE PRECISION DX(*),DY(*)
      ddot=DDOT_(N,DX,INCX,DY,INCY)
      END FUNCTION DDOT

subroutine DGBMV(TRANS,M,N,KL,KU,ALPHA,A,LDA,X,INCX,BETA,Y,INCY)
! COMMENT --file dgbmv.3m_blas.man
!> \brief \b DGBMV
!
!  =========== DOCUMENTATION ===========
!
! Online html documentation available at
!            http://www.netlib.org/lapack/explore-html/
!
!  Definition:
!  ===========
!
!       SUBROUTINE DGBMV(TRANS,M,N,KL,KU,ALPHA,A,LDA,X,INCX,BETA,Y,INCY)
!
!       .. Scalar Arguments ..
!       DOUBLE PRECISION ALPHA,BETA
!       INTEGER INCX,INCY,KL,KU,LDA,M,N
!       CHARACTER TRANS
!       ..
!       .. Array Arguments ..
!       DOUBLE PRECISION A(LDA,*),X(*),Y(*)
!       ..
!
!
!> \par Purpose:
!  =============
!>
!> \verbatim
!>
!> DGBMV  performs one of the matrix-vector operations
!>
!>    y := alpha*A*x + beta*y,   or   y := alpha*A**T*x + beta*y,
!>
!> where alpha and beta are scalars, x and y are vectors and A is an
!> m by n band matrix, with kl sub-diagonals and ku super-diagonals.
!> \endverbatim
!
!  Arguments:
!  ==========
!
!> \param[in] TRANS
!> \verbatim
!>          TRANS is CHARACTER*1
!>           On entry, TRANS specifies the operation to be performed as
!>           follows:
!>
!>              TRANS = 'N' or 'n'   y := alpha*A*x + beta*y.
!>
!>              TRANS = 'T' or 't'   y := alpha*A**T*x + beta*y.
!>
!>              TRANS = 'C' or 'c'   y := alpha*A**T*x + beta*y.
!> \endverbatim
!>
!> \param[in] M
!> \verbatim
!>          M is INTEGER
!>           On entry, M specifies the number of rows of the matrix A.
!>           M must be at least zero.
!> \endverbatim
!>
!> \param[in] N
!> \verbatim
!>          N is INTEGER
!>           On entry, N specifies the number of columns of the matrix A.
!>           N must be at least zero.
!> \endverbatim
!>
!> \param[in] KL
!> \verbatim
!>          KL is INTEGER
!>           On entry, KL specifies the number of sub-diagonals of the
!>           matrix A. KL must satisfy  0 .le. KL.
!> \endverbatim
!>
!> \param[in] KU
!> \verbatim
!>          KU is INTEGER
!>           On entry, KU specifies the number of super-diagonals of the
!>           matrix A. KU must satisfy  0 .le. KU.
!> \endverbatim
!>
!> \param[in] ALPHA
!> \verbatim
!>          ALPHA is DOUBLE PRECISION.
!>           On entry, ALPHA specifies the scalar alpha.
!> \endverbatim
!>
!> \param[in] A
!> \verbatim
!>          A is DOUBLE PRECISION array, dimension ( LDA, N )
!>           Before entry, the leading ( kl + ku + 1 ) by n part of the
!>           array A must contain the matrix of coefficients, supplied
!>           column by column, with the leading diagonal of the matrix in
!>           row ( ku + 1 ) of the array, the first super-diagonal
!>           starting at position 2 in row ku, the first sub-diagonal
!>           starting at position 1 in row ( ku + 2 ), and so on.
!>           Elements in the array A that do not correspond to elements
!>           in the band matrix (such as the top left ku by ku triangle)
!>           are not referenced.
!>           The following program segment will transfer a band matrix
!>           from conventional full matrix storage to band storage:
!>
!>                 DO 20, J = 1, N
!>                    K = KU + 1 - J
!>                    DO 10, I = MAX( 1, J - KU ), MIN( M, J + KL )
!>                       A( K + I, J ) = matrix( I, J )
!>              10    CONTINUE
!>              20 CONTINUE
!> \endverbatim
!>
!> \param[in] LDA
!> \verbatim
!>          LDA is INTEGER
!>           On entry, LDA specifies the first dimension of A as declared
!>           in the calling (sub) program. LDA must be at least
!>           ( kl + ku + 1 ).
!> \endverbatim
!>
!> \param[in] X
!> \verbatim
!>          X is DOUBLE PRECISION array, dimension at least
!>           ( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n'
!>           and at least
!>           ( 1 + ( m - 1 )*abs( INCX ) ) otherwise.
!>           Before entry, the incremented array X must contain the
!>           vector x.
!> \endverbatim
!>
!> \param[in] INCX
!> \verbatim
!>          INCX is INTEGER
!>           On entry, INCX specifies the increment for the elements of
!>           X. INCX must not be zero.
!> \endverbatim
!>
!> \param[in] BETA
!> \verbatim
!>          BETA is DOUBLE PRECISION.
!>           On entry, BETA specifies the scalar beta. When BETA is
!>           supplied as zero then Y need not be set on input.
!> \endverbatim
!>
!> \param[in,out] Y
!> \verbatim
!>          Y is DOUBLE PRECISION array, dimension at least
!>           ( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n'
!>           and at least
!>           ( 1 + ( n - 1 )*abs( INCY ) ) otherwise.
!>           Before entry, the incremented array Y must contain the
!>           vector y. On exit, Y is overwritten by the updated vector y.
!> \endverbatim
!>
!> \param[in] INCY
!> \verbatim
!>          INCY is INTEGER
!>           On entry, INCY specifies the increment for the elements of
!>           Y. INCY must not be zero.
!> \endverbatim
!
!  Authors:
!  ========
!
!> \author Univ. of Tennessee
!> \author Univ. of California Berkeley
!> \author Univ. of Colorado Denver
!> \author NAG Ltd.
!
!> \date December 2016
!
!> \ingroup double_blas_level2
!
!> \par Further Details:
!  =====================
!>
!> \verbatim
!>
!>  Level 2 Blas routine.
!>  The vector and matrix arguments are not referenced when N = 0, or M = 0
!>
!>  -- Written on 22-October-1986.
!>     Jack Dongarra, Argonne National Lab.
!>     Jeremy Du Croz, Nag Central Office.
!>     Sven Hammarling, Nag Central Office.
!>     Richard Hanson, Sandia National Labs.
!> \endverbatim
!>
!  =====================================================================
!
!  -- Reference BLAS level2 routine (version 3.7.0) --
!  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
!  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
!     December 2016
!
!     .. Scalar Arguments ..
!     ..
!     .. Array Arguments ..
!     ..
!
!  =====================================================================
!
!     .. Parameters ..
!     ..
!     .. Local Scalars ..
!     ..
!     .. External Functions ..
!     ..
!     .. External Subroutines ..
!     ..
!     .. Intrinsic Functions ..
!     ..
!
!     Test the input parameters.
!
!
!     Quick return if possible.
!
!
!     Set  LENX  and  LENY, the lengths of the vectors x and y, and set
!     up the start points in  X  and  Y.
!
!
!     Start the operations. In this version the elements of A are
!     accessed sequentially with one pass through the band part of A.
!
!     First form  y := beta*y.
!
!
!        Form  y := alpha*A*x + y.
!
!
!        Form  y := alpha*A**T*x + y.
!
!
!
!     End of DGBMV .
!
! END
use M_blas, only : dgbmv_=>DGBMV
implicit none
      DOUBLE PRECISION ALPHA,BETA
      INTEGER INCX,INCY,KL,KU,LDA,M,N
      CHARACTER TRANS
      DOUBLE PRECISION A(LDA,*),X(*),Y(*)
    call DGBMV_(TRANS,M,N,KL,KU,ALPHA,A,LDA,X,INCX,BETA,Y,INCY)
END SUBROUTINE DGBMV

subroutine DGEMM(TRANSA,TRANSB,M,N,K,ALPHA,A,LDA,B,LDB,BETA,C,LDC)
! COMMENT --file dgemm.3m_blas.man
!> \brief \b DGEMM
!
!  =========== DOCUMENTATION ===========
!
! Online html documentation available at
!            http://www.netlib.org/lapack/explore-html/
!
!  Definition:
!  ===========
!
!       SUBROUTINE DGEMM(TRANSA,TRANSB,M,N,K,ALPHA,A,LDA,B,LDB,BETA,C,LDC)
!
!       .. Scalar Arguments ..
!       DOUBLE PRECISION ALPHA,BETA
!       INTEGER K,LDA,LDB,LDC,M,N
!       CHARACTER TRANSA,TRANSB
!       ..
!       .. Array Arguments ..
!       DOUBLE PRECISION A(LDA,*),B(LDB,*),C(LDC,*)
!       ..
!
!
!> \par Purpose:
!  =============
!>
!> \verbatim
!>
!> DGEMM  performs one of the matrix-matrix operations
!>
!>    C := alpha*op( A )*op( B ) + beta*C,
!>
!> where  op( X ) is one of
!>
!>    op( X ) = X   or   op( X ) = X**T,
!>
!> alpha and beta are scalars, and A, B and C are matrices, with op( A )
!> an m by k matrix,  op( B )  a  k by n matrix and  C an m by n matrix.
!> \endverbatim
!
!  Arguments:
!  ==========
!
!> \param[in] TRANSA
!> \verbatim
!>          TRANSA is CHARACTER*1
!>           On entry, TRANSA specifies the form of op( A ) to be used in
!>           the matrix multiplication as follows:
!>
!>              TRANSA = 'N' or 'n',  op( A ) = A.
!>
!>              TRANSA = 'T' or 't',  op( A ) = A**T.
!>
!>              TRANSA = 'C' or 'c',  op( A ) = A**T.
!> \endverbatim
!>
!> \param[in] TRANSB
!> \verbatim
!>          TRANSB is CHARACTER*1
!>           On entry, TRANSB specifies the form of op( B ) to be used in
!>           the matrix multiplication as follows:
!>
!>              TRANSB = 'N' or 'n',  op( B ) = B.
!>
!>              TRANSB = 'T' or 't',  op( B ) = B**T.
!>
!>              TRANSB = 'C' or 'c',  op( B ) = B**T.
!> \endverbatim
!>
!> \param[in] M
!> \verbatim
!>          M is INTEGER
!>           On entry,  M  specifies  the number  of rows  of the  matrix
!>           op( A )  and of the  matrix  C.  M  must  be at least  zero.
!> \endverbatim
!>
!> \param[in] N
!> \verbatim
!>          N is INTEGER
!>           On entry,  N  specifies the number  of columns of the matrix
!>           op( B ) and the number of columns of the matrix C. N must be
!>           at least zero.
!> \endverbatim
!>
!> \param[in] K
!> \verbatim
!>          K is INTEGER
!>           On entry,  K  specifies  the number of columns of the matrix
!>           op( A ) and the number of rows of the matrix op( B ). K must
!>           be at least  zero.
!> \endverbatim
!>
!> \param[in] ALPHA
!> \verbatim
!>          ALPHA is DOUBLE PRECISION.
!>           On entry, ALPHA specifies the scalar alpha.
!> \endverbatim
!>
!> \param[in] A
!> \verbatim
!>          A is DOUBLE PRECISION array, dimension ( LDA, ka ), where ka is
!>           k  when  TRANSA = 'N' or 'n',  and is  m  otherwise.
!>           Before entry with  TRANSA = 'N' or 'n',  the leading  m by k
!>           part of the array  A  must contain the matrix  A,  otherwise
!>           the leading  k by m  part of the array  A  must contain  the
!>           matrix A.
!> \endverbatim
!>
!> \param[in] LDA
!> \verbatim
!>          LDA is INTEGER
!>           On entry, LDA specifies the first dimension of A as declared
!>           in the calling (sub) program. When  TRANSA = 'N' or 'n' then
!>           LDA must be at least  max( 1, m ), otherwise  LDA must be at
!>           least  max( 1, k ).
!> \endverbatim
!>
!> \param[in] B
!> \verbatim
!>          B is DOUBLE PRECISION array, dimension ( LDB, kb ), where kb is
!>           n  when  TRANSB = 'N' or 'n',  and is  k  otherwise.
!>           Before entry with  TRANSB = 'N' or 'n',  the leading  k by n
!>           part of the array  B  must contain the matrix  B,  otherwise
!>           the leading  n by k  part of the array  B  must contain  the
!>           matrix B.
!> \endverbatim
!>
!> \param[in] LDB
!> \verbatim
!>          LDB is INTEGER
!>           On entry, LDB specifies the first dimension of B as declared
!>           in the calling (sub) program. When  TRANSB = 'N' or 'n' then
!>           LDB must be at least  max( 1, k ), otherwise  LDB must be at
!>           least  max( 1, n ).
!> \endverbatim
!>
!> \param[in] BETA
!> \verbatim
!>          BETA is DOUBLE PRECISION.
!>           On entry,  BETA  specifies the scalar  beta.  When  BETA  is
!>           supplied as zero then C need not be set on input.
!> \endverbatim
!>
!> \param[in,out] C
!> \verbatim
!>          C is DOUBLE PRECISION array, dimension ( LDC, N )
!>           Before entry, the leading  m by n  part of the array  C must
!>           contain the matrix  C,  except when  beta  is zero, in which
!>           case C need not be set on entry.
!>           On exit, the array  C  is overwritten by the  m by n  matrix
!>           ( alpha*op( A )*op( B ) + beta*C ).
!> \endverbatim
!>
!> \param[in] LDC
!> \verbatim
!>          LDC is INTEGER
!>           On entry, LDC specifies the first dimension of C as declared
!>           in  the  calling  (sub)  program.   LDC  must  be  at  least
!>           max( 1, m ).
!> \endverbatim
!
!  Authors:
!  ========
!
!> \author Univ. of Tennessee
!> \author Univ. of California Berkeley
!> \author Univ. of Colorado Denver
!> \author NAG Ltd.
!
!> \date December 2016
!
!> \ingroup double_blas_level3
!
!> \par Further Details:
!  =====================
!>
!> \verbatim
!>
!>  Level 3 Blas routine.
!>
!>  -- Written on 8-February-1989.
!>     Jack Dongarra, Argonne National Laboratory.
!>     Iain Duff, AERE Harwell.
!>     Jeremy Du Croz, Numerical Algorithms Group Ltd.
!>     Sven Hammarling, Numerical Algorithms Group Ltd.
!> \endverbatim
!>
!  =====================================================================
!
!  -- Reference BLAS level3 routine (version 3.7.0) --
!  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
!  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
!     December 2016
!
!     .. Scalar Arguments ..
!     ..
!     .. Array Arguments ..
!     ..
!
!  =====================================================================
!
!     .. External Functions ..
!     ..
!     .. External Subroutines ..
!     ..
!     .. Intrinsic Functions ..
!     ..
!     .. Local Scalars ..
!     ..
!     .. Parameters ..
!     ..
!
!     Set  NOTA  and  NOTB  as  true if  A  and  B  respectively are not
!     transposed and set  NROWA and NROWB  as the number of rows of  A
!     and  B  respectively.
!
!
!     Test the input parameters.
!
!
!     Quick return if possible.
!
!
!     And if  alpha.eq.zero.
!
!
!     Start the operations.
!
!
!           Form  C := alpha*A*B + beta*C.
!
!
!           Form  C := alpha*A**T*B + beta*C
!
!
!           Form  C := alpha*A*B**T + beta*C
!
!
!           Form  C := alpha*A**T*B**T + beta*C
!
!
!
!     End of DGEMM .
!
! END
use M_blas, only : dgemm_=>DGEMM
implicit none
      DOUBLE PRECISION ALPHA,BETA
      INTEGER K,LDA,LDB,LDC,M,N
      CHARACTER TRANSA,TRANSB
      DOUBLE PRECISION A(LDA,*),B(LDB,*),C(LDC,*)
    call DGEMM_(TRANSA,TRANSB,M,N,K,ALPHA,A,LDA,B,LDB,BETA,C,LDC)
end subroutine DGEMM

subroutine DGEMV(TRANS,M,N,ALPHA,A,LDA,X,INCX,BETA,Y,INCY)
! COMMENT --file dgemv.3m_blas.man
!> \brief \b DGEMV
!
!  =========== DOCUMENTATION ===========
!
! Online html documentation available at
!            http://www.netlib.org/lapack/explore-html/
!
!  Definition:
!  ===========
!
!       SUBROUTINE DGEMV(TRANS,M,N,ALPHA,A,LDA,X,INCX,BETA,Y,INCY)
!
!       .. Scalar Arguments ..
!       DOUBLE PRECISION ALPHA,BETA
!       INTEGER INCX,INCY,LDA,M,N
!       CHARACTER TRANS
!       ..
!       .. Array Arguments ..
!       DOUBLE PRECISION A(LDA,*),X(*),Y(*)
!       ..
!
!
!> \par Purpose:
!  =============
!>
!> \verbatim
!>
!> DGEMV  performs one of the matrix-vector operations
!>
!>    y := alpha*A*x + beta*y,   or   y := alpha*A**T*x + beta*y,
!>
!> where alpha and beta are scalars, x and y are vectors and A is an
!> m by n matrix.
!> \endverbatim
!
!  Arguments:
!  ==========
!
!> \param[in] TRANS
!> \verbatim
!>          TRANS is CHARACTER*1
!>           On entry, TRANS specifies the operation to be performed as
!>           follows:
!>
!>              TRANS = 'N' or 'n'   y := alpha*A*x + beta*y.
!>
!>              TRANS = 'T' or 't'   y := alpha*A**T*x + beta*y.
!>
!>              TRANS = 'C' or 'c'   y := alpha*A**T*x + beta*y.
!> \endverbatim
!>
!> \param[in] M
!> \verbatim
!>          M is INTEGER
!>           On entry, M specifies the number of rows of the matrix A.
!>           M must be at least zero.
!> \endverbatim
!>
!> \param[in] N
!> \verbatim
!>          N is INTEGER
!>           On entry, N specifies the number of columns of the matrix A.
!>           N must be at least zero.
!> \endverbatim
!>
!> \param[in] ALPHA
!> \verbatim
!>          ALPHA is DOUBLE PRECISION.
!>           On entry, ALPHA specifies the scalar alpha.
!> \endverbatim
!>
!> \param[in] A
!> \verbatim
!>          A is DOUBLE PRECISION array, dimension ( LDA, N )
!>           Before entry, the leading m by n part of the array A must
!>           contain the matrix of coefficients.
!> \endverbatim
!>
!> \param[in] LDA
!> \verbatim
!>          LDA is INTEGER
!>           On entry, LDA specifies the first dimension of A as declared
!>           in the calling (sub) program. LDA must be at least
!>           max( 1, m ).
!> \endverbatim
!>
!> \param[in] X
!> \verbatim
!>          X is DOUBLE PRECISION array, dimension at least
!>           ( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n'
!>           and at least
!>           ( 1 + ( m - 1 )*abs( INCX ) ) otherwise.
!>           Before entry, the incremented array X must contain the
!>           vector x.
!> \endverbatim
!>
!> \param[in] INCX
!> \verbatim
!>          INCX is INTEGER
!>           On entry, INCX specifies the increment for the elements of
!>           X. INCX must not be zero.
!> \endverbatim
!>
!> \param[in] BETA
!> \verbatim
!>          BETA is DOUBLE PRECISION.
!>           On entry, BETA specifies the scalar beta. When BETA is
!>           supplied as zero then Y need not be set on input.
!> \endverbatim
!>
!> \param[in,out] Y
!> \verbatim
!>          Y is DOUBLE PRECISION array, dimension at least
!>           ( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n'
!>           and at least
!>           ( 1 + ( n - 1 )*abs( INCY ) ) otherwise.
!>           Before entry with BETA non-zero, the incremented array Y
!>           must contain the vector y. On exit, Y is overwritten by the
!>           updated vector y.
!> \endverbatim
!>
!> \param[in] INCY
!> \verbatim
!>          INCY is INTEGER
!>           On entry, INCY specifies the increment for the elements of
!>           Y. INCY must not be zero.
!> \endverbatim
!
!  Authors:
!  ========
!
!> \author Univ. of Tennessee
!> \author Univ. of California Berkeley
!> \author Univ. of Colorado Denver
!> \author NAG Ltd.
!
!> \date December 2016
!
!> \ingroup double_blas_level2
!
!> \par Further Details:
!  =====================
!>
!> \verbatim
!>
!>  Level 2 Blas routine.
!>  The vector and matrix arguments are not referenced when N = 0, or M = 0
!>
!>  -- Written on 22-October-1986.
!>     Jack Dongarra, Argonne National Lab.
!>     Jeremy Du Croz, Nag Central Office.
!>     Sven Hammarling, Nag Central Office.
!>     Richard Hanson, Sandia National Labs.
!> \endverbatim
!>
!  =====================================================================
!
!  -- Reference BLAS level2 routine (version 3.7.0) --
!  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
!  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
!     December 2016
!
!     .. Scalar Arguments ..
!     ..
!     .. Array Arguments ..
!     ..
!
!  =====================================================================
!
!     .. Parameters ..
!     ..
!     .. Local Scalars ..
!     ..
!     .. External Functions ..
!     ..
!     .. External Subroutines ..
!     ..
!     .. Intrinsic Functions ..
!     ..
!
!     Test the input parameters.
!
!
!     Quick return if possible.
!
!
!     Set  LENX  and  LENY, the lengths of the vectors x and y, and set
!     up the start points in  X  and  Y.
!
!
!     Start the operations. In this version the elements of A are
!     accessed sequentially with one pass through A.
!
!     First form  y := beta*y.
!
!
!        Form  y := alpha*A*x + y.
!
!
!        Form  y := alpha*A**T*x + y.
!
!
!
!     End of DGEMV .
!
! END
use M_blas, only : dgemv_=>DGEMV
implicit none
      DOUBLE PRECISION ALPHA,BETA
      INTEGER INCX,INCY,LDA,M,N
      CHARACTER TRANS
      DOUBLE PRECISION A(LDA,*),X(*),Y(*)
    call DGEMV_(TRANS,M,N,ALPHA,A,LDA,X,INCX,BETA,Y,INCY)
end subroutine DGEMV

subroutine DGER(M,N,ALPHA,X,INCX,Y,INCY,A,LDA)
! COMMENT --file dger.3m_blas.man
!> \brief \b DGER
!
!  =========== DOCUMENTATION ===========
!
! Online html documentation available at
!            http://www.netlib.org/lapack/explore-html/
!
!  Definition:
!  ===========
!
!       SUBROUTINE DGER(M,N,ALPHA,X,INCX,Y,INCY,A,LDA)
!
!       .. Scalar Arguments ..
!       DOUBLE PRECISION ALPHA
!       INTEGER INCX,INCY,LDA,M,N
!       ..
!       .. Array Arguments ..
!       DOUBLE PRECISION A(LDA,*),X(*),Y(*)
!       ..
!
!
!> \par Purpose:
!  =============
!>
!> \verbatim
!>
!> DGER   performs the rank 1 operation
!>
!>    A := alpha*x*y**T + A,
!>
!> where alpha is a scalar, x is an m element vector, y is an n element
!> vector and A is an m by n matrix.
!> \endverbatim
!
!  Arguments:
!  ==========
!
!> \param[in] M
!> \verbatim
!>          M is INTEGER
!>           On entry, M specifies the number of rows of the matrix A.
!>           M must be at least zero.
!> \endverbatim
!>
!> \param[in] N
!> \verbatim
!>          N is INTEGER
!>           On entry, N specifies the number of columns of the matrix A.
!>           N must be at least zero.
!> \endverbatim
!>
!> \param[in] ALPHA
!> \verbatim
!>          ALPHA is DOUBLE PRECISION.
!>           On entry, ALPHA specifies the scalar alpha.
!> \endverbatim
!>
!> \param[in] X
!> \verbatim
!>          X is DOUBLE PRECISION array, dimension at least
!>           ( 1 + ( m - 1 )*abs( INCX ) ).
!>           Before entry, the incremented array X must contain the m
!>           element vector x.
!> \endverbatim
!>
!> \param[in] INCX
!> \verbatim
!>          INCX is INTEGER
!>           On entry, INCX specifies the increment for the elements of
!>           X. INCX must not be zero.
!> \endverbatim
!>
!> \param[in] Y
!> \verbatim
!>          Y is DOUBLE PRECISION array, dimension at least
!>           ( 1 + ( n - 1 )*abs( INCY ) ).
!>           Before entry, the incremented array Y must contain the n
!>           element vector y.
!> \endverbatim
!>
!> \param[in] INCY
!> \verbatim
!>          INCY is INTEGER
!>           On entry, INCY specifies the increment for the elements of
!>           Y. INCY must not be zero.
!> \endverbatim
!>
!> \param[in,out] A
!> \verbatim
!>          A is DOUBLE PRECISION array, dimension ( LDA, N )
!>           Before entry, the leading m by n part of the array A must
!>           contain the matrix of coefficients. On exit, A is
!>           overwritten by the updated matrix.
!> \endverbatim
!>
!> \param[in] LDA
!> \verbatim
!>          LDA is INTEGER
!>           On entry, LDA specifies the first dimension of A as declared
!>           in the calling (sub) program. LDA must be at least
!>           max( 1, m ).
!> \endverbatim
!
!  Authors:
!  ========
!
!> \author Univ. of Tennessee
!> \author Univ. of California Berkeley
!> \author Univ. of Colorado Denver
!> \author NAG Ltd.
!
!> \date December 2016
!
!> \ingroup double_blas_level2
!
!> \par Further Details:
!  =====================
!>
!> \verbatim
!>
!>  Level 2 Blas routine.
!>
!>  -- Written on 22-October-1986.
!>     Jack Dongarra, Argonne National Lab.
!>     Jeremy Du Croz, Nag Central Office.
!>     Sven Hammarling, Nag Central Office.
!>     Richard Hanson, Sandia National Labs.
!> \endverbatim
!>
!  =====================================================================
!
!  -- Reference BLAS level2 routine (version 3.7.0) --
!  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
!  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
!     December 2016
!
!     .. Scalar Arguments ..
!     ..
!     .. Array Arguments ..
!     ..
!
!  =====================================================================
!
!     .. Parameters ..
!     ..
!     .. Local Scalars ..
!     ..
!     .. External Subroutines ..
!     ..
!     .. Intrinsic Functions ..
!     ..
!
!     Test the input parameters.
!
!
!     Quick return if possible.
!
!
!     Start the operations. In this version the elements of A are
!     accessed sequentially with one pass through A.
!
!
!
!     End of DGER  .
!
! END
use M_blas, only : dger_=>DGER
implicit none
      DOUBLE PRECISION ALPHA
      INTEGER INCX,INCY,LDA,M,N
      DOUBLE PRECISION A(LDA,*),X(*),Y(*)
    call DGER_(M,N,ALPHA,X,INCX,Y,INCY,A,LDA)
end subroutine DGER

 DOUBLE PRECISION FUNCTION DNRM2(N,X,INCX)
! COMMENT --file dnrm2.3m_blas.man
!> \brief \b DNRM2
!
!  =========== DOCUMENTATION ===========
!
! Online html documentation available at
!            http://www.netlib.org/lapack/explore-html/
!
!  Definition:
!  ===========
!
!       DOUBLE PRECISION FUNCTION DNRM2(N,X,INCX)
!
!       .. Scalar Arguments ..
!       INTEGER INCX,N
!       ..
!       .. Array Arguments ..
!       DOUBLE PRECISION X(*)
!       ..
!
!
!> \par Purpose:
!  =============
!>
!> \verbatim
!>
!> DNRM2 returns the euclidean norm of a vector via the function
!> name, so that
!>
!>    DNRM2 := sqrt( x'*x )
!> \endverbatim
!
!  Arguments:
!  ==========
!
!> \param[in] N
!> \verbatim
!>          N is INTEGER
!>         number of elements in input vector(s)
!> \endverbatim
!>
!> \param[in] X
!> \verbatim
!>          X is DOUBLE PRECISION array, dimension ( 1 + ( N - 1 )*abs( INCX ) )
!> \endverbatim
!>
!> \param[in] INCX
!> \verbatim
!>          INCX is INTEGER
!>         storage spacing between elements of DX
!> \endverbatim
!
!  Authors:
!  ========
!
!> \author Univ. of Tennessee
!> \author Univ. of California Berkeley
!> \author Univ. of Colorado Denver
!> \author NAG Ltd.
!
!> \date November 2017
!
!> \ingroup double_blas_level1
!
!> \par Further Details:
!  =====================
!>
!> \verbatim
!>
!>  -- This version written on 25-October-1982.
!>     Modified on 14-October-1993 to inline the call to DLASSQ.
!>     Sven Hammarling, Nag Ltd.
!> \endverbatim
!>
!  =====================================================================
!
!  -- Reference BLAS level1 routine (version 3.8.0) --
!  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
!  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
!     November 2017
!
!     .. Scalar Arguments ..
!     ..
!     .. Array Arguments ..
!     ..
!
!  =====================================================================
!
!     .. Parameters ..
!     ..
!     .. Local Scalars ..
!     ..
!     .. Intrinsic Functions ..
!     ..
!        The following loop is equivalent to this call to the LAPACK
!        auxiliary routine:
!        CALL DLASSQ( N, X, INCX, SCALE, SSQ )
!
!
!
!     End of DNRM2.
!
! END
use M_blas, only : dnrm2_=>DNRM2
implicit none
      INTEGER INCX,N
      DOUBLE PRECISION X(*)
      dnrm2=DNRM2_(N,X,INCX)
      END FUNCTION DNRM2

subroutine DROT(N,DX,INCX,DY,INCY,C,S)
! COMMENT --file drot.3m_blas.man
!> \brief \b DROT
!
!  =========== DOCUMENTATION ===========
!
! Online html documentation available at
!            http://www.netlib.org/lapack/explore-html/
!
!  Definition:
!  ===========
!
!       SUBROUTINE DROT(N,DX,INCX,DY,INCY,C,S)
!
!       .. Scalar Arguments ..
!       DOUBLE PRECISION C,S
!       INTEGER INCX,INCY,N
!       ..
!       .. Array Arguments ..
!       DOUBLE PRECISION DX(*),DY(*)
!       ..
!
!
!> \par Purpose:
!  =============
!>
!> \verbatim
!>
!>    DROT applies a plane rotation.
!> \endverbatim
!
!  Arguments:
!  ==========
!
!> \param[in] N
!> \verbatim
!>          N is INTEGER
!>         number of elements in input vector(s)
!> \endverbatim
!>
!> \param[in,out] DX
!> \verbatim
!>          DX is DOUBLE PRECISION array, dimension ( 1 + ( N - 1 )*abs( INCX ) )
!> \endverbatim
!>
!> \param[in] INCX
!> \verbatim
!>          INCX is INTEGER
!>         storage spacing between elements of DX
!> \endverbatim
!>
!> \param[in,out] DY
!> \verbatim
!>          DY is DOUBLE PRECISION array, dimension ( 1 + ( N - 1 )*abs( INCY ) )
!> \endverbatim
!>
!> \param[in] INCY
!> \verbatim
!>          INCY is INTEGER
!>         storage spacing between elements of DY
!> \endverbatim
!>
!> \param[in] C
!> \verbatim
!>          C is DOUBLE PRECISION
!> \endverbatim
!>
!> \param[in] S
!> \verbatim
!>          S is DOUBLE PRECISION
!> \endverbatim
!
!  Authors:
!  ========
!
!> \author Univ. of Tennessee
!> \author Univ. of California Berkeley
!> \author Univ. of Colorado Denver
!> \author NAG Ltd.
!
!> \date November 2017
!
!> \ingroup double_blas_level1
!
!> \par Further Details:
!  =====================
!>
!> \verbatim
!>
!>     jack dongarra, linpack, 3/11/78.
!>     modified 12/3/93, array(1) declarations changed to array(*)
!> \endverbatim
!>
!  =====================================================================
!
!  -- Reference BLAS level1 routine (version 3.8.0) --
!  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
!  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
!     November 2017
!
!     .. Scalar Arguments ..
!     ..
!     .. Array Arguments ..
!     ..
!
!  =====================================================================
!
!     .. Local Scalars ..
!     ..
!
!       code for both increments equal to 1
!
!
!       code for unequal increments or equal increments not equal
!         to 1
!
! END
use M_blas, only : drot_=>DROT
implicit none
      DOUBLE PRECISION C,S
      INTEGER INCX,INCY,N
      DOUBLE PRECISION DX(*),DY(*)
    call DROT_(N,DX,INCX,DY,INCY,C,S)
end subroutine DROT

subroutine DROTG(DA,DB,C,S)
! COMMENT --file drotg.3m_blas.man
!> \brief \b DROTG
!
!  =========== DOCUMENTATION ===========
!
! Online html documentation available at
!            http://www.netlib.org/lapack/explore-html/
!
!  Definition:
!  ===========
!
!       SUBROUTINE DROTG(DA,DB,C,S)
!
!       .. Scalar Arguments ..
!       DOUBLE PRECISION C,DA,DB,S
!       ..
!
!
!> \par Purpose:
!  =============
!>
!> \verbatim
!>
!>    DROTG construct givens plane rotation.
!> \endverbatim
!
!  Arguments:
!  ==========
!
!> \param[in,out] DA
!> \verbatim
!>          DA is DOUBLE PRECISION
!> \endverbatim
!>
!> \param[in,out] DB
!> \verbatim
!>          DB is DOUBLE PRECISION
!> \endverbatim
!>
!> \param[out] C
!> \verbatim
!>          C is DOUBLE PRECISION
!> \endverbatim
!>
!> \param[out] S
!> \verbatim
!>          S is DOUBLE PRECISION
!> \endverbatim
!
!  Authors:
!  ========
!
!> \author Univ. of Tennessee
!> \author Univ. of California Berkeley
!> \author Univ. of Colorado Denver
!> \author NAG Ltd.
!
!> \date November 2017
!
!> \ingroup double_blas_level1
!
!> \par Further Details:
!  =====================
!>
!> \verbatim
!>
!>     jack dongarra, linpack, 3/11/78.
!> \endverbatim
!>
!  =====================================================================
!
!  -- Reference BLAS level1 routine (version 3.8.0) --
!  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
!  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
!     November 2017
!
!     .. Scalar Arguments ..
!     ..
!
!  =====================================================================
!
!     .. Local Scalars ..
!     ..
!     .. Intrinsic Functions ..
!     ..
! END
use M_blas, only : drotg_=>DROTG
implicit none
      DOUBLE PRECISION C,DA,DB,S
    call DROTG_(DA,DB,C,S)
end subroutine DROTG

subroutine DROTM(N,DX,INCX,DY,INCY,DPARAM)
! COMMENT --file drotm.3m_blas.man
!> \brief \b DROTM
!
!  =========== DOCUMENTATION ===========
!
! Online html documentation available at
!            http://www.netlib.org/lapack/explore-html/
!
!  Definition:
!  ===========
!
!       SUBROUTINE DROTM(N,DX,INCX,DY,INCY,DPARAM)
!
!       .. Scalar Arguments ..
!       INTEGER INCX,INCY,N
!       ..
!       .. Array Arguments ..
!       DOUBLE PRECISION DPARAM(5),DX(*),DY(*)
!       ..
!
!
!> \par Purpose:
!  =============
!>
!> \verbatim
!>
!>    APPLY THE MODIFIED GIVENS TRANSFORMATION, H, TO THE 2 BY N MATRIX
!>
!>    (DX**T) , WHERE **T INDICATES TRANSPOSE. THE ELEMENTS OF DX ARE IN
!>    (DY**T)
!>
!>    DX(LX+I*INCX), I = 0 TO N-1, WHERE LX = 1 IF INCX .GE. 0, ELSE
!>    LX = (-INCX)*N, AND SIMILARLY FOR SY USING LY AND INCY.
!>    WITH DPARAM(1)=DFLAG, H HAS ONE OF THE FOLLOWING FORMS..
!>
!>    DFLAG=-1.D0     DFLAG=0.D0        DFLAG=1.D0     DFLAG=-2.D0
!>
!>      (DH11  DH12)    (1.D0  DH12)    (DH11  1.D0)    (1.D0  0.D0)
!>    H=(          )    (          )    (          )    (          )
!>      (DH21  DH22),   (DH21  1.D0),   (-1.D0 DH22),   (0.D0  1.D0).
!>    SEE DROTMG FOR A DESCRIPTION OF DATA STORAGE IN DPARAM.
!> \endverbatim
!
!  Arguments:
!  ==========
!
!> \param[in] N
!> \verbatim
!>          N is INTEGER
!>         number of elements in input vector(s)
!> \endverbatim
!>
!> \param[in,out] DX
!> \verbatim
!>          DX is DOUBLE PRECISION array, dimension ( 1 + ( N - 1 )*abs( INCX ) )
!> \endverbatim
!>
!> \param[in] INCX
!> \verbatim
!>          INCX is INTEGER
!>         storage spacing between elements of DX
!> \endverbatim
!>
!> \param[in,out] DY
!> \verbatim
!>          DY is DOUBLE PRECISION array, dimension ( 1 + ( N - 1 )*abs( INCY ) )
!> \endverbatim
!>
!> \param[in] INCY
!> \verbatim
!>          INCY is INTEGER
!>         storage spacing between elements of DY
!> \endverbatim
!>
!> \param[in] DPARAM
!> \verbatim
!>          DPARAM is DOUBLE PRECISION array, dimension (5)
!>     DPARAM(1)=DFLAG
!>     DPARAM(2)=DH11
!>     DPARAM(3)=DH21
!>     DPARAM(4)=DH12
!>     DPARAM(5)=DH22
!> \endverbatim
!
!  Authors:
!  ========
!
!> \author Univ. of Tennessee
!> \author Univ. of California Berkeley
!> \author Univ. of Colorado Denver
!> \author NAG Ltd.
!
!> \date November 2017
!
!> \ingroup double_blas_level1
!
!  =====================================================================
!
!  -- Reference BLAS level1 routine (version 3.8.0) --
!  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
!  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
!     November 2017
!
!     .. Scalar Arguments ..
!     ..
!     .. Array Arguments ..
!     ..
!
!  =====================================================================
!
!     .. Local Scalars ..
!     ..
!     .. Data statements ..
!     ..
!
!
!
! END
use M_blas, only : drotm_=>DROTM
implicit none
      INTEGER INCX,INCY,N
      DOUBLE PRECISION DPARAM(5),DX(*),DY(*)
    call DROTM_(N,DX,INCX,DY,INCY,DPARAM)
end subroutine DROTM

subroutine DROTMG(DD1,DD2,DX1,DY1,DPARAM)
! COMMENT --file drotmg.3m_blas.man
!> \brief \b DROTMG
!
!  =========== DOCUMENTATION ===========
!
! Online html documentation available at
!            http://www.netlib.org/lapack/explore-html/
!
!  Definition:
!  ===========
!
!       SUBROUTINE DROTMG(DD1,DD2,DX1,DY1,DPARAM)
!
!       .. Scalar Arguments ..
!       DOUBLE PRECISION DD1,DD2,DX1,DY1
!       ..
!       .. Array Arguments ..
!       DOUBLE PRECISION DPARAM(5)
!       ..
!
!
!> \par Purpose:
!  =============
!>
!> \verbatim
!>
!>    CONSTRUCT THE MODIFIED GIVENS TRANSFORMATION MATRIX H WHICH ZEROS
!>    THE SECOND COMPONENT OF THE 2-VECTOR  (DSQRT(DD1)*DX1,DSQRT(DD2)*>    DY2)**T.
!>    WITH DPARAM(1)=DFLAG, H HAS ONE OF THE FOLLOWING FORMS..
!>
!>    DFLAG=-1.D0     DFLAG=0.D0        DFLAG=1.D0     DFLAG=-2.D0
!>
!>      (DH11  DH12)    (1.D0  DH12)    (DH11  1.D0)    (1.D0  0.D0)
!>    H=(          )    (          )    (          )    (          )
!>      (DH21  DH22),   (DH21  1.D0),   (-1.D0 DH22),   (0.D0  1.D0).
!>    LOCATIONS 2-4 OF DPARAM CONTAIN DH11, DH21, DH12, AND DH22
!>    RESPECTIVELY. (VALUES OF 1.D0, -1.D0, OR 0.D0 IMPLIED BY THE
!>    VALUE OF DPARAM(1) ARE NOT STORED IN DPARAM.)
!>
!>    THE VALUES OF GAMSQ AND RGAMSQ SET IN THE DATA STATEMENT MAY BE
!>    INEXACT.  THIS IS OK AS THEY ARE ONLY USED FOR TESTING THE SIZE
!>    OF DD1 AND DD2.  ALL ACTUAL SCALING OF DATA IS DONE USING GAM.
!>
!> \endverbatim
!
!  Arguments:
!  ==========
!
!> \param[in,out] DD1
!> \verbatim
!>          DD1 is DOUBLE PRECISION
!> \endverbatim
!>
!> \param[in,out] DD2
!> \verbatim
!>          DD2 is DOUBLE PRECISION
!> \endverbatim
!>
!> \param[in,out] DX1
!> \verbatim
!>          DX1 is DOUBLE PRECISION
!> \endverbatim
!>
!> \param[in] DY1
!> \verbatim
!>          DY1 is DOUBLE PRECISION
!> \endverbatim
!>
!> \param[out] DPARAM
!> \verbatim
!>          DPARAM is DOUBLE PRECISION array, dimension (5)
!>     DPARAM(1)=DFLAG
!>     DPARAM(2)=DH11
!>     DPARAM(3)=DH21
!>     DPARAM(4)=DH12
!>     DPARAM(5)=DH22
!> \endverbatim
!
!  Authors:
!  ========
!
!> \author Univ. of Tennessee
!> \author Univ. of California Berkeley
!> \author Univ. of Colorado Denver
!> \author NAG Ltd.
!
!> \date November 2017
!
!> \ingroup double_blas_level1
!
!  =====================================================================
!
!  -- Reference BLAS level1 routine (version 3.8.0) --
!  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
!  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
!     November 2017
!
!     .. Scalar Arguments ..
!     ..
!     .. Array Arguments ..
!     ..
!
!  =====================================================================
!
!     .. Local Scalars ..
!     ..
!     .. Intrinsic Functions ..
!     ..
!     .. Data statements ..
!
!     ..
!        GO ZERO-H-D-AND-DX1..
!
!        CASE-DD1-NONNEGATIVE
!        REGULAR-CASE..
!
!
!
!            This code path if here for safety. We do not expect this
!            condition to ever hold except in edge cases with rounding
!            errors. See DOI: 10.1145/355841.355847
!
!              GO ZERO-H-D-AND-DX1..
!
!     PROCEDURE..SCALE-CHECK
! END
use M_blas, only : drotmg_=>DROTMG
implicit none
      DOUBLE PRECISION DD1,DD2,DX1,DY1
      DOUBLE PRECISION DPARAM(5)
    call DROTMG_(DD1,DD2,DX1,DY1,DPARAM)
end subroutine DROTMG

subroutine DSBMV(UPLO,N,K,ALPHA,A,LDA,X,INCX,BETA,Y,INCY)
! COMMENT --file dsbmv.3m_blas.man
!> \brief \b DSBMV
!
!  =========== DOCUMENTATION ===========
!
! Online html documentation available at
!            http://www.netlib.org/lapack/explore-html/
!
!  Definition:
!  ===========
!
!       SUBROUTINE DSBMV(UPLO,N,K,ALPHA,A,LDA,X,INCX,BETA,Y,INCY)
!
!       .. Scalar Arguments ..
!       DOUBLE PRECISION ALPHA,BETA
!       INTEGER INCX,INCY,K,LDA,N
!       CHARACTER UPLO
!       ..
!       .. Array Arguments ..
!       DOUBLE PRECISION A(LDA,*),X(*),Y(*)
!       ..
!
!
!> \par Purpose:
!  =============
!>
!> \verbatim
!>
!> DSBMV  performs the matrix-vector  operation
!>
!>    y := alpha*A*x + beta*y,
!>
!> where alpha and beta are scalars, x and y are n element vectors and
!> A is an n by n symmetric band matrix, with k super-diagonals.
!> \endverbatim
!
!  Arguments:
!  ==========
!
!> \param[in] UPLO
!> \verbatim
!>          UPLO is CHARACTER*1
!>           On entry, UPLO specifies whether the upper or lower
!>           triangular part of the band matrix A is being supplied as
!>           follows:
!>
!>              UPLO = 'U' or 'u'   The upper triangular part of A is
!>                                  being supplied.
!>
!>              UPLO = 'L' or 'l'   The lower triangular part of A is
!>                                  being supplied.
!> \endverbatim
!>
!> \param[in] N
!> \verbatim
!>          N is INTEGER
!>           On entry, N specifies the order of the matrix A.
!>           N must be at least zero.
!> \endverbatim
!>
!> \param[in] K
!> \verbatim
!>          K is INTEGER
!>           On entry, K specifies the number of super-diagonals of the
!>           matrix A. K must satisfy  0 .le. K.
!> \endverbatim
!>
!> \param[in] ALPHA
!> \verbatim
!>          ALPHA is DOUBLE PRECISION.
!>           On entry, ALPHA specifies the scalar alpha.
!> \endverbatim
!>
!> \param[in] A
!> \verbatim
!>          A is DOUBLE PRECISION array, dimension ( LDA, N )
!>           Before entry with UPLO = 'U' or 'u', the leading ( k + 1 )
!>           by n part of the array A must contain the upper triangular
!>           band part of the symmetric matrix, supplied column by
!>           column, with the leading diagonal of the matrix in row
!>           ( k + 1 ) of the array, the first super-diagonal starting at
!>           position 2 in row k, and so on. The top left k by k triangle
!>           of the array A is not referenced.
!>           The following program segment will transfer the upper
!>           triangular part of a symmetric band matrix from conventional
!>           full matrix storage to band storage:
!>
!>                 DO 20, J = 1, N
!>                    M = K + 1 - J
!>                    DO 10, I = MAX( 1, J - K ), J
!>                       A( M + I, J ) = matrix( I, J )
!>              10    CONTINUE
!>              20 CONTINUE
!>
!>           Before entry with UPLO = 'L' or 'l', the leading ( k + 1 )
!>           by n part of the array A must contain the lower triangular
!>           band part of the symmetric matrix, supplied column by
!>           column, with the leading diagonal of the matrix in row 1 of
!>           the array, the first sub-diagonal starting at position 1 in
!>           row 2, and so on. The bottom right k by k triangle of the
!>           array A is not referenced.
!>           The following program segment will transfer the lower
!>           triangular part of a symmetric band matrix from conventional
!>           full matrix storage to band storage:
!>
!>                 DO 20, J = 1, N
!>                    M = 1 - J
!>                    DO 10, I = J, MIN( N, J + K )
!>                       A( M + I, J ) = matrix( I, J )
!>              10    CONTINUE
!>              20 CONTINUE
!> \endverbatim
!>
!> \param[in] LDA
!> \verbatim
!>          LDA is INTEGER
!>           On entry, LDA specifies the first dimension of A as declared
!>           in the calling (sub) program. LDA must be at least
!>           ( k + 1 ).
!> \endverbatim
!>
!> \param[in] X
!> \verbatim
!>          X is DOUBLE PRECISION array, dimension at least
!>           ( 1 + ( n - 1 )*abs( INCX ) ).
!>           Before entry, the incremented array X must contain the
!>           vector x.
!> \endverbatim
!>
!> \param[in] INCX
!> \verbatim
!>          INCX is INTEGER
!>           On entry, INCX specifies the increment for the elements of
!>           X. INCX must not be zero.
!> \endverbatim
!>
!> \param[in] BETA
!> \verbatim
!>          BETA is DOUBLE PRECISION.
!>           On entry, BETA specifies the scalar beta.
!> \endverbatim
!>
!> \param[in,out] Y
!> \verbatim
!>          Y is DOUBLE PRECISION array, dimension at least
!>           ( 1 + ( n - 1 )*abs( INCY ) ).
!>           Before entry, the incremented array Y must contain the
!>           vector y. On exit, Y is overwritten by the updated vector y.
!> \endverbatim
!>
!> \param[in] INCY
!> \verbatim
!>          INCY is INTEGER
!>           On entry, INCY specifies the increment for the elements of
!>           Y. INCY must not be zero.
!> \endverbatim
!
!  Authors:
!  ========
!
!> \author Univ. of Tennessee
!> \author Univ. of California Berkeley
!> \author Univ. of Colorado Denver
!> \author NAG Ltd.
!
!> \date December 2016
!
!> \ingroup double_blas_level2
!
!> \par Further Details:
!  =====================
!>
!> \verbatim
!>
!>  Level 2 Blas routine.
!>  The vector and matrix arguments are not referenced when N = 0, or M = 0
!>
!>  -- Written on 22-October-1986.
!>     Jack Dongarra, Argonne National Lab.
!>     Jeremy Du Croz, Nag Central Office.
!>     Sven Hammarling, Nag Central Office.
!>     Richard Hanson, Sandia National Labs.
!> \endverbatim
!>
!  =====================================================================
!
!  -- Reference BLAS level2 routine (version 3.7.0) --
!  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
!  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
!     December 2016
!
!     .. Scalar Arguments ..
!     ..
!     .. Array Arguments ..
!     ..
!
!  =====================================================================
!
!     .. Parameters ..
!     ..
!     .. Local Scalars ..
!     ..
!     .. External Functions ..
!     ..
!     .. External Subroutines ..
!     ..
!     .. Intrinsic Functions ..
!     ..
!
!     Test the input parameters.
!
!
!     Quick return if possible.
!
!
!     Set up the start points in  X  and  Y.
!
!
!     Start the operations. In this version the elements of the array A
!     are accessed sequentially with one pass through A.
!
!     First form  y := beta*y.
!
!
!        Form  y  when upper triangle of A is stored.
!
!
!        Form  y  when lower triangle of A is stored.
!
!
!
!     End of DSBMV .
!
! END
use M_blas, only : dsbmv_=>DSBMV
implicit none
      DOUBLE PRECISION ALPHA,BETA
      INTEGER INCX,INCY,K,LDA,N
      CHARACTER UPLO
      DOUBLE PRECISION A(LDA,*),X(*),Y(*)
    call DSBMV_(UPLO,N,K,ALPHA,A,LDA,X,INCX,BETA,Y,INCY)
end subroutine DSBMV

subroutine DSCAL(N,DA,DX,INCX)
! COMMENT --file dscal.3m_blas.man
!> \brief \b DSCAL
!
!  =========== DOCUMENTATION ===========
!
! Online html documentation available at
!            http://www.netlib.org/lapack/explore-html/
!
!  Definition:
!  ===========
!
!       SUBROUTINE DSCAL(N,DA,DX,INCX)
!
!       .. Scalar Arguments ..
!       DOUBLE PRECISION DA
!       INTEGER INCX,N
!       ..
!       .. Array Arguments ..
!       DOUBLE PRECISION DX(*)
!       ..
!
!
!> \par Purpose:
!  =============
!>
!> \verbatim
!>
!>    DSCAL scales a vector by a constant.
!>    uses unrolled loops for increment equal to 1.
!> \endverbatim
!
!  Arguments:
!  ==========
!
!> \param[in] N
!> \verbatim
!>          N is INTEGER
!>         number of elements in input vector(s)
!> \endverbatim
!>
!> \param[in] DA
!> \verbatim
!>          DA is DOUBLE PRECISION
!>           On entry, DA specifies the scalar alpha.
!> \endverbatim
!>
!> \param[in,out] DX
!> \verbatim
!>          DX is DOUBLE PRECISION array, dimension ( 1 + ( N - 1 )*abs( INCX ) )
!> \endverbatim
!>
!> \param[in] INCX
!> \verbatim
!>          INCX is INTEGER
!>         storage spacing between elements of DX
!> \endverbatim
!
!  Authors:
!  ========
!
!> \author Univ. of Tennessee
!> \author Univ. of California Berkeley
!> \author Univ. of Colorado Denver
!> \author NAG Ltd.
!
!> \date November 2017
!
!> \ingroup double_blas_level1
!
!> \par Further Details:
!  =====================
!>
!> \verbatim
!>
!>     jack dongarra, linpack, 3/11/78.
!>     modified 3/93 to return if incx .le. 0.
!>     modified 12/3/93, array(1) declarations changed to array(*)
!> \endverbatim
!>
!  =====================================================================
!
!  -- Reference BLAS level1 routine (version 3.8.0) --
!  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
!  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
!     November 2017
!
!     .. Scalar Arguments ..
!     ..
!     .. Array Arguments ..
!     ..
!
!  =====================================================================
!
!     .. Local Scalars ..
!     ..
!     .. Intrinsic Functions ..
!     ..
!
!        code for increment equal to 1
!
!
!        clean-up loop
!
!
!        code for increment not equal to 1
!
! END
use M_blas, only : dscal_=>DSCAL
implicit none
      DOUBLE PRECISION DA
      INTEGER INCX,N
      DOUBLE PRECISION DX(*)
    call DSCAL_(N,DA,DX,INCX)
end subroutine DSCAL

 DOUBLE PRECISION FUNCTION DSDOT(N,SX,INCX,SY,INCY)
! COMMENT --file dsdot.3m_blas.man
!> \brief \b DSDOT
!
!  =========== DOCUMENTATION ===========
!
! Online html documentation available at
!            http://www.netlib.org/lapack/explore-html/
!
!  Definition:
!  ===========
!
!       DOUBLE PRECISION FUNCTION DSDOT(N,SX,INCX,SY,INCY)
!
!       .. Scalar Arguments ..
!       INTEGER INCX,INCY,N
!       ..
!       .. Array Arguments ..
!       REAL SX(*),SY(*)
!       ..
!
!    AUTHORS
!    =======
!    Lawson, C. L., (JPL), Hanson, R. J., (SNLA),
!    Kincaid, D. R., (U. of Texas), Krogh, F. T., (JPL)
!
!
!> \par Purpose:
!  =============
!>
!> \verbatim
!>
!> Compute the inner product of two vectors with extended
!> precision accumulation and result.
!>
!> Returns D.P. dot product accumulated in D.P., for S.P. SX and SY
!> DSDOT = sum for I = 0 to N-1 of  SX(LX+I*INCX) * SY(LY+I*INCY),
!> where LX = 1 if INCX .GE. 0, else LX = 1+(1-N)*INCX, and LY is
!> defined in a similar way using INCY.
!> \endverbatim
!
!  Arguments:
!  ==========
!
!> \param[in] N
!> \verbatim
!>          N is INTEGER
!>         number of elements in input vector(s)
!> \endverbatim
!>
!> \param[in] SX
!> \verbatim
!>          SX is REAL array, dimension(N)
!>         single precision vector with N elements
!> \endverbatim
!>
!> \param[in] INCX
!> \verbatim
!>          INCX is INTEGER
!>          storage spacing between elements of SX
!> \endverbatim
!>
!> \param[in] SY
!> \verbatim
!>          SY is REAL array, dimension(N)
!>         single precision vector with N elements
!> \endverbatim
!>
!> \param[in] INCY
!> \verbatim
!>          INCY is INTEGER
!>         storage spacing between elements of SY
!> \endverbatim
!>
!> \result DSDOT
!> \verbatim
!>          DSDOT is DOUBLE PRECISION
!>         DSDOT  double precision dot product (zero if N.LE.0)
!> \endverbatim
!
!  Authors:
!  ========
!
!> \author Univ. of Tennessee
!> \author Univ. of California Berkeley
!> \author Univ. of Colorado Denver
!> \author NAG Ltd.
!
!> \date December 2016
!
!> \ingroup double_blas_level1
!
!> \par Further Details:
!  =====================
!>
!> \verbatim
!> \endverbatim
!
!> \par References:
!  ================
!>
!> \verbatim
!>
!>
!>  C. L. Lawson, R. J. Hanson, D. R. Kincaid and F. T.
!>  Krogh, Basic linear algebra subprograms for Fortran
!>  usage, Algorithm No. 539, Transactions on Mathematical
!>  Software 5, 3 (September 1979), pp. 308-323.
!>
!>  REVISION HISTORY  (YYMMDD)
!>
!>  791001  DATE WRITTEN
!>  890831  Modified array declarations.  (WRB)
!>  890831  REVISION DATE from Version 3.2
!>  891214  Prologue converted to Version 4.0 format.  (BAB)
!>  920310  Corrected definition of LX in DESCRIPTION.  (WRB)
!>  920501  Reformatted the REFERENCES section.  (WRB)
!>  070118  Reformat to LAPACK style (JL)
!> \endverbatim
!>
!  =====================================================================
!
!  -- Reference BLAS level1 routine (version 3.7.0) --
!  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
!  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
!     December 2016
!
!     .. Scalar Arguments ..
!     ..
!     .. Array Arguments ..
!     ..
!
!  Authors:
!  ========
!  Lawson, C. L., (JPL), Hanson, R. J., (SNLA),
!  Kincaid, D. R., (U. of Texas), Krogh, F. T., (JPL)
!
!  =====================================================================
!
!     .. Local Scalars ..
!     ..
!     .. Intrinsic Functions ..
!     ..
!
!     Code for equal, positive, non-unit increments.
!
!
!     Code for unequal or nonpositive increments.
!
! END
use M_blas, only : dsdot_=>DSDOT
implicit none
      INTEGER INCX,INCY,N
      REAL SX(*),SY(*)
      dsdot=DSDOT_(N,SX,INCX,SY,INCY)
      END FUNCTION DSDOT

subroutine DSPMV(UPLO,N,ALPHA,AP,X,INCX,BETA,Y,INCY)
! COMMENT --file dspmv.3m_blas.man
!> \brief \b DSPMV
!
!  =========== DOCUMENTATION ===========
!
! Online html documentation available at
!            http://www.netlib.org/lapack/explore-html/
!
!  Definition:
!  ===========
!
!       SUBROUTINE DSPMV(UPLO,N,ALPHA,AP,X,INCX,BETA,Y,INCY)
!
!       .. Scalar Arguments ..
!       DOUBLE PRECISION ALPHA,BETA
!       INTEGER INCX,INCY,N
!       CHARACTER UPLO
!       ..
!       .. Array Arguments ..
!       DOUBLE PRECISION AP(*),X(*),Y(*)
!       ..
!
!
!> \par Purpose:
!  =============
!>
!> \verbatim
!>
!> DSPMV  performs the matrix-vector operation
!>
!>    y := alpha*A*x + beta*y,
!>
!> where alpha and beta are scalars, x and y are n element vectors and
!> A is an n by n symmetric matrix, supplied in packed form.
!> \endverbatim
!
!  Arguments:
!  ==========
!
!> \param[in] UPLO
!> \verbatim
!>          UPLO is CHARACTER*1
!>           On entry, UPLO specifies whether the upper or lower
!>           triangular part of the matrix A is supplied in the packed
!>           array AP as follows:
!>
!>              UPLO = 'U' or 'u'   The upper triangular part of A is
!>                                  supplied in AP.
!>
!>              UPLO = 'L' or 'l'   The lower triangular part of A is
!>                                  supplied in AP.
!> \endverbatim
!>
!> \param[in] N
!> \verbatim
!>          N is INTEGER
!>           On entry, N specifies the order of the matrix A.
!>           N must be at least zero.
!> \endverbatim
!>
!> \param[in] ALPHA
!> \verbatim
!>          ALPHA is DOUBLE PRECISION.
!>           On entry, ALPHA specifies the scalar alpha.
!> \endverbatim
!>
!> \param[in] AP
!> \verbatim
!>          AP is DOUBLE PRECISION array, dimension at least
!>           ( ( n*( n + 1 ) )/2 ).
!>           Before entry with UPLO = 'U' or 'u', the array AP must
!>           contain the upper triangular part of the symmetric matrix
!>           packed sequentially, column by column, so that AP( 1 )
!>           contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 )
!>           and a( 2, 2 ) respectively, and so on.
!>           Before entry with UPLO = 'L' or 'l', the array AP must
!>           contain the lower triangular part of the symmetric matrix
!>           packed sequentially, column by column, so that AP( 1 )
!>           contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 )
!>           and a( 3, 1 ) respectively, and so on.
!> \endverbatim
!>
!> \param[in] X
!> \verbatim
!>          X is DOUBLE PRECISION array, dimension at least
!>           ( 1 + ( n - 1 )*abs( INCX ) ).
!>           Before entry, the incremented array X must contain the n
!>           element vector x.
!> \endverbatim
!>
!> \param[in] INCX
!> \verbatim
!>          INCX is INTEGER
!>           On entry, INCX specifies the increment for the elements of
!>           X. INCX must not be zero.
!> \endverbatim
!>
!> \param[in] BETA
!> \verbatim
!>          BETA is DOUBLE PRECISION.
!>           On entry, BETA specifies the scalar beta. When BETA is
!>           supplied as zero then Y need not be set on input.
!> \endverbatim
!>
!> \param[in,out] Y
!> \verbatim
!>          Y is DOUBLE PRECISION array, dimension at least
!>           ( 1 + ( n - 1 )*abs( INCY ) ).
!>           Before entry, the incremented array Y must contain the n
!>           element vector y. On exit, Y is overwritten by the updated
!>           vector y.
!> \endverbatim
!>
!> \param[in] INCY
!> \verbatim
!>          INCY is INTEGER
!>           On entry, INCY specifies the increment for the elements of
!>           Y. INCY must not be zero.
!> \endverbatim
!
!  Authors:
!  ========
!
!> \author Univ. of Tennessee
!> \author Univ. of California Berkeley
!> \author Univ. of Colorado Denver
!> \author NAG Ltd.
!
!> \date December 2016
!
!> \ingroup double_blas_level2
!
!> \par Further Details:
!  =====================
!>
!> \verbatim
!>
!>  Level 2 Blas routine.
!>  The vector and matrix arguments are not referenced when N = 0, or M = 0
!>
!>  -- Written on 22-October-1986.
!>     Jack Dongarra, Argonne National Lab.
!>     Jeremy Du Croz, Nag Central Office.
!>     Sven Hammarling, Nag Central Office.
!>     Richard Hanson, Sandia National Labs.
!> \endverbatim
!>
!  =====================================================================
!
!  -- Reference BLAS level2 routine (version 3.7.0) --
!  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
!  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
!     December 2016
!
!     .. Scalar Arguments ..
!     ..
!     .. Array Arguments ..
!     ..
!
!  =====================================================================
!
!     .. Parameters ..
!     ..
!     .. Local Scalars ..
!     ..
!     .. External Functions ..
!     ..
!     .. External Subroutines ..
!     ..
!
!     Test the input parameters.
!
!
!     Quick return if possible.
!
!
!     Set up the start points in  X  and  Y.
!
!
!     Start the operations. In this version the elements of the array AP
!     are accessed sequentially with one pass through AP.
!
!     First form  y := beta*y.
!
!
!        Form  y  when AP contains the upper triangle.
!
!
!        Form  y  when AP contains the lower triangle.
!
!
!
!     End of DSPMV .
!
! END
use M_blas, only : dspmv_=>DSPMV
implicit none
      DOUBLE PRECISION ALPHA,BETA
      INTEGER INCX,INCY,N
      CHARACTER UPLO
      DOUBLE PRECISION AP(*),X(*),Y(*)
    call DSPMV_(UPLO,N,ALPHA,AP,X,INCX,BETA,Y,INCY)
end subroutine DSPMV

subroutine DSPR2(UPLO,N,ALPHA,X,INCX,Y,INCY,AP)
! COMMENT --file dspr2.3m_blas.man
!> \brief \b DSPR2
!
!  =========== DOCUMENTATION ===========
!
! Online html documentation available at
!            http://www.netlib.org/lapack/explore-html/
!
!  Definition:
!  ===========
!
!       SUBROUTINE DSPR2(UPLO,N,ALPHA,X,INCX,Y,INCY,AP)
!
!       .. Scalar Arguments ..
!       DOUBLE PRECISION ALPHA
!       INTEGER INCX,INCY,N
!       CHARACTER UPLO
!       ..
!       .. Array Arguments ..
!       DOUBLE PRECISION AP(*),X(*),Y(*)
!       ..
!
!
!> \par Purpose:
!  =============
!>
!> \verbatim
!>
!> DSPR2  performs the symmetric rank 2 operation
!>
!>    A := alpha*x*y**T + alpha*y*x**T + A,
!>
!> where alpha is a scalar, x and y are n element vectors and A is an
!> n by n symmetric matrix, supplied in packed form.
!> \endverbatim
!
!  Arguments:
!  ==========
!
!> \param[in] UPLO
!> \verbatim
!>          UPLO is CHARACTER*1
!>           On entry, UPLO specifies whether the upper or lower
!>           triangular part of the matrix A is supplied in the packed
!>           array AP as follows:
!>
!>              UPLO = 'U' or 'u'   The upper triangular part of A is
!>                                  supplied in AP.
!>
!>              UPLO = 'L' or 'l'   The lower triangular part of A is
!>                                  supplied in AP.
!> \endverbatim
!>
!> \param[in] N
!> \verbatim
!>          N is INTEGER
!>           On entry, N specifies the order of the matrix A.
!>           N must be at least zero.
!> \endverbatim
!>
!> \param[in] ALPHA
!> \verbatim
!>          ALPHA is DOUBLE PRECISION.
!>           On entry, ALPHA specifies the scalar alpha.
!> \endverbatim
!>
!> \param[in] X
!> \verbatim
!>          X is DOUBLE PRECISION array, dimension at least
!>           ( 1 + ( n - 1 )*abs( INCX ) ).
!>           Before entry, the incremented array X must contain the n
!>           element vector x.
!> \endverbatim
!>
!> \param[in] INCX
!> \verbatim
!>          INCX is INTEGER
!>           On entry, INCX specifies the increment for the elements of
!>           X. INCX must not be zero.
!> \endverbatim
!>
!> \param[in] Y
!> \verbatim
!>          Y is DOUBLE PRECISION array, dimension at least
!>           ( 1 + ( n - 1 )*abs( INCY ) ).
!>           Before entry, the incremented array Y must contain the n
!>           element vector y.
!> \endverbatim
!>
!> \param[in] INCY
!> \verbatim
!>          INCY is INTEGER
!>           On entry, INCY specifies the increment for the elements of
!>           Y. INCY must not be zero.
!> \endverbatim
!>
!> \param[in,out] AP
!> \verbatim
!>          AP is DOUBLE PRECISION array, dimension at least
!>           ( ( n*( n + 1 ) )/2 ).
!>           Before entry with  UPLO = 'U' or 'u', the array AP must
!>           contain the upper triangular part of the symmetric matrix
!>           packed sequentially, column by column, so that AP( 1 )
!>           contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 )
!>           and a( 2, 2 ) respectively, and so on. On exit, the array
!>           AP is overwritten by the upper triangular part of the
!>           updated matrix.
!>           Before entry with UPLO = 'L' or 'l', the array AP must
!>           contain the lower triangular part of the symmetric matrix
!>           packed sequentially, column by column, so that AP( 1 )
!>           contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 )
!>           and a( 3, 1 ) respectively, and so on. On exit, the array
!>           AP is overwritten by the lower triangular part of the
!>           updated matrix.
!> \endverbatim
!
!  Authors:
!  ========
!
!> \author Univ. of Tennessee
!> \author Univ. of California Berkeley
!> \author Univ. of Colorado Denver
!> \author NAG Ltd.
!
!> \date December 2016
!
!> \ingroup double_blas_level2
!
!> \par Further Details:
!  =====================
!>
!> \verbatim
!>
!>  Level 2 Blas routine.
!>
!>  -- Written on 22-October-1986.
!>     Jack Dongarra, Argonne National Lab.
!>     Jeremy Du Croz, Nag Central Office.
!>     Sven Hammarling, Nag Central Office.
!>     Richard Hanson, Sandia National Labs.
!> \endverbatim
!>
!  =====================================================================
!
!  -- Reference BLAS level2 routine (version 3.7.0) --
!  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
!  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
!     December 2016
!
!     .. Scalar Arguments ..
!     ..
!     .. Array Arguments ..
!     ..
!
!  =====================================================================
!
!     .. Parameters ..
!     ..
!     .. Local Scalars ..
!     ..
!     .. External Functions ..
!     ..
!     .. External Subroutines ..
!     ..
!
!     Test the input parameters.
!
!
!     Quick return if possible.
!
!
!     Set up the start points in X and Y if the increments are not both
!     unity.
!
!
!     Start the operations. In this version the elements of the array AP
!     are accessed sequentially with one pass through AP.
!
!
!        Form  A  when upper triangle is stored in AP.
!
!
!        Form  A  when lower triangle is stored in AP.
!
!
!
!     End of DSPR2 .
!
! END
use M_blas, only : dspr2_=>DSPR2
implicit none
      DOUBLE PRECISION ALPHA
      INTEGER INCX,INCY,N
      CHARACTER UPLO
      DOUBLE PRECISION AP(*),X(*),Y(*)
    call DSPR2_(UPLO,N,ALPHA,X,INCX,Y,INCY,AP)
end subroutine DSPR2

subroutine DSPR(UPLO,N,ALPHA,X,INCX,AP)
! COMMENT --file dspr.3m_blas.man
!> \brief \b DSPR
!
!  =========== DOCUMENTATION ===========
!
! Online html documentation available at
!            http://www.netlib.org/lapack/explore-html/
!
!  Definition:
!  ===========
!
!       SUBROUTINE DSPR(UPLO,N,ALPHA,X,INCX,AP)
!
!       .. Scalar Arguments ..
!       DOUBLE PRECISION ALPHA
!       INTEGER INCX,N
!       CHARACTER UPLO
!       ..
!       .. Array Arguments ..
!       DOUBLE PRECISION AP(*),X(*)
!       ..
!
!
!> \par Purpose:
!  =============
!>
!> \verbatim
!>
!> DSPR    performs the symmetric rank 1 operation
!>
!>    A := alpha*x*x**T + A,
!>
!> where alpha is a real scalar, x is an n element vector and A is an
!> n by n symmetric matrix, supplied in packed form.
!> \endverbatim
!
!  Arguments:
!  ==========
!
!> \param[in] UPLO
!> \verbatim
!>          UPLO is CHARACTER*1
!>           On entry, UPLO specifies whether the upper or lower
!>           triangular part of the matrix A is supplied in the packed
!>           array AP as follows:
!>
!>              UPLO = 'U' or 'u'   The upper triangular part of A is
!>                                  supplied in AP.
!>
!>              UPLO = 'L' or 'l'   The lower triangular part of A is
!>                                  supplied in AP.
!> \endverbatim
!>
!> \param[in] N
!> \verbatim
!>          N is INTEGER
!>           On entry, N specifies the order of the matrix A.
!>           N must be at least zero.
!> \endverbatim
!>
!> \param[in] ALPHA
!> \verbatim
!>          ALPHA is DOUBLE PRECISION.
!>           On entry, ALPHA specifies the scalar alpha.
!> \endverbatim
!>
!> \param[in] X
!> \verbatim
!>          X is DOUBLE PRECISION array, dimension at least
!>           ( 1 + ( n - 1 )*abs( INCX ) ).
!>           Before entry, the incremented array X must contain the n
!>           element vector x.
!> \endverbatim
!>
!> \param[in] INCX
!> \verbatim
!>          INCX is INTEGER
!>           On entry, INCX specifies the increment for the elements of
!>           X. INCX must not be zero.
!> \endverbatim
!>
!> \param[in,out] AP
!> \verbatim
!>          AP is DOUBLE PRECISION array, dimension at least
!>           ( ( n*( n + 1 ) )/2 ).
!>           Before entry with  UPLO = 'U' or 'u', the array AP must
!>           contain the upper triangular part of the symmetric matrix
!>           packed sequentially, column by column, so that AP( 1 )
!>           contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 )
!>           and a( 2, 2 ) respectively, and so on. On exit, the array
!>           AP is overwritten by the upper triangular part of the
!>           updated matrix.
!>           Before entry with UPLO = 'L' or 'l', the array AP must
!>           contain the lower triangular part of the symmetric matrix
!>           packed sequentially, column by column, so that AP( 1 )
!>           contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 )
!>           and a( 3, 1 ) respectively, and so on. On exit, the array
!>           AP is overwritten by the lower triangular part of the
!>           updated matrix.
!> \endverbatim
!
!  Authors:
!  ========
!
!> \author Univ. of Tennessee
!> \author Univ. of California Berkeley
!> \author Univ. of Colorado Denver
!> \author NAG Ltd.
!
!> \date December 2016
!
!> \ingroup double_blas_level2
!
!> \par Further Details:
!  =====================
!>
!> \verbatim
!>
!>  Level 2 Blas routine.
!>
!>  -- Written on 22-October-1986.
!>     Jack Dongarra, Argonne National Lab.
!>     Jeremy Du Croz, Nag Central Office.
!>     Sven Hammarling, Nag Central Office.
!>     Richard Hanson, Sandia National Labs.
!> \endverbatim
!>
!  =====================================================================
!
!  -- Reference BLAS level2 routine (version 3.7.0) --
!  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
!  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
!     December 2016
!
!     .. Scalar Arguments ..
!     ..
!     .. Array Arguments ..
!     ..
!
!  =====================================================================
!
!     .. Parameters ..
!     ..
!     .. Local Scalars ..
!     ..
!     .. External Functions ..
!     ..
!     .. External Subroutines ..
!     ..
!
!     Test the input parameters.
!
!
!     Quick return if possible.
!
!
!     Set the start point in X if the increment is not unity.
!
!
!     Start the operations. In this version the elements of the array AP
!     are accessed sequentially with one pass through AP.
!
!
!        Form  A  when upper triangle is stored in AP.
!
!
!        Form  A  when lower triangle is stored in AP.
!
!
!
!     End of DSPR  .
!
! END
use M_blas, only : dspr_=>DSPR
implicit none
      DOUBLE PRECISION ALPHA
      INTEGER INCX,N
      CHARACTER UPLO
      DOUBLE PRECISION AP(*),X(*)
    call DSPR_(UPLO,N,ALPHA,X,INCX,AP)
end subroutine DSPR

subroutine DSWAP(N,DX,INCX,DY,INCY)
! COMMENT --file dswap.3m_blas.man
!> \brief \b DSWAP
!
!  =========== DOCUMENTATION ===========
!
! Online html documentation available at
!            http://www.netlib.org/lapack/explore-html/
!
!  Definition:
!  ===========
!
!       SUBROUTINE DSWAP(N,DX,INCX,DY,INCY)
!
!       .. Scalar Arguments ..
!       INTEGER INCX,INCY,N
!       ..
!       .. Array Arguments ..
!       DOUBLE PRECISION DX(*),DY(*)
!       ..
!
!
!> \par Purpose:
!  =============
!>
!> \verbatim
!>
!>    DSWAP interchanges two vectors.
!>    uses unrolled loops for increments equal to 1.
!> \endverbatim
!
!  Arguments:
!  ==========
!
!> \param[in] N
!> \verbatim
!>          N is INTEGER
!>         number of elements in input vector(s)
!> \endverbatim
!>
!> \param[in,out] DX
!> \verbatim
!>          DX is DOUBLE PRECISION array, dimension ( 1 + ( N - 1 )*abs( INCX ) )
!> \endverbatim
!>
!> \param[in] INCX
!> \verbatim
!>          INCX is INTEGER
!>         storage spacing between elements of DX
!> \endverbatim
!>
!> \param[in,out] DY
!> \verbatim
!>          DY is DOUBLE PRECISION array, dimension ( 1 + ( N - 1 )*abs( INCY ) )
!> \endverbatim
!>
!> \param[in] INCY
!> \verbatim
!>          INCY is INTEGER
!>         storage spacing between elements of DY
!> \endverbatim
!
!  Authors:
!  ========
!
!> \author Univ. of Tennessee
!> \author Univ. of California Berkeley
!> \author Univ. of Colorado Denver
!> \author NAG Ltd.
!
!> \date November 2017
!
!> \ingroup double_blas_level1
!
!> \par Further Details:
!  =====================
!>
!> \verbatim
!>
!>     jack dongarra, linpack, 3/11/78.
!>     modified 12/3/93, array(1) declarations changed to array(*)
!> \endverbatim
!>
!  =====================================================================
!
!  -- Reference BLAS level1 routine (version 3.8.0) --
!  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
!  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
!     November 2017
!
!     .. Scalar Arguments ..
!     ..
!     .. Array Arguments ..
!     ..
!
!  =====================================================================
!
!     .. Local Scalars ..
!     ..
!     .. Intrinsic Functions ..
!     ..
!
!       code for both increments equal to 1
!
!
!       clean-up loop
!
!
!       code for unequal increments or equal increments not equal
!         to 1
!
! END
use M_blas, only : dswap_=>DSWAP
implicit none
      INTEGER INCX,INCY,N
      DOUBLE PRECISION DX(*),DY(*)
    call DSWAP_(N,DX,INCX,DY,INCY)
end subroutine DSWAP

subroutine DSYMM(SIDE,UPLO,M,N,ALPHA,A,LDA,B,LDB,BETA,C,LDC)
! COMMENT --file dsymm.3m_blas.man
!> \brief \b DSYMM
!
!  =========== DOCUMENTATION ===========
!
! Online html documentation available at
!            http://www.netlib.org/lapack/explore-html/
!
!  Definition:
!  ===========
!
!       SUBROUTINE DSYMM(SIDE,UPLO,M,N,ALPHA,A,LDA,B,LDB,BETA,C,LDC)
!
!       .. Scalar Arguments ..
!       DOUBLE PRECISION ALPHA,BETA
!       INTEGER LDA,LDB,LDC,M,N
!       CHARACTER SIDE,UPLO
!       ..
!       .. Array Arguments ..
!       DOUBLE PRECISION A(LDA,*),B(LDB,*),C(LDC,*)
!       ..
!
!
!> \par Purpose:
!  =============
!>
!> \verbatim
!>
!> DSYMM  performs one of the matrix-matrix operations
!>
!>    C := alpha*A*B + beta*C,
!>
!> or
!>
!>    C := alpha*B*A + beta*C,
!>
!> where alpha and beta are scalars,  A is a symmetric matrix and  B and
!> C are  m by n matrices.
!> \endverbatim
!
!  Arguments:
!  ==========
!
!> \param[in] SIDE
!> \verbatim
!>          SIDE is CHARACTER*1
!>           On entry,  SIDE  specifies whether  the  symmetric matrix  A
!>           appears on the  left or right  in the  operation as follows:
!>
!>              SIDE = 'L' or 'l'   C := alpha*A*B + beta*C,
!>
!>              SIDE = 'R' or 'r'   C := alpha*B*A + beta*C,
!> \endverbatim
!>
!> \param[in] UPLO
!> \verbatim
!>          UPLO is CHARACTER*1
!>           On  entry,   UPLO  specifies  whether  the  upper  or  lower
!>           triangular  part  of  the  symmetric  matrix   A  is  to  be
!>           referenced as follows:
!>
!>              UPLO = 'U' or 'u'   Only the upper triangular part of the
!>                                  symmetric matrix is to be referenced.
!>
!>              UPLO = 'L' or 'l'   Only the lower triangular part of the
!>                                  symmetric matrix is to be referenced.
!> \endverbatim
!>
!> \param[in] M
!> \verbatim
!>          M is INTEGER
!>           On entry,  M  specifies the number of rows of the matrix  C.
!>           M  must be at least zero.
!> \endverbatim
!>
!> \param[in] N
!> \verbatim
!>          N is INTEGER
!>           On entry, N specifies the number of columns of the matrix C.
!>           N  must be at least zero.
!> \endverbatim
!>
!> \param[in] ALPHA
!> \verbatim
!>          ALPHA is DOUBLE PRECISION.
!>           On entry, ALPHA specifies the scalar alpha.
!> \endverbatim
!>
!> \param[in] A
!> \verbatim
!>          A is DOUBLE PRECISION array, dimension ( LDA, ka ), where ka is
!>           m  when  SIDE = 'L' or 'l'  and is  n otherwise.
!>           Before entry  with  SIDE = 'L' or 'l',  the  m by m  part of
!>           the array  A  must contain the  symmetric matrix,  such that
!>           when  UPLO = 'U' or 'u', the leading m by m upper triangular
!>           part of the array  A  must contain the upper triangular part
!>           of the  symmetric matrix and the  strictly  lower triangular
!>           part of  A  is not referenced,  and when  UPLO = 'L' or 'l',
!>           the leading  m by m  lower triangular part  of the  array  A
!>           must  contain  the  lower triangular part  of the  symmetric
!>           matrix and the  strictly upper triangular part of  A  is not
!>           referenced.
!>           Before entry  with  SIDE = 'R' or 'r',  the  n by n  part of
!>           the array  A  must contain the  symmetric matrix,  such that
!>           when  UPLO = 'U' or 'u', the leading n by n upper triangular
!>           part of the array  A  must contain the upper triangular part
!>           of the  symmetric matrix and the  strictly  lower triangular
!>           part of  A  is not referenced,  and when  UPLO = 'L' or 'l',
!>           the leading  n by n  lower triangular part  of the  array  A
!>           must  contain  the  lower triangular part  of the  symmetric
!>           matrix and the  strictly upper triangular part of  A  is not
!>           referenced.
!> \endverbatim
!>
!> \param[in] LDA
!> \verbatim
!>          LDA is INTEGER
!>           On entry, LDA specifies the first dimension of A as declared
!>           in the calling (sub) program.  When  SIDE = 'L' or 'l'  then
!>           LDA must be at least  max( 1, m ), otherwise  LDA must be at
!>           least  max( 1, n ).
!> \endverbatim
!>
!> \param[in] B
!> \verbatim
!>          B is DOUBLE PRECISION array, dimension ( LDB, N )
!>           Before entry, the leading  m by n part of the array  B  must
!>           contain the matrix B.
!> \endverbatim
!>
!> \param[in] LDB
!> \verbatim
!>          LDB is INTEGER
!>           On entry, LDB specifies the first dimension of B as declared
!>           in  the  calling  (sub)  program.   LDB  must  be  at  least
!>           max( 1, m ).
!> \endverbatim
!>
!> \param[in] BETA
!> \verbatim
!>          BETA is DOUBLE PRECISION.
!>           On entry,  BETA  specifies the scalar  beta.  When  BETA  is
!>           supplied as zero then C need not be set on input.
!> \endverbatim
!>
!> \param[in,out] C
!> \verbatim
!>          C is DOUBLE PRECISION array, dimension ( LDC, N )
!>           Before entry, the leading  m by n  part of the array  C must
!>           contain the matrix  C,  except when  beta  is zero, in which
!>           case C need not be set on entry.
!>           On exit, the array  C  is overwritten by the  m by n updated
!>           matrix.
!> \endverbatim
!>
!> \param[in] LDC
!> \verbatim
!>          LDC is INTEGER
!>           On entry, LDC specifies the first dimension of C as declared
!>           in  the  calling  (sub)  program.   LDC  must  be  at  least
!>           max( 1, m ).
!> \endverbatim
!
!  Authors:
!  ========
!
!> \author Univ. of Tennessee
!> \author Univ. of California Berkeley
!> \author Univ. of Colorado Denver
!> \author NAG Ltd.
!
!> \date December 2016
!
!> \ingroup double_blas_level3
!
!> \par Further Details:
!  =====================
!>
!> \verbatim
!>
!>  Level 3 Blas routine.
!>
!>  -- Written on 8-February-1989.
!>     Jack Dongarra, Argonne National Laboratory.
!>     Iain Duff, AERE Harwell.
!>     Jeremy Du Croz, Numerical Algorithms Group Ltd.
!>     Sven Hammarling, Numerical Algorithms Group Ltd.
!> \endverbatim
!>
!  =====================================================================
!
!  -- Reference BLAS level3 routine (version 3.7.0) --
!  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
!  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
!     December 2016
!
!     .. Scalar Arguments ..
!     ..
!     .. Array Arguments ..
!     ..
!
!  =====================================================================
!
!     .. External Functions ..
!     ..
!     .. External Subroutines ..
!     ..
!     .. Intrinsic Functions ..
!     ..
!     .. Local Scalars ..
!     ..
!     .. Parameters ..
!     ..
!
!     Set NROWA as the number of rows of A.
!
!
!     Test the input parameters.
!
!
!     Quick return if possible.
!
!
!     And when  alpha.eq.zero.
!
!
!     Start the operations.
!
!
!        Form  C := alpha*A*B + beta*C.
!
!
!        Form  C := alpha*B*A + beta*C.
!
!
!
!     End of DSYMM .
!
! END
use M_blas, only : dsymm_=>DSYMM
implicit none
      DOUBLE PRECISION ALPHA,BETA
      INTEGER LDA,LDB,LDC,M,N
      CHARACTER SIDE,UPLO
      DOUBLE PRECISION A(LDA,*),B(LDB,*),C(LDC,*)
    call DSYMM_(SIDE,UPLO,M,N,ALPHA,A,LDA,B,LDB,BETA,C,LDC)
end subroutine DSYMM

subroutine DSYMV(UPLO,N,ALPHA,A,LDA,X,INCX,BETA,Y,INCY)
! COMMENT --file dsymv.3m_blas.man
!> \brief \b DSYMV
!
!  =========== DOCUMENTATION ===========
!
! Online html documentation available at
!            http://www.netlib.org/lapack/explore-html/
!
!  Definition:
!  ===========
!
!       SUBROUTINE DSYMV(UPLO,N,ALPHA,A,LDA,X,INCX,BETA,Y,INCY)
!
!       .. Scalar Arguments ..
!       DOUBLE PRECISION ALPHA,BETA
!       INTEGER INCX,INCY,LDA,N
!       CHARACTER UPLO
!       ..
!       .. Array Arguments ..
!       DOUBLE PRECISION A(LDA,*),X(*),Y(*)
!       ..
!
!
!> \par Purpose:
!  =============
!>
!> \verbatim
!>
!> DSYMV  performs the matrix-vector  operation
!>
!>    y := alpha*A*x + beta*y,
!>
!> where alpha and beta are scalars, x and y are n element vectors and
!> A is an n by n symmetric matrix.
!> \endverbatim
!
!  Arguments:
!  ==========
!
!> \param[in] UPLO
!> \verbatim
!>          UPLO is CHARACTER*1
!>           On entry, UPLO specifies whether the upper or lower
!>           triangular part of the array A is to be referenced as
!>           follows:
!>
!>              UPLO = 'U' or 'u'   Only the upper triangular part of A
!>                                  is to be referenced.
!>
!>              UPLO = 'L' or 'l'   Only the lower triangular part of A
!>                                  is to be referenced.
!> \endverbatim
!>
!> \param[in] N
!> \verbatim
!>          N is INTEGER
!>           On entry, N specifies the order of the matrix A.
!>           N must be at least zero.
!> \endverbatim
!>
!> \param[in] ALPHA
!> \verbatim
!>          ALPHA is DOUBLE PRECISION.
!>           On entry, ALPHA specifies the scalar alpha.
!> \endverbatim
!>
!> \param[in] A
!> \verbatim
!>          A is DOUBLE PRECISION array, dimension ( LDA, N )
!>           Before entry with  UPLO = 'U' or 'u', the leading n by n
!>           upper triangular part of the array A must contain the upper
!>           triangular part of the symmetric matrix and the strictly
!>           lower triangular part of A is not referenced.
!>           Before entry with UPLO = 'L' or 'l', the leading n by n
!>           lower triangular part of the array A must contain the lower
!>           triangular part of the symmetric matrix and the strictly
!>           upper triangular part of A is not referenced.
!> \endverbatim
!>
!> \param[in] LDA
!> \verbatim
!>          LDA is INTEGER
!>           On entry, LDA specifies the first dimension of A as declared
!>           in the calling (sub) program. LDA must be at least
!>           max( 1, n ).
!> \endverbatim
!>
!> \param[in] X
!> \verbatim
!>          X is DOUBLE PRECISION array, dimension at least
!>           ( 1 + ( n - 1 )*abs( INCX ) ).
!>           Before entry, the incremented array X must contain the n
!>           element vector x.
!> \endverbatim
!>
!> \param[in] INCX
!> \verbatim
!>          INCX is INTEGER
!>           On entry, INCX specifies the increment for the elements of
!>           X. INCX must not be zero.
!> \endverbatim
!>
!> \param[in] BETA
!> \verbatim
!>          BETA is DOUBLE PRECISION.
!>           On entry, BETA specifies the scalar beta. When BETA is
!>           supplied as zero then Y need not be set on input.
!> \endverbatim
!>
!> \param[in,out] Y
!> \verbatim
!>          Y is DOUBLE PRECISION array, dimension at least
!>           ( 1 + ( n - 1 )*abs( INCY ) ).
!>           Before entry, the incremented array Y must contain the n
!>           element vector y. On exit, Y is overwritten by the updated
!>           vector y.
!> \endverbatim
!>
!> \param[in] INCY
!> \verbatim
!>          INCY is INTEGER
!>           On entry, INCY specifies the increment for the elements of
!>           Y. INCY must not be zero.
!> \endverbatim
!
!  Authors:
!  ========
!
!> \author Univ. of Tennessee
!> \author Univ. of California Berkeley
!> \author Univ. of Colorado Denver
!> \author NAG Ltd.
!
!> \date December 2016
!
!> \ingroup double_blas_level2
!
!> \par Further Details:
!  =====================
!>
!> \verbatim
!>
!>  Level 2 Blas routine.
!>  The vector and matrix arguments are not referenced when N = 0, or M = 0
!>
!>  -- Written on 22-October-1986.
!>     Jack Dongarra, Argonne National Lab.
!>     Jeremy Du Croz, Nag Central Office.
!>     Sven Hammarling, Nag Central Office.
!>     Richard Hanson, Sandia National Labs.
!> \endverbatim
!>
!  =====================================================================
!
!  -- Reference BLAS level2 routine (version 3.7.0) --
!  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
!  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
!     December 2016
!
!     .. Scalar Arguments ..
!     ..
!     .. Array Arguments ..
!     ..
!
!  =====================================================================
!
!     .. Parameters ..
!     ..
!     .. Local Scalars ..
!     ..
!     .. External Functions ..
!     ..
!     .. External Subroutines ..
!     ..
!     .. Intrinsic Functions ..
!     ..
!
!     Test the input parameters.
!
!
!     Quick return if possible.
!
!
!     Set up the start points in  X  and  Y.
!
!
!     Start the operations. In this version the elements of A are
!     accessed sequentially with one pass through the triangular part
!     of A.
!
!     First form  y := beta*y.
!
!
!        Form  y  when A is stored in upper triangle.
!
!
!        Form  y  when A is stored in lower triangle.
!
!
!
!     End of DSYMV .
!
! END
use M_blas, only : dsymv_=>DSYMV
implicit none
      DOUBLE PRECISION ALPHA,BETA
      INTEGER INCX,INCY,LDA,N
      CHARACTER UPLO
      DOUBLE PRECISION A(LDA,*),X(*),Y(*)
    call DSYMV_(UPLO,N,ALPHA,A,LDA,X,INCX,BETA,Y,INCY)
end subroutine DSYMV

subroutine DSYR2(UPLO,N,ALPHA,X,INCX,Y,INCY,A,LDA)
! COMMENT --file dsyr2.3m_blas.man
!> \brief \b DSYR2
!
!  =========== DOCUMENTATION ===========
!
! Online html documentation available at
!            http://www.netlib.org/lapack/explore-html/
!
!  Definition:
!  ===========
!
!       SUBROUTINE DSYR2(UPLO,N,ALPHA,X,INCX,Y,INCY,A,LDA)
!
!       .. Scalar Arguments ..
!       DOUBLE PRECISION ALPHA
!       INTEGER INCX,INCY,LDA,N
!       CHARACTER UPLO
!       ..
!       .. Array Arguments ..
!       DOUBLE PRECISION A(LDA,*),X(*),Y(*)
!       ..
!
!
!> \par Purpose:
!  =============
!>
!> \verbatim
!>
!> DSYR2  performs the symmetric rank 2 operation
!>
!>    A := alpha*x*y**T + alpha*y*x**T + A,
!>
!> where alpha is a scalar, x and y are n element vectors and A is an n
!> by n symmetric matrix.
!> \endverbatim
!
!  Arguments:
!  ==========
!
!> \param[in] UPLO
!> \verbatim
!>          UPLO is CHARACTER*1
!>           On entry, UPLO specifies whether the upper or lower
!>           triangular part of the array A is to be referenced as
!>           follows:
!>
!>              UPLO = 'U' or 'u'   Only the upper triangular part of A
!>                                  is to be referenced.
!>
!>              UPLO = 'L' or 'l'   Only the lower triangular part of A
!>                                  is to be referenced.
!> \endverbatim
!>
!> \param[in] N
!> \verbatim
!>          N is INTEGER
!>           On entry, N specifies the order of the matrix A.
!>           N must be at least zero.
!> \endverbatim
!>
!> \param[in] ALPHA
!> \verbatim
!>          ALPHA is DOUBLE PRECISION.
!>           On entry, ALPHA specifies the scalar alpha.
!> \endverbatim
!>
!> \param[in] X
!> \verbatim
!>          X is DOUBLE PRECISION array, dimension at least
!>           ( 1 + ( n - 1 )*abs( INCX ) ).
!>           Before entry, the incremented array X must contain the n
!>           element vector x.
!> \endverbatim
!>
!> \param[in] INCX
!> \verbatim
!>          INCX is INTEGER
!>           On entry, INCX specifies the increment for the elements of
!>           X. INCX must not be zero.
!> \endverbatim
!>
!> \param[in] Y
!> \verbatim
!>          Y is DOUBLE PRECISION array, dimension at least
!>           ( 1 + ( n - 1 )*abs( INCY ) ).
!>           Before entry, the incremented array Y must contain the n
!>           element vector y.
!> \endverbatim
!>
!> \param[in] INCY
!> \verbatim
!>          INCY is INTEGER
!>           On entry, INCY specifies the increment for the elements of
!>           Y. INCY must not be zero.
!> \endverbatim
!>
!> \param[in,out] A
!> \verbatim
!>          A is DOUBLE PRECISION array, dimension ( LDA, N )
!>           Before entry with  UPLO = 'U' or 'u', the leading n by n
!>           upper triangular part of the array A must contain the upper
!>           triangular part of the symmetric matrix and the strictly
!>           lower triangular part of A is not referenced. On exit, the
!>           upper triangular part of the array A is overwritten by the
!>           upper triangular part of the updated matrix.
!>           Before entry with UPLO = 'L' or 'l', the leading n by n
!>           lower triangular part of the array A must contain the lower
!>           triangular part of the symmetric matrix and the strictly
!>           upper triangular part of A is not referenced. On exit, the
!>           lower triangular part of the array A is overwritten by the
!>           lower triangular part of the updated matrix.
!> \endverbatim
!>
!> \param[in] LDA
!> \verbatim
!>          LDA is INTEGER
!>           On entry, LDA specifies the first dimension of A as declared
!>           in the calling (sub) program. LDA must be at least
!>           max( 1, n ).
!> \endverbatim
!
!  Authors:
!  ========
!
!> \author Univ. of Tennessee
!> \author Univ. of California Berkeley
!> \author Univ. of Colorado Denver
!> \author NAG Ltd.
!
!> \date December 2016
!
!> \ingroup double_blas_level2
!
!> \par Further Details:
!  =====================
!>
!> \verbatim
!>
!>  Level 2 Blas routine.
!>
!>  -- Written on 22-October-1986.
!>     Jack Dongarra, Argonne National Lab.
!>     Jeremy Du Croz, Nag Central Office.
!>     Sven Hammarling, Nag Central Office.
!>     Richard Hanson, Sandia National Labs.
!> \endverbatim
!>
!  =====================================================================
!
!  -- Reference BLAS level2 routine (version 3.7.0) --
!  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
!  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
!     December 2016
!
!     .. Scalar Arguments ..
!     ..
!     .. Array Arguments ..
!     ..
!
!  =====================================================================
!
!     .. Parameters ..
!     ..
!     .. Local Scalars ..
!     ..
!     .. External Functions ..
!     ..
!     .. External Subroutines ..
!     ..
!     .. Intrinsic Functions ..
!     ..
!
!     Test the input parameters.
!
!
!     Quick return if possible.
!
!
!     Set up the start points in X and Y if the increments are not both
!     unity.
!
!
!     Start the operations. In this version the elements of A are
!     accessed sequentially with one pass through the triangular part
!     of A.
!
!
!        Form  A  when A is stored in the upper triangle.
!
!
!        Form  A  when A is stored in the lower triangle.
!
!
!
!     End of DSYR2 .
!
! END
use M_blas, only : dsyr2_=>DSYR2
implicit none
      DOUBLE PRECISION ALPHA
      INTEGER INCX,INCY,LDA,N
      CHARACTER UPLO
      DOUBLE PRECISION A(LDA,*),X(*),Y(*)
    call DSYR2_(UPLO,N,ALPHA,X,INCX,Y,INCY,A,LDA)
end subroutine DSYR2

subroutine DSYR2K(UPLO,TRANS,N,K,ALPHA,A,LDA,B,LDB,BETA,C,LDC)
! COMMENT --file dsyr2k.3m_blas.man
!> \brief \b DSYR2K
!
!  =========== DOCUMENTATION ===========
!
! Online html documentation available at
!            http://www.netlib.org/lapack/explore-html/
!
!  Definition:
!  ===========
!
!       SUBROUTINE DSYR2K(UPLO,TRANS,N,K,ALPHA,A,LDA,B,LDB,BETA,C,LDC)
!
!       .. Scalar Arguments ..
!       DOUBLE PRECISION ALPHA,BETA
!       INTEGER K,LDA,LDB,LDC,N
!       CHARACTER TRANS,UPLO
!       ..
!       .. Array Arguments ..
!       DOUBLE PRECISION A(LDA,*),B(LDB,*),C(LDC,*)
!       ..
!
!
!> \par Purpose:
!  =============
!>
!> \verbatim
!>
!> DSYR2K  performs one of the symmetric rank 2k operations
!>
!>    C := alpha*A*B**T + alpha*B*A**T + beta*C,
!>
!> or
!>
!>    C := alpha*A**T*B + alpha*B**T*A + beta*C,
!>
!> where  alpha and beta  are scalars, C is an  n by n  symmetric matrix
!> and  A and B  are  n by k  matrices  in the  first  case  and  k by n
!> matrices in the second case.
!> \endverbatim
!
!  Arguments:
!  ==========
!
!> \param[in] UPLO
!> \verbatim
!>          UPLO is CHARACTER*1
!>           On  entry,   UPLO  specifies  whether  the  upper  or  lower
!>           triangular  part  of the  array  C  is to be  referenced  as
!>           follows:
!>
!>              UPLO = 'U' or 'u'   Only the  upper triangular part of  C
!>                                  is to be referenced.
!>
!>              UPLO = 'L' or 'l'   Only the  lower triangular part of  C
!>                                  is to be referenced.
!> \endverbatim
!>
!> \param[in] TRANS
!> \verbatim
!>          TRANS is CHARACTER*1
!>           On entry,  TRANS  specifies the operation to be performed as
!>           follows:
!>
!>              TRANS = 'N' or 'n'   C := alpha*A*B**T + alpha*B*A**T +
!>                                        beta*C.
!>
!>              TRANS = 'T' or 't'   C := alpha*A**T*B + alpha*B**T*A +
!>                                        beta*C.
!>
!>              TRANS = 'C' or 'c'   C := alpha*A**T*B + alpha*B**T*A +
!>                                        beta*C.
!> \endverbatim
!>
!> \param[in] N
!> \verbatim
!>          N is INTEGER
!>           On entry,  N specifies the order of the matrix C.  N must be
!>           at least zero.
!> \endverbatim
!>
!> \param[in] K
!> \verbatim
!>          K is INTEGER
!>           On entry with  TRANS = 'N' or 'n',  K  specifies  the number
!>           of  columns  of the  matrices  A and B,  and on  entry  with
!>           TRANS = 'T' or 't' or 'C' or 'c',  K  specifies  the  number
!>           of rows of the matrices  A and B.  K must be at least  zero.
!> \endverbatim
!>
!> \param[in] ALPHA
!> \verbatim
!>          ALPHA is DOUBLE PRECISION.
!>           On entry, ALPHA specifies the scalar alpha.
!> \endverbatim
!>
!> \param[in] A
!> \verbatim
!>          A is DOUBLE PRECISION array, dimension ( LDA, ka ), where ka is
!>           k  when  TRANS = 'N' or 'n',  and is  n  otherwise.
!>           Before entry with  TRANS = 'N' or 'n',  the  leading  n by k
!>           part of the array  A  must contain the matrix  A,  otherwise
!>           the leading  k by n  part of the array  A  must contain  the
!>           matrix A.
!> \endverbatim
!>
!> \param[in] LDA
!> \verbatim
!>          LDA is INTEGER
!>           On entry, LDA specifies the first dimension of A as declared
!>           in  the  calling  (sub)  program.   When  TRANS = 'N' or 'n'
!>           then  LDA must be at least  max( 1, n ), otherwise  LDA must
!>           be at least  max( 1, k ).
!> \endverbatim
!>
!> \param[in] B
!> \verbatim
!>          B is DOUBLE PRECISION array, dimension ( LDB, kb ), where kb is
!>           k  when  TRANS = 'N' or 'n',  and is  n  otherwise.
!>           Before entry with  TRANS = 'N' or 'n',  the  leading  n by k
!>           part of the array  B  must contain the matrix  B,  otherwise
!>           the leading  k by n  part of the array  B  must contain  the
!>           matrix B.
!> \endverbatim
!>
!> \param[in] LDB
!> \verbatim
!>          LDB is INTEGER
!>           On entry, LDB specifies the first dimension of B as declared
!>           in  the  calling  (sub)  program.   When  TRANS = 'N' or 'n'
!>           then  LDB must be at least  max( 1, n ), otherwise  LDB must
!>           be at least  max( 1, k ).
!> \endverbatim
!>
!> \param[in] BETA
!> \verbatim
!>          BETA is DOUBLE PRECISION.
!>           On entry, BETA specifies the scalar beta.
!> \endverbatim
!>
!> \param[in,out] C
!> \verbatim
!>          C is DOUBLE PRECISION array, dimension ( LDC, N )
!>           Before entry  with  UPLO = 'U' or 'u',  the leading  n by n
!>           upper triangular part of the array C must contain the upper
!>           triangular part  of the  symmetric matrix  and the strictly
!>           lower triangular part of C is not referenced.  On exit, the
!>           upper triangular part of the array  C is overwritten by the
!>           upper triangular part of the updated matrix.
!>           Before entry  with  UPLO = 'L' or 'l',  the leading  n by n
!>           lower triangular part of the array C must contain the lower
!>           triangular part  of the  symmetric matrix  and the strictly
!>           upper triangular part of C is not referenced.  On exit, the
!>           lower triangular part of the array  C is overwritten by the
!>           lower triangular part of the updated matrix.
!> \endverbatim
!>
!> \param[in] LDC
!> \verbatim
!>          LDC is INTEGER
!>           On entry, LDC specifies the first dimension of C as declared
!>           in  the  calling  (sub)  program.   LDC  must  be  at  least
!>           max( 1, n ).
!> \endverbatim
!
!  Authors:
!  ========
!
!> \author Univ. of Tennessee
!> \author Univ. of California Berkeley
!> \author Univ. of Colorado Denver
!> \author NAG Ltd.
!
!> \date December 2016
!
!> \ingroup double_blas_level3
!
!> \par Further Details:
!  =====================
!>
!> \verbatim
!>
!>  Level 3 Blas routine.
!>
!>
!>  -- Written on 8-February-1989.
!>     Jack Dongarra, Argonne National Laboratory.
!>     Iain Duff, AERE Harwell.
!>     Jeremy Du Croz, Numerical Algorithms Group Ltd.
!>     Sven Hammarling, Numerical Algorithms Group Ltd.
!> \endverbatim
!>
!  =====================================================================
!
!  -- Reference BLAS level3 routine (version 3.7.0) --
!  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
!  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
!     December 2016
!
!     .. Scalar Arguments ..
!     ..
!     .. Array Arguments ..
!     ..
!
!  =====================================================================
!
!     .. External Functions ..
!     ..
!     .. External Subroutines ..
!     ..
!     .. Intrinsic Functions ..
!     ..
!     .. Local Scalars ..
!     ..
!     .. Parameters ..
!     ..
!
!     Test the input parameters.
!
!
!
!     Quick return if possible.
!
!
!     And when  alpha.eq.zero.
!
!
!     Start the operations.
!
!
!        Form  C := alpha*A*B**T + alpha*B*A**T + C.
!
!
!        Form  C := alpha*A**T*B + alpha*B**T*A + C.
!
!
!
!     End of DSYR2K.
!
! END
use M_blas, only : dsyr2k_=>DSYR2K
implicit none
      DOUBLE PRECISION ALPHA,BETA
      INTEGER K,LDA,LDB,LDC,N
      CHARACTER TRANS,UPLO
      DOUBLE PRECISION A(LDA,*),B(LDB,*),C(LDC,*)
    call DSYR2K_(UPLO,TRANS,N,K,ALPHA,A,LDA,B,LDB,BETA,C,LDC)
end subroutine DSYR2K

subroutine DSYR(UPLO,N,ALPHA,X,INCX,A,LDA)
! COMMENT --file dsyr.3m_blas.man
!> \brief \b DSYR
!
!  =========== DOCUMENTATION ===========
!
! Online html documentation available at
!            http://www.netlib.org/lapack/explore-html/
!
!  Definition:
!  ===========
!
!       SUBROUTINE DSYR(UPLO,N,ALPHA,X,INCX,A,LDA)
!
!       .. Scalar Arguments ..
!       DOUBLE PRECISION ALPHA
!       INTEGER INCX,LDA,N
!       CHARACTER UPLO
!       ..
!       .. Array Arguments ..
!       DOUBLE PRECISION A(LDA,*),X(*)
!       ..
!
!
!> \par Purpose:
!  =============
!>
!> \verbatim
!>
!> DSYR   performs the symmetric rank 1 operation
!>
!>    A := alpha*x*x**T + A,
!>
!> where alpha is a real scalar, x is an n element vector and A is an
!> n by n symmetric matrix.
!> \endverbatim
!
!  Arguments:
!  ==========
!
!> \param[in] UPLO
!> \verbatim
!>          UPLO is CHARACTER*1
!>           On entry, UPLO specifies whether the upper or lower
!>           triangular part of the array A is to be referenced as
!>           follows:
!>
!>              UPLO = 'U' or 'u'   Only the upper triangular part of A
!>                                  is to be referenced.
!>
!>              UPLO = 'L' or 'l'   Only the lower triangular part of A
!>                                  is to be referenced.
!> \endverbatim
!>
!> \param[in] N
!> \verbatim
!>          N is INTEGER
!>           On entry, N specifies the order of the matrix A.
!>           N must be at least zero.
!> \endverbatim
!>
!> \param[in] ALPHA
!> \verbatim
!>          ALPHA is DOUBLE PRECISION.
!>           On entry, ALPHA specifies the scalar alpha.
!> \endverbatim
!>
!> \param[in] X
!> \verbatim
!>          X is DOUBLE PRECISION array, dimension at least
!>           ( 1 + ( n - 1 )*abs( INCX ) ).
!>           Before entry, the incremented array X must contain the n
!>           element vector x.
!> \endverbatim
!>
!> \param[in] INCX
!> \verbatim
!>          INCX is INTEGER
!>           On entry, INCX specifies the increment for the elements of
!>           X. INCX must not be zero.
!> \endverbatim
!>
!> \param[in,out] A
!> \verbatim
!>          A is DOUBLE PRECISION array, dimension ( LDA, N )
!>           Before entry with  UPLO = 'U' or 'u', the leading n by n
!>           upper triangular part of the array A must contain the upper
!>           triangular part of the symmetric matrix and the strictly
!>           lower triangular part of A is not referenced. On exit, the
!>           upper triangular part of the array A is overwritten by the
!>           upper triangular part of the updated matrix.
!>           Before entry with UPLO = 'L' or 'l', the leading n by n
!>           lower triangular part of the array A must contain the lower
!>           triangular part of the symmetric matrix and the strictly
!>           upper triangular part of A is not referenced. On exit, the
!>           lower triangular part of the array A is overwritten by the
!>           lower triangular part of the updated matrix.
!> \endverbatim
!>
!> \param[in] LDA
!> \verbatim
!>          LDA is INTEGER
!>           On entry, LDA specifies the first dimension of A as declared
!>           in the calling (sub) program. LDA must be at least
!>           max( 1, n ).
!> \endverbatim
!
!  Authors:
!  ========
!
!> \author Univ. of Tennessee
!> \author Univ. of California Berkeley
!> \author Univ. of Colorado Denver
!> \author NAG Ltd.
!
!> \date December 2016
!
!> \ingroup double_blas_level2
!
!> \par Further Details:
!  =====================
!>
!> \verbatim
!>
!>  Level 2 Blas routine.
!>
!>  -- Written on 22-October-1986.
!>     Jack Dongarra, Argonne National Lab.
!>     Jeremy Du Croz, Nag Central Office.
!>     Sven Hammarling, Nag Central Office.
!>     Richard Hanson, Sandia National Labs.
!> \endverbatim
!>
!  =====================================================================
!
!  -- Reference BLAS level2 routine (version 3.7.0) --
!  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
!  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
!     December 2016
!
!     .. Scalar Arguments ..
!     ..
!     .. Array Arguments ..
!     ..
!
!  =====================================================================
!
!     .. Parameters ..
!     ..
!     .. Local Scalars ..
!     ..
!     .. External Functions ..
!     ..
!     .. External Subroutines ..
!     ..
!     .. Intrinsic Functions ..
!     ..
!
!     Test the input parameters.
!
!
!     Quick return if possible.
!
!
!     Set the start point in X if the increment is not unity.
!
!
!     Start the operations. In this version the elements of A are
!     accessed sequentially with one pass through the triangular part
!     of A.
!
!
!        Form  A  when A is stored in upper triangle.
!
!
!        Form  A  when A is stored in lower triangle.
!
!
!
!     End of DSYR  .
!
! END
use M_blas, only : dsyr_=>DSYR
implicit none
      DOUBLE PRECISION ALPHA
      INTEGER INCX,LDA,N
      CHARACTER UPLO
      DOUBLE PRECISION A(LDA,*),X(*)
    call DSYR_(UPLO,N,ALPHA,X,INCX,A,LDA)
end subroutine DSYR

subroutine DSYRK(UPLO,TRANS,N,K,ALPHA,A,LDA,BETA,C,LDC)
! COMMENT --file dsyrk.3m_blas.man
!> \brief \b DSYRK
!
!  =========== DOCUMENTATION ===========
!
! Online html documentation available at
!            http://www.netlib.org/lapack/explore-html/
!
!  Definition:
!  ===========
!
!       SUBROUTINE DSYRK(UPLO,TRANS,N,K,ALPHA,A,LDA,BETA,C,LDC)
!
!       .. Scalar Arguments ..
!       DOUBLE PRECISION ALPHA,BETA
!       INTEGER K,LDA,LDC,N
!       CHARACTER TRANS,UPLO
!       ..
!       .. Array Arguments ..
!       DOUBLE PRECISION A(LDA,*),C(LDC,*)
!       ..
!
!
!> \par Purpose:
!  =============
!>
!> \verbatim
!>
!> DSYRK  performs one of the symmetric rank k operations
!>
!>    C := alpha*A*A**T + beta*C,
!>
!> or
!>
!>    C := alpha*A**T*A + beta*C,
!>
!> where  alpha and beta  are scalars, C is an  n by n  symmetric matrix
!> and  A  is an  n by k  matrix in the first case and a  k by n  matrix
!> in the second case.
!> \endverbatim
!
!  Arguments:
!  ==========
!
!> \param[in] UPLO
!> \verbatim
!>          UPLO is CHARACTER*1
!>           On  entry,   UPLO  specifies  whether  the  upper  or  lower
!>           triangular  part  of the  array  C  is to be  referenced  as
!>           follows:
!>
!>              UPLO = 'U' or 'u'   Only the  upper triangular part of  C
!>                                  is to be referenced.
!>
!>              UPLO = 'L' or 'l'   Only the  lower triangular part of  C
!>                                  is to be referenced.
!> \endverbatim
!>
!> \param[in] TRANS
!> \verbatim
!>          TRANS is CHARACTER*1
!>           On entry,  TRANS  specifies the operation to be performed as
!>           follows:
!>
!>              TRANS = 'N' or 'n'   C := alpha*A*A**T + beta*C.
!>
!>              TRANS = 'T' or 't'   C := alpha*A**T*A + beta*C.
!>
!>              TRANS = 'C' or 'c'   C := alpha*A**T*A + beta*C.
!> \endverbatim
!>
!> \param[in] N
!> \verbatim
!>          N is INTEGER
!>           On entry,  N specifies the order of the matrix C.  N must be
!>           at least zero.
!> \endverbatim
!>
!> \param[in] K
!> \verbatim
!>          K is INTEGER
!>           On entry with  TRANS = 'N' or 'n',  K  specifies  the number
!>           of  columns   of  the   matrix   A,   and  on   entry   with
!>           TRANS = 'T' or 't' or 'C' or 'c',  K  specifies  the  number
!>           of rows of the matrix  A.  K must be at least zero.
!> \endverbatim
!>
!> \param[in] ALPHA
!> \verbatim
!>          ALPHA is DOUBLE PRECISION.
!>           On entry, ALPHA specifies the scalar alpha.
!> \endverbatim
!>
!> \param[in] A
!> \verbatim
!>          A is DOUBLE PRECISION array, dimension ( LDA, ka ), where ka is
!>           k  when  TRANS = 'N' or 'n',  and is  n  otherwise.
!>           Before entry with  TRANS = 'N' or 'n',  the  leading  n by k
!>           part of the array  A  must contain the matrix  A,  otherwise
!>           the leading  k by n  part of the array  A  must contain  the
!>           matrix A.
!> \endverbatim
!>
!> \param[in] LDA
!> \verbatim
!>          LDA is INTEGER
!>           On entry, LDA specifies the first dimension of A as declared
!>           in  the  calling  (sub)  program.   When  TRANS = 'N' or 'n'
!>           then  LDA must be at least  max( 1, n ), otherwise  LDA must
!>           be at least  max( 1, k ).
!> \endverbatim
!>
!> \param[in] BETA
!> \verbatim
!>          BETA is DOUBLE PRECISION.
!>           On entry, BETA specifies the scalar beta.
!> \endverbatim
!>
!> \param[in,out] C
!> \verbatim
!>          C is DOUBLE PRECISION array, dimension ( LDC, N )
!>           Before entry  with  UPLO = 'U' or 'u',  the leading  n by n
!>           upper triangular part of the array C must contain the upper
!>           triangular part  of the  symmetric matrix  and the strictly
!>           lower triangular part of C is not referenced.  On exit, the
!>           upper triangular part of the array  C is overwritten by the
!>           upper triangular part of the updated matrix.
!>           Before entry  with  UPLO = 'L' or 'l',  the leading  n by n
!>           lower triangular part of the array C must contain the lower
!>           triangular part  of the  symmetric matrix  and the strictly
!>           upper triangular part of C is not referenced.  On exit, the
!>           lower triangular part of the array  C is overwritten by the
!>           lower triangular part of the updated matrix.
!> \endverbatim
!>
!> \param[in] LDC
!> \verbatim
!>          LDC is INTEGER
!>           On entry, LDC specifies the first dimension of C as declared
!>           in  the  calling  (sub)  program.   LDC  must  be  at  least
!>           max( 1, n ).
!> \endverbatim
!
!  Authors:
!  ========
!
!> \author Univ. of Tennessee
!> \author Univ. of California Berkeley
!> \author Univ. of Colorado Denver
!> \author NAG Ltd.
!
!> \date December 2016
!
!> \ingroup double_blas_level3
!
!> \par Further Details:
!  =====================
!>
!> \verbatim
!>
!>  Level 3 Blas routine.
!>
!>  -- Written on 8-February-1989.
!>     Jack Dongarra, Argonne National Laboratory.
!>     Iain Duff, AERE Harwell.
!>     Jeremy Du Croz, Numerical Algorithms Group Ltd.
!>     Sven Hammarling, Numerical Algorithms Group Ltd.
!> \endverbatim
!>
!  =====================================================================
!
!  -- Reference BLAS level3 routine (version 3.7.0) --
!  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
!  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
!     December 2016
!
!     .. Scalar Arguments ..
!     ..
!     .. Array Arguments ..
!     ..
!
!  =====================================================================
!
!     .. External Functions ..
!     ..
!     .. External Subroutines ..
!     ..
!     .. Intrinsic Functions ..
!     ..
!     .. Local Scalars ..
!     ..
!     .. Parameters ..
!     ..
!
!     Test the input parameters.
!
!
!
!     Quick return if possible.
!
!
!     And when  alpha.eq.zero.
!
!
!     Start the operations.
!
!
!        Form  C := alpha*A*A**T + beta*C.
!
!
!        Form  C := alpha*A**T*A + beta*C.
!
!
!
!     End of DSYRK .
!
! END
use M_blas, only : dsyrk_=>DSYRK
implicit none
      DOUBLE PRECISION ALPHA,BETA
      INTEGER K,LDA,LDC,N
      CHARACTER TRANS,UPLO
      DOUBLE PRECISION A(LDA,*),C(LDC,*)
    call DSYRK_(UPLO,TRANS,N,K,ALPHA,A,LDA,BETA,C,LDC)
end subroutine DSYRK

subroutine DTBMV(UPLO,TRANS,DIAG,N,K,A,LDA,X,INCX)
! COMMENT --file dtbmv.3m_blas.man
!> \brief \b DTBMV
!
!  =========== DOCUMENTATION ===========
!
! Online html documentation available at
!            http://www.netlib.org/lapack/explore-html/
!
!  Definition:
!  ===========
!
!       SUBROUTINE DTBMV(UPLO,TRANS,DIAG,N,K,A,LDA,X,INCX)
!
!       .. Scalar Arguments ..
!       INTEGER INCX,K,LDA,N
!       CHARACTER DIAG,TRANS,UPLO
!       ..
!       .. Array Arguments ..
!       DOUBLE PRECISION A(LDA,*),X(*)
!       ..
!
!
!> \par Purpose:
!  =============
!>
!> \verbatim
!>
!> DTBMV  performs one of the matrix-vector operations
!>
!>    x := A*x,   or   x := A**T*x,
!>
!> where x is an n element vector and  A is an n by n unit, or non-unit,
!> upper or lower triangular band matrix, with ( k + 1 ) diagonals.
!> \endverbatim
!
!  Arguments:
!  ==========
!
!> \param[in] UPLO
!> \verbatim
!>          UPLO is CHARACTER*1
!>           On entry, UPLO specifies whether the matrix is an upper or
!>           lower triangular matrix as follows:
!>
!>              UPLO = 'U' or 'u'   A is an upper triangular matrix.
!>
!>              UPLO = 'L' or 'l'   A is a lower triangular matrix.
!> \endverbatim
!>
!> \param[in] TRANS
!> \verbatim
!>          TRANS is CHARACTER*1
!>           On entry, TRANS specifies the operation to be performed as
!>           follows:
!>
!>              TRANS = 'N' or 'n'   x := A*x.
!>
!>              TRANS = 'T' or 't'   x := A**T*x.
!>
!>              TRANS = 'C' or 'c'   x := A**T*x.
!> \endverbatim
!>
!> \param[in] DIAG
!> \verbatim
!>          DIAG is CHARACTER*1
!>           On entry, DIAG specifies whether or not A is unit
!>           triangular as follows:
!>
!>              DIAG = 'U' or 'u'   A is assumed to be unit triangular.
!>
!>              DIAG = 'N' or 'n'   A is not assumed to be unit
!>                                  triangular.
!> \endverbatim
!>
!> \param[in] N
!> \verbatim
!>          N is INTEGER
!>           On entry, N specifies the order of the matrix A.
!>           N must be at least zero.
!> \endverbatim
!>
!> \param[in] K
!> \verbatim
!>          K is INTEGER
!>           On entry with UPLO = 'U' or 'u', K specifies the number of
!>           super-diagonals of the matrix A.
!>           On entry with UPLO = 'L' or 'l', K specifies the number of
!>           sub-diagonals of the matrix A.
!>           K must satisfy  0 .le. K.
!> \endverbatim
!>
!> \param[in] A
!> \verbatim
!>          A is DOUBLE PRECISION array, dimension ( LDA, N )
!>           Before entry with UPLO = 'U' or 'u', the leading ( k + 1 )
!>           by n part of the array A must contain the upper triangular
!>           band part of the matrix of coefficients, supplied column by
!>           column, with the leading diagonal of the matrix in row
!>           ( k + 1 ) of the array, the first super-diagonal starting at
!>           position 2 in row k, and so on. The top left k by k triangle
!>           of the array A is not referenced.
!>           The following program segment will transfer an upper
!>           triangular band matrix from conventional full matrix storage
!>           to band storage:
!>
!>                 DO 20, J = 1, N
!>                    M = K + 1 - J
!>                    DO 10, I = MAX( 1, J - K ), J
!>                       A( M + I, J ) = matrix( I, J )
!>              10    CONTINUE
!>              20 CONTINUE
!>
!>           Before entry with UPLO = 'L' or 'l', the leading ( k + 1 )
!>           by n part of the array A must contain the lower triangular
!>           band part of the matrix of coefficients, supplied column by
!>           column, with the leading diagonal of the matrix in row 1 of
!>           the array, the first sub-diagonal starting at position 1 in
!>           row 2, and so on. The bottom right k by k triangle of the
!>           array A is not referenced.
!>           The following program segment will transfer a lower
!>           triangular band matrix from conventional full matrix storage
!>           to band storage:
!>
!>                 DO 20, J = 1, N
!>                    M = 1 - J
!>                    DO 10, I = J, MIN( N, J + K )
!>                       A( M + I, J ) = matrix( I, J )
!>              10    CONTINUE
!>              20 CONTINUE
!>
!>           Note that when DIAG = 'U' or 'u' the elements of the array A
!>           corresponding to the diagonal elements of the matrix are not
!>           referenced, but are assumed to be unity.
!> \endverbatim
!>
!> \param[in] LDA
!> \verbatim
!>          LDA is INTEGER
!>           On entry, LDA specifies the first dimension of A as declared
!>           in the calling (sub) program. LDA must be at least
!>           ( k + 1 ).
!> \endverbatim
!>
!> \param[in,out] X
!> \verbatim
!>          X is DOUBLE PRECISION array, dimension at least
!>           ( 1 + ( n - 1 )*abs( INCX ) ).
!>           Before entry, the incremented array X must contain the n
!>           element vector x. On exit, X is overwritten with the
!>           transformed vector x.
!> \endverbatim
!>
!> \param[in] INCX
!> \verbatim
!>          INCX is INTEGER
!>           On entry, INCX specifies the increment for the elements of
!>           X. INCX must not be zero.
!> \endverbatim
!
!  Authors:
!  ========
!
!> \author Univ. of Tennessee
!> \author Univ. of California Berkeley
!> \author Univ. of Colorado Denver
!> \author NAG Ltd.
!
!> \date December 2016
!
!> \ingroup double_blas_level2
!
!> \par Further Details:
!  =====================
!>
!> \verbatim
!>
!>  Level 2 Blas routine.
!>  The vector and matrix arguments are not referenced when N = 0, or M = 0
!>
!>  -- Written on 22-October-1986.
!>     Jack Dongarra, Argonne National Lab.
!>     Jeremy Du Croz, Nag Central Office.
!>     Sven Hammarling, Nag Central Office.
!>     Richard Hanson, Sandia National Labs.
!> \endverbatim
!>
!  =====================================================================
!
!  -- Reference BLAS level2 routine (version 3.7.0) --
!  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
!  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
!     December 2016
!
!     .. Scalar Arguments ..
!     ..
!     .. Array Arguments ..
!     ..
!
!  =====================================================================
!
!     .. Parameters ..
!     ..
!     .. Local Scalars ..
!     ..
!     .. External Functions ..
!     ..
!     .. External Subroutines ..
!     ..
!     .. Intrinsic Functions ..
!     ..
!
!     Test the input parameters.
!
!
!     Quick return if possible.
!
!
!
!     Set up the start point in X if the increment is not unity. This
!     will be  ( N - 1 )*INCX   too small for descending loops.
!
!
!     Start the operations. In this version the elements of A are
!     accessed sequentially with one pass through A.
!
!
!         Form  x := A*x.
!
!
!        Form  x := A**T*x.
!
!
!
!     End of DTBMV .
!
! END
use M_blas, only : dtbmv_=>DTBMV
implicit none
      INTEGER INCX,K,LDA,N
      CHARACTER DIAG,TRANS,UPLO
      DOUBLE PRECISION A(LDA,*),X(*)
    call DTBMV_(UPLO,TRANS,DIAG,N,K,A,LDA,X,INCX)
end subroutine DTBMV

subroutine DTBSV(UPLO,TRANS,DIAG,N,K,A,LDA,X,INCX)
! COMMENT --file dtbsv.3m_blas.man
!> \brief \b DTBSV
!
!  =========== DOCUMENTATION ===========
!
! Online html documentation available at
!            http://www.netlib.org/lapack/explore-html/
!
!  Definition:
!  ===========
!
!       SUBROUTINE DTBSV(UPLO,TRANS,DIAG,N,K,A,LDA,X,INCX)
!
!       .. Scalar Arguments ..
!       INTEGER INCX,K,LDA,N
!       CHARACTER DIAG,TRANS,UPLO
!       ..
!       .. Array Arguments ..
!       DOUBLE PRECISION A(LDA,*),X(*)
!       ..
!
!
!> \par Purpose:
!  =============
!>
!> \verbatim
!>
!> DTBSV  solves one of the systems of equations
!>
!>    A*x = b,   or   A**T*x = b,
!>
!> where b and x are n element vectors and A is an n by n unit, or
!> non-unit, upper or lower triangular band matrix, with ( k + 1 )
!> diagonals.
!>
!> No test for singularity or near-singularity is included in this
!> routine. Such tests must be performed before calling this routine.
!> \endverbatim
!
!  Arguments:
!  ==========
!
!> \param[in] UPLO
!> \verbatim
!>          UPLO is CHARACTER*1
!>           On entry, UPLO specifies whether the matrix is an upper or
!>           lower triangular matrix as follows:
!>
!>              UPLO = 'U' or 'u'   A is an upper triangular matrix.
!>
!>              UPLO = 'L' or 'l'   A is a lower triangular matrix.
!> \endverbatim
!>
!> \param[in] TRANS
!> \verbatim
!>          TRANS is CHARACTER*1
!>           On entry, TRANS specifies the equations to be solved as
!>           follows:
!>
!>              TRANS = 'N' or 'n'   A*x = b.
!>
!>              TRANS = 'T' or 't'   A**T*x = b.
!>
!>              TRANS = 'C' or 'c'   A**T*x = b.
!> \endverbatim
!>
!> \param[in] DIAG
!> \verbatim
!>          DIAG is CHARACTER*1
!>           On entry, DIAG specifies whether or not A is unit
!>           triangular as follows:
!>
!>              DIAG = 'U' or 'u'   A is assumed to be unit triangular.
!>
!>              DIAG = 'N' or 'n'   A is not assumed to be unit
!>                                  triangular.
!> \endverbatim
!>
!> \param[in] N
!> \verbatim
!>          N is INTEGER
!>           On entry, N specifies the order of the matrix A.
!>           N must be at least zero.
!> \endverbatim
!>
!> \param[in] K
!> \verbatim
!>          K is INTEGER
!>           On entry with UPLO = 'U' or 'u', K specifies the number of
!>           super-diagonals of the matrix A.
!>           On entry with UPLO = 'L' or 'l', K specifies the number of
!>           sub-diagonals of the matrix A.
!>           K must satisfy  0 .le. K.
!> \endverbatim
!>
!> \param[in] A
!> \verbatim
!>          A is DOUBLE PRECISION array, dimension ( LDA, N )
!>           Before entry with UPLO = 'U' or 'u', the leading ( k + 1 )
!>           by n part of the array A must contain the upper triangular
!>           band part of the matrix of coefficients, supplied column by
!>           column, with the leading diagonal of the matrix in row
!>           ( k + 1 ) of the array, the first super-diagonal starting at
!>           position 2 in row k, and so on. The top left k by k triangle
!>           of the array A is not referenced.
!>           The following program segment will transfer an upper
!>           triangular band matrix from conventional full matrix storage
!>           to band storage:
!>
!>                 DO 20, J = 1, N
!>                    M = K + 1 - J
!>                    DO 10, I = MAX( 1, J - K ), J
!>                       A( M + I, J ) = matrix( I, J )
!>              10    CONTINUE
!>              20 CONTINUE
!>
!>           Before entry with UPLO = 'L' or 'l', the leading ( k + 1 )
!>           by n part of the array A must contain the lower triangular
!>           band part of the matrix of coefficients, supplied column by
!>           column, with the leading diagonal of the matrix in row 1 of
!>           the array, the first sub-diagonal starting at position 1 in
!>           row 2, and so on. The bottom right k by k triangle of the
!>           array A is not referenced.
!>           The following program segment will transfer a lower
!>           triangular band matrix from conventional full matrix storage
!>           to band storage:
!>
!>                 DO 20, J = 1, N
!>                    M = 1 - J
!>                    DO 10, I = J, MIN( N, J + K )
!>                       A( M + I, J ) = matrix( I, J )
!>              10    CONTINUE
!>              20 CONTINUE
!>
!>           Note that when DIAG = 'U' or 'u' the elements of the array A
!>           corresponding to the diagonal elements of the matrix are not
!>           referenced, but are assumed to be unity.
!> \endverbatim
!>
!> \param[in] LDA
!> \verbatim
!>          LDA is INTEGER
!>           On entry, LDA specifies the first dimension of A as declared
!>           in the calling (sub) program. LDA must be at least
!>           ( k + 1 ).
!> \endverbatim
!>
!> \param[in,out] X
!> \verbatim
!>          X is DOUBLE PRECISION array, dimension at least
!>           ( 1 + ( n - 1 )*abs( INCX ) ).
!>           Before entry, the incremented array X must contain the n
!>           element right-hand side vector b. On exit, X is overwritten
!>           with the solution vector x.
!> \endverbatim
!>
!> \param[in] INCX
!> \verbatim
!>          INCX is INTEGER
!>           On entry, INCX specifies the increment for the elements of
!>           X. INCX must not be zero.
!> \endverbatim
!
!  Authors:
!  ========
!
!> \author Univ. of Tennessee
!> \author Univ. of California Berkeley
!> \author Univ. of Colorado Denver
!> \author NAG Ltd.
!
!> \date December 2016
!
!> \ingroup double_blas_level2
!
!> \par Further Details:
!  =====================
!>
!> \verbatim
!>
!>  Level 2 Blas routine.
!>
!>  -- Written on 22-October-1986.
!>     Jack Dongarra, Argonne National Lab.
!>     Jeremy Du Croz, Nag Central Office.
!>     Sven Hammarling, Nag Central Office.
!>     Richard Hanson, Sandia National Labs.
!> \endverbatim
!>
!  =====================================================================
!
!  -- Reference BLAS level2 routine (version 3.7.0) --
!  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
!  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
!     December 2016
!
!     .. Scalar Arguments ..
!     ..
!     .. Array Arguments ..
!     ..
!
!  =====================================================================
!
!     .. Parameters ..
!     ..
!     .. Local Scalars ..
!     ..
!     .. External Functions ..
!     ..
!     .. External Subroutines ..
!     ..
!     .. Intrinsic Functions ..
!     ..
!
!     Test the input parameters.
!
!
!     Quick return if possible.
!
!
!
!     Set up the start point in X if the increment is not unity. This
!     will be  ( N - 1 )*INCX  too small for descending loops.
!
!
!     Start the operations. In this version the elements of A are
!     accessed by sequentially with one pass through A.
!
!
!        Form  x := inv( A )*x.
!
!
!        Form  x := inv( A**T)*x.
!
!
!
!     End of DTBSV .
!
! END
use M_blas, only : dtbsv_=>DTBSV
implicit none
      INTEGER INCX,K,LDA,N
      CHARACTER DIAG,TRANS,UPLO
      DOUBLE PRECISION A(LDA,*),X(*)
    call DTBSV_(UPLO,TRANS,DIAG,N,K,A,LDA,X,INCX)
end subroutine DTBSV

subroutine DTPMV(UPLO,TRANS,DIAG,N,AP,X,INCX)
! COMMENT --file dtpmv.3m_blas.man
!> \brief \b DTPMV
!
!  =========== DOCUMENTATION ===========
!
! Online html documentation available at
!            http://www.netlib.org/lapack/explore-html/
!
!  Definition:
!  ===========
!
!       SUBROUTINE DTPMV(UPLO,TRANS,DIAG,N,AP,X,INCX)
!
!       .. Scalar Arguments ..
!       INTEGER INCX,N
!       CHARACTER DIAG,TRANS,UPLO
!       ..
!       .. Array Arguments ..
!       DOUBLE PRECISION AP(*),X(*)
!       ..
!
!
!> \par Purpose:
!  =============
!>
!> \verbatim
!>
!> DTPMV  performs one of the matrix-vector operations
!>
!>    x := A*x,   or   x := A**T*x,
!>
!> where x is an n element vector and  A is an n by n unit, or non-unit,
!> upper or lower triangular matrix, supplied in packed form.
!> \endverbatim
!
!  Arguments:
!  ==========
!
!> \param[in] UPLO
!> \verbatim
!>          UPLO is CHARACTER*1
!>           On entry, UPLO specifies whether the matrix is an upper or
!>           lower triangular matrix as follows:
!>
!>              UPLO = 'U' or 'u'   A is an upper triangular matrix.
!>
!>              UPLO = 'L' or 'l'   A is a lower triangular matrix.
!> \endverbatim
!>
!> \param[in] TRANS
!> \verbatim
!>          TRANS is CHARACTER*1
!>           On entry, TRANS specifies the operation to be performed as
!>           follows:
!>
!>              TRANS = 'N' or 'n'   x := A*x.
!>
!>              TRANS = 'T' or 't'   x := A**T*x.
!>
!>              TRANS = 'C' or 'c'   x := A**T*x.
!> \endverbatim
!>
!> \param[in] DIAG
!> \verbatim
!>          DIAG is CHARACTER*1
!>           On entry, DIAG specifies whether or not A is unit
!>           triangular as follows:
!>
!>              DIAG = 'U' or 'u'   A is assumed to be unit triangular.
!>
!>              DIAG = 'N' or 'n'   A is not assumed to be unit
!>                                  triangular.
!> \endverbatim
!>
!> \param[in] N
!> \verbatim
!>          N is INTEGER
!>           On entry, N specifies the order of the matrix A.
!>           N must be at least zero.
!> \endverbatim
!>
!> \param[in] AP
!> \verbatim
!>          AP is DOUBLE PRECISION array, dimension at least
!>           ( ( n*( n + 1 ) )/2 ).
!>           Before entry with  UPLO = 'U' or 'u', the array AP must
!>           contain the upper triangular matrix packed sequentially,
!>           column by column, so that AP( 1 ) contains a( 1, 1 ),
!>           AP( 2 ) and AP( 3 ) contain a( 1, 2 ) and a( 2, 2 )
!>           respectively, and so on.
!>           Before entry with UPLO = 'L' or 'l', the array AP must
!>           contain the lower triangular matrix packed sequentially,
!>           column by column, so that AP( 1 ) contains a( 1, 1 ),
!>           AP( 2 ) and AP( 3 ) contain a( 2, 1 ) and a( 3, 1 )
!>           respectively, and so on.
!>           Note that when  DIAG = 'U' or 'u', the diagonal elements of
!>           A are not referenced, but are assumed to be unity.
!> \endverbatim
!>
!> \param[in,out] X
!> \verbatim
!>          X is DOUBLE PRECISION array, dimension at least
!>           ( 1 + ( n - 1 )*abs( INCX ) ).
!>           Before entry, the incremented array X must contain the n
!>           element vector x. On exit, X is overwritten with the
!>           transformed vector x.
!> \endverbatim
!>
!> \param[in] INCX
!> \verbatim
!>          INCX is INTEGER
!>           On entry, INCX specifies the increment for the elements of
!>           X. INCX must not be zero.
!> \endverbatim
!
!  Authors:
!  ========
!
!> \author Univ. of Tennessee
!> \author Univ. of California Berkeley
!> \author Univ. of Colorado Denver
!> \author NAG Ltd.
!
!> \date December 2016
!
!> \ingroup double_blas_level2
!
!> \par Further Details:
!  =====================
!>
!> \verbatim
!>
!>  Level 2 Blas routine.
!>  The vector and matrix arguments are not referenced when N = 0, or M = 0
!>
!>  -- Written on 22-October-1986.
!>     Jack Dongarra, Argonne National Lab.
!>     Jeremy Du Croz, Nag Central Office.
!>     Sven Hammarling, Nag Central Office.
!>     Richard Hanson, Sandia National Labs.
!> \endverbatim
!>
!  =====================================================================
!
!  -- Reference BLAS level2 routine (version 3.7.0) --
!  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
!  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
!     December 2016
!
!     .. Scalar Arguments ..
!     ..
!     .. Array Arguments ..
!     ..
!
!  =====================================================================
!
!     .. Parameters ..
!     ..
!     .. Local Scalars ..
!     ..
!     .. External Functions ..
!     ..
!     .. External Subroutines ..
!     ..
!
!     Test the input parameters.
!
!
!     Quick return if possible.
!
!
!
!     Set up the start point in X if the increment is not unity. This
!     will be  ( N - 1 )*INCX  too small for descending loops.
!
!
!     Start the operations. In this version the elements of AP are
!     accessed sequentially with one pass through AP.
!
!
!        Form  x:= A*x.
!
!
!        Form  x := A**T*x.
!
!
!
!     End of DTPMV .
!
! END
use M_blas, only : dtpmv_=>DTPMV
implicit none
      INTEGER INCX,N
      CHARACTER DIAG,TRANS,UPLO
      DOUBLE PRECISION AP(*),X(*)
    call DTPMV_(UPLO,TRANS,DIAG,N,AP,X,INCX)
end subroutine DTPMV

subroutine DTPSV(UPLO,TRANS,DIAG,N,AP,X,INCX)
! COMMENT --file dtpsv.3m_blas.man
!> \brief \b DTPSV
!
!  =========== DOCUMENTATION ===========
!
! Online html documentation available at
!            http://www.netlib.org/lapack/explore-html/
!
!  Definition:
!  ===========
!
!       SUBROUTINE DTPSV(UPLO,TRANS,DIAG,N,AP,X,INCX)
!
!       .. Scalar Arguments ..
!       INTEGER INCX,N
!       CHARACTER DIAG,TRANS,UPLO
!       ..
!       .. Array Arguments ..
!       DOUBLE PRECISION AP(*),X(*)
!       ..
!
!
!> \par Purpose:
!  =============
!>
!> \verbatim
!>
!> DTPSV  solves one of the systems of equations
!>
!>    A*x = b,   or   A**T*x = b,
!>
!> where b and x are n element vectors and A is an n by n unit, or
!> non-unit, upper or lower triangular matrix, supplied in packed form.
!>
!> No test for singularity or near-singularity is included in this
!> routine. Such tests must be performed before calling this routine.
!> \endverbatim
!
!  Arguments:
!  ==========
!
!> \param[in] UPLO
!> \verbatim
!>          UPLO is CHARACTER*1
!>           On entry, UPLO specifies whether the matrix is an upper or
!>           lower triangular matrix as follows:
!>
!>              UPLO = 'U' or 'u'   A is an upper triangular matrix.
!>
!>              UPLO = 'L' or 'l'   A is a lower triangular matrix.
!> \endverbatim
!>
!> \param[in] TRANS
!> \verbatim
!>          TRANS is CHARACTER*1
!>           On entry, TRANS specifies the equations to be solved as
!>           follows:
!>
!>              TRANS = 'N' or 'n'   A*x = b.
!>
!>              TRANS = 'T' or 't'   A**T*x = b.
!>
!>              TRANS = 'C' or 'c'   A**T*x = b.
!> \endverbatim
!>
!> \param[in] DIAG
!> \verbatim
!>          DIAG is CHARACTER*1
!>           On entry, DIAG specifies whether or not A is unit
!>           triangular as follows:
!>
!>              DIAG = 'U' or 'u'   A is assumed to be unit triangular.
!>
!>              DIAG = 'N' or 'n'   A is not assumed to be unit
!>                                  triangular.
!> \endverbatim
!>
!> \param[in] N
!> \verbatim
!>          N is INTEGER
!>           On entry, N specifies the order of the matrix A.
!>           N must be at least zero.
!> \endverbatim
!>
!> \param[in] AP
!> \verbatim
!>          AP is DOUBLE PRECISION array, dimension at least
!>           ( ( n*( n + 1 ) )/2 ).
!>           Before entry with  UPLO = 'U' or 'u', the array AP must
!>           contain the upper triangular matrix packed sequentially,
!>           column by column, so that AP( 1 ) contains a( 1, 1 ),
!>           AP( 2 ) and AP( 3 ) contain a( 1, 2 ) and a( 2, 2 )
!>           respectively, and so on.
!>           Before entry with UPLO = 'L' or 'l', the array AP must
!>           contain the lower triangular matrix packed sequentially,
!>           column by column, so that AP( 1 ) contains a( 1, 1 ),
!>           AP( 2 ) and AP( 3 ) contain a( 2, 1 ) and a( 3, 1 )
!>           respectively, and so on.
!>           Note that when  DIAG = 'U' or 'u', the diagonal elements of
!>           A are not referenced, but are assumed to be unity.
!> \endverbatim
!>
!> \param[in,out] X
!> \verbatim
!>          X is DOUBLE PRECISION array, dimension at least
!>           ( 1 + ( n - 1 )*abs( INCX ) ).
!>           Before entry, the incremented array X must contain the n
!>           element right-hand side vector b. On exit, X is overwritten
!>           with the solution vector x.
!> \endverbatim
!>
!> \param[in] INCX
!> \verbatim
!>          INCX is INTEGER
!>           On entry, INCX specifies the increment for the elements of
!>           X. INCX must not be zero.
!> \endverbatim
!
!  Authors:
!  ========
!
!> \author Univ. of Tennessee
!> \author Univ. of California Berkeley
!> \author Univ. of Colorado Denver
!> \author NAG Ltd.
!
!> \date December 2016
!
!> \ingroup double_blas_level2
!
!> \par Further Details:
!  =====================
!>
!> \verbatim
!>
!>  Level 2 Blas routine.
!>
!>  -- Written on 22-October-1986.
!>     Jack Dongarra, Argonne National Lab.
!>     Jeremy Du Croz, Nag Central Office.
!>     Sven Hammarling, Nag Central Office.
!>     Richard Hanson, Sandia National Labs.
!> \endverbatim
!>
!  =====================================================================
!
!  -- Reference BLAS level2 routine (version 3.7.0) --
!  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
!  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
!     December 2016
!
!     .. Scalar Arguments ..
!     ..
!     .. Array Arguments ..
!     ..
!
!  =====================================================================
!
!     .. Parameters ..
!     ..
!     .. Local Scalars ..
!     ..
!     .. External Functions ..
!     ..
!     .. External Subroutines ..
!     ..
!
!     Test the input parameters.
!
!
!     Quick return if possible.
!
!
!
!     Set up the start point in X if the increment is not unity. This
!     will be  ( N - 1 )*INCX  too small for descending loops.
!
!
!     Start the operations. In this version the elements of AP are
!     accessed sequentially with one pass through AP.
!
!
!        Form  x := inv( A )*x.
!
!
!        Form  x := inv( A**T )*x.
!
!
!
!     End of DTPSV .
!
! END
use M_blas, only : dtpsv_=>DTPSV
implicit none
      INTEGER INCX,N
      CHARACTER DIAG,TRANS,UPLO
      DOUBLE PRECISION AP(*),X(*)
    call DTPSV_(UPLO,TRANS,DIAG,N,AP,X,INCX)
end subroutine DTPSV

subroutine DTRMM(SIDE,UPLO,TRANSA,DIAG,M,N,ALPHA,A,LDA,B,LDB)
! COMMENT --file dtrmm.3m_blas.man
!> \brief \b DTRMM
!
!  =========== DOCUMENTATION ===========
!
! Online html documentation available at
!            http://www.netlib.org/lapack/explore-html/
!
!  Definition:
!  ===========
!
!       SUBROUTINE DTRMM(SIDE,UPLO,TRANSA,DIAG,M,N,ALPHA,A,LDA,B,LDB)
!
!       .. Scalar Arguments ..
!       DOUBLE PRECISION ALPHA
!       INTEGER LDA,LDB,M,N
!       CHARACTER DIAG,SIDE,TRANSA,UPLO
!       ..
!       .. Array Arguments ..
!       DOUBLE PRECISION A(LDA,*),B(LDB,*)
!       ..
!
!
!> \par Purpose:
!  =============
!>
!> \verbatim
!>
!> DTRMM  performs one of the matrix-matrix operations
!>
!>    B := alpha*op( A )*B,   or   B := alpha*B*op( A ),
!>
!> where  alpha  is a scalar,  B  is an m by n matrix,  A  is a unit, or
!> non-unit,  upper or lower triangular matrix  and  op( A )  is one  of
!>
!>    op( A ) = A   or   op( A ) = A**T.
!> \endverbatim
!
!  Arguments:
!  ==========
!
!> \param[in] SIDE
!> \verbatim
!>          SIDE is CHARACTER*1
!>           On entry,  SIDE specifies whether  op( A ) multiplies B from
!>           the left or right as follows:
!>
!>              SIDE = 'L' or 'l'   B := alpha*op( A )*B.
!>
!>              SIDE = 'R' or 'r'   B := alpha*B*op( A ).
!> \endverbatim
!>
!> \param[in] UPLO
!> \verbatim
!>          UPLO is CHARACTER*1
!>           On entry, UPLO specifies whether the matrix A is an upper or
!>           lower triangular matrix as follows:
!>
!>              UPLO = 'U' or 'u'   A is an upper triangular matrix.
!>
!>              UPLO = 'L' or 'l'   A is a lower triangular matrix.
!> \endverbatim
!>
!> \param[in] TRANSA
!> \verbatim
!>          TRANSA is CHARACTER*1
!>           On entry, TRANSA specifies the form of op( A ) to be used in
!>           the matrix multiplication as follows:
!>
!>              TRANSA = 'N' or 'n'   op( A ) = A.
!>
!>              TRANSA = 'T' or 't'   op( A ) = A**T.
!>
!>              TRANSA = 'C' or 'c'   op( A ) = A**T.
!> \endverbatim
!>
!> \param[in] DIAG
!> \verbatim
!>          DIAG is CHARACTER*1
!>           On entry, DIAG specifies whether or not A is unit triangular
!>           as follows:
!>
!>              DIAG = 'U' or 'u'   A is assumed to be unit triangular.
!>
!>              DIAG = 'N' or 'n'   A is not assumed to be unit
!>                                  triangular.
!> \endverbatim
!>
!> \param[in] M
!> \verbatim
!>          M is INTEGER
!>           On entry, M specifies the number of rows of B. M must be at
!>           least zero.
!> \endverbatim
!>
!> \param[in] N
!> \verbatim
!>          N is INTEGER
!>           On entry, N specifies the number of columns of B.  N must be
!>           at least zero.
!> \endverbatim
!>
!> \param[in] ALPHA
!> \verbatim
!>          ALPHA is DOUBLE PRECISION.
!>           On entry,  ALPHA specifies the scalar  alpha. When  alpha is
!>           zero then  A is not referenced and  B need not be set before
!>           entry.
!> \endverbatim
!>
!> \param[in] A
!> \verbatim
!>           A is DOUBLE PRECISION array, dimension ( LDA, k ), where k is m
!>           when  SIDE = 'L' or 'l'  and is  n  when  SIDE = 'R' or 'r'.
!>           Before entry  with  UPLO = 'U' or 'u',  the  leading  k by k
!>           upper triangular part of the array  A must contain the upper
!>           triangular matrix  and the strictly lower triangular part of
!>           A is not referenced.
!>           Before entry  with  UPLO = 'L' or 'l',  the  leading  k by k
!>           lower triangular part of the array  A must contain the lower
!>           triangular matrix  and the strictly upper triangular part of
!>           A is not referenced.
!>           Note that when  DIAG = 'U' or 'u',  the diagonal elements of
!>           A  are not referenced either,  but are assumed to be  unity.
!> \endverbatim
!>
!> \param[in] LDA
!> \verbatim
!>          LDA is INTEGER
!>           On entry, LDA specifies the first dimension of A as declared
!>           in the calling (sub) program.  When  SIDE = 'L' or 'l'  then
!>           LDA  must be at least  max( 1, m ),  when  SIDE = 'R' or 'r'
!>           then LDA must be at least max( 1, n ).
!> \endverbatim
!>
!> \param[in,out] B
!> \verbatim
!>          B is DOUBLE PRECISION array, dimension ( LDB, N )
!>           Before entry,  the leading  m by n part of the array  B must
!>           contain the matrix  B,  and  on exit  is overwritten  by the
!>           transformed matrix.
!> \endverbatim
!>
!> \param[in] LDB
!> \verbatim
!>          LDB is INTEGER
!>           On entry, LDB specifies the first dimension of B as declared
!>           in  the  calling  (sub)  program.   LDB  must  be  at  least
!>           max( 1, m ).
!> \endverbatim
!
!  Authors:
!  ========
!
!> \author Univ. of Tennessee
!> \author Univ. of California Berkeley
!> \author Univ. of Colorado Denver
!> \author NAG Ltd.
!
!> \date December 2016
!
!> \ingroup double_blas_level3
!
!> \par Further Details:
!  =====================
!>
!> \verbatim
!>
!>  Level 3 Blas routine.
!>
!>  -- Written on 8-February-1989.
!>     Jack Dongarra, Argonne National Laboratory.
!>     Iain Duff, AERE Harwell.
!>     Jeremy Du Croz, Numerical Algorithms Group Ltd.
!>     Sven Hammarling, Numerical Algorithms Group Ltd.
!> \endverbatim
!>
!  =====================================================================
!
!  -- Reference BLAS level3 routine (version 3.7.0) --
!  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
!  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
!     December 2016
!
!     .. Scalar Arguments ..
!     ..
!     .. Array Arguments ..
!     ..
!
!  =====================================================================
!
!     .. External Functions ..
!     ..
!     .. External Subroutines ..
!     ..
!     .. Intrinsic Functions ..
!     ..
!     .. Local Scalars ..
!     ..
!     .. Parameters ..
!     ..
!
!     Test the input parameters.
!
!
!
!     Quick return if possible.
!
!
!     And when  alpha.eq.zero.
!
!
!     Start the operations.
!
!
!           Form  B := alpha*A*B.
!
!
!           Form  B := alpha*A**T*B.
!
!
!           Form  B := alpha*B*A.
!
!
!           Form  B := alpha*B*A**T.
!
!
!
!     End of DTRMM .
!
! END
use M_blas, only : dtrmm_=>DTRMM
implicit none
      DOUBLE PRECISION ALPHA
      INTEGER LDA,LDB,M,N
      CHARACTER DIAG,SIDE,TRANSA,UPLO
      DOUBLE PRECISION A(LDA,*),B(LDB,*)
    call DTRMM_(SIDE,UPLO,TRANSA,DIAG,M,N,ALPHA,A,LDA,B,LDB)
end subroutine DTRMM

subroutine DTRMV(UPLO,TRANS,DIAG,N,A,LDA,X,INCX)
! COMMENT --file dtrmv.3m_blas.man
!> \brief \b DTRMV
!
!  =========== DOCUMENTATION ===========
!
! Online html documentation available at
!            http://www.netlib.org/lapack/explore-html/
!
!  Definition:
!  ===========
!
!       SUBROUTINE DTRMV(UPLO,TRANS,DIAG,N,A,LDA,X,INCX)
!
!       .. Scalar Arguments ..
!       INTEGER INCX,LDA,N
!       CHARACTER DIAG,TRANS,UPLO
!       ..
!       .. Array Arguments ..
!       DOUBLE PRECISION A(LDA,*),X(*)
!       ..
!
!
!> \par Purpose:
!  =============
!>
!> \verbatim
!>
!> DTRMV  performs one of the matrix-vector operations
!>
!>    x := A*x,   or   x := A**T*x,
!>
!> where x is an n element vector and  A is an n by n unit, or non-unit,
!> upper or lower triangular matrix.
!> \endverbatim
!
!  Arguments:
!  ==========
!
!> \param[in] UPLO
!> \verbatim
!>          UPLO is CHARACTER*1
!>           On entry, UPLO specifies whether the matrix is an upper or
!>           lower triangular matrix as follows:
!>
!>              UPLO = 'U' or 'u'   A is an upper triangular matrix.
!>
!>              UPLO = 'L' or 'l'   A is a lower triangular matrix.
!> \endverbatim
!>
!> \param[in] TRANS
!> \verbatim
!>          TRANS is CHARACTER*1
!>           On entry, TRANS specifies the operation to be performed as
!>           follows:
!>
!>              TRANS = 'N' or 'n'   x := A*x.
!>
!>              TRANS = 'T' or 't'   x := A**T*x.
!>
!>              TRANS = 'C' or 'c'   x := A**T*x.
!> \endverbatim
!>
!> \param[in] DIAG
!> \verbatim
!>          DIAG is CHARACTER*1
!>           On entry, DIAG specifies whether or not A is unit
!>           triangular as follows:
!>
!>              DIAG = 'U' or 'u'   A is assumed to be unit triangular.
!>
!>              DIAG = 'N' or 'n'   A is not assumed to be unit
!>                                  triangular.
!> \endverbatim
!>
!> \param[in] N
!> \verbatim
!>          N is INTEGER
!>           On entry, N specifies the order of the matrix A.
!>           N must be at least zero.
!> \endverbatim
!>
!> \param[in] A
!> \verbatim
!>          A is DOUBLE PRECISION array, dimension ( LDA, N )
!>           Before entry with  UPLO = 'U' or 'u', the leading n by n
!>           upper triangular part of the array A must contain the upper
!>           triangular matrix and the strictly lower triangular part of
!>           A is not referenced.
!>           Before entry with UPLO = 'L' or 'l', the leading n by n
!>           lower triangular part of the array A must contain the lower
!>           triangular matrix and the strictly upper triangular part of
!>           A is not referenced.
!>           Note that when  DIAG = 'U' or 'u', the diagonal elements of
!>           A are not referenced either, but are assumed to be unity.
!> \endverbatim
!>
!> \param[in] LDA
!> \verbatim
!>          LDA is INTEGER
!>           On entry, LDA specifies the first dimension of A as declared
!>           in the calling (sub) program. LDA must be at least
!>           max( 1, n ).
!> \endverbatim
!>
!> \param[in,out] X
!> \verbatim
!>          X is DOUBLE PRECISION array, dimension at least
!>           ( 1 + ( n - 1 )*abs( INCX ) ).
!>           Before entry, the incremented array X must contain the n
!>           element vector x. On exit, X is overwritten with the
!>           transformed vector x.
!> \endverbatim
!>
!> \param[in] INCX
!> \verbatim
!>          INCX is INTEGER
!>           On entry, INCX specifies the increment for the elements of
!>           X. INCX must not be zero.
!> \endverbatim
!
!  Authors:
!  ========
!
!> \author Univ. of Tennessee
!> \author Univ. of California Berkeley
!> \author Univ. of Colorado Denver
!> \author NAG Ltd.
!
!> \date December 2016
!
!> \ingroup double_blas_level2
!
!> \par Further Details:
!  =====================
!>
!> \verbatim
!>
!>  Level 2 Blas routine.
!>  The vector and matrix arguments are not referenced when N = 0, or M = 0
!>
!>  -- Written on 22-October-1986.
!>     Jack Dongarra, Argonne National Lab.
!>     Jeremy Du Croz, Nag Central Office.
!>     Sven Hammarling, Nag Central Office.
!>     Richard Hanson, Sandia National Labs.
!> \endverbatim
!>
!  =====================================================================
!
!  -- Reference BLAS level2 routine (version 3.7.0) --
!  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
!  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
!     December 2016
!
!     .. Scalar Arguments ..
!     ..
!     .. Array Arguments ..
!     ..
!
!  =====================================================================
!
!     .. Parameters ..
!     ..
!     .. Local Scalars ..
!     ..
!     .. External Functions ..
!     ..
!     .. External Subroutines ..
!     ..
!     .. Intrinsic Functions ..
!     ..
!
!     Test the input parameters.
!
!
!     Quick return if possible.
!
!
!
!     Set up the start point in X if the increment is not unity. This
!     will be  ( N - 1 )*INCX  too small for descending loops.
!
!
!     Start the operations. In this version the elements of A are
!     accessed sequentially with one pass through A.
!
!
!        Form  x := A*x.
!
!
!        Form  x := A**T*x.
!
!
!
!     End of DTRMV .
!
! END
use M_blas, only : dtrmv_=>DTRMV
implicit none
      INTEGER INCX,LDA,N
      CHARACTER DIAG,TRANS,UPLO
      DOUBLE PRECISION A(LDA,*),X(*)
    call DTRMV_(UPLO,TRANS,DIAG,N,A,LDA,X,INCX)
end subroutine DTRMV

subroutine DTRSM(SIDE,UPLO,TRANSA,DIAG,M,N,ALPHA,A,LDA,B,LDB)
! COMMENT --file dtrsm.3m_blas.man
!> \brief \b DTRSM
!
!  =========== DOCUMENTATION ===========
!
! Online html documentation available at
!            http://www.netlib.org/lapack/explore-html/
!
!  Definition:
!  ===========
!
!       SUBROUTINE DTRSM(SIDE,UPLO,TRANSA,DIAG,M,N,ALPHA,A,LDA,B,LDB)
!
!       .. Scalar Arguments ..
!       DOUBLE PRECISION ALPHA
!       INTEGER LDA,LDB,M,N
!       CHARACTER DIAG,SIDE,TRANSA,UPLO
!       ..
!       .. Array Arguments ..
!       DOUBLE PRECISION A(LDA,*),B(LDB,*)
!       ..
!
!
!> \par Purpose:
!  =============
!>
!> \verbatim
!>
!> DTRSM  solves one of the matrix equations
!>
!>    op( A )*X = alpha*B,   or   X*op( A ) = alpha*B,
!>
!> where alpha is a scalar, X and B are m by n matrices, A is a unit, or
!> non-unit,  upper or lower triangular matrix  and  op( A )  is one  of
!>
!>    op( A ) = A   or   op( A ) = A**T.
!>
!> The matrix X is overwritten on B.
!> \endverbatim
!
!  Arguments:
!  ==========
!
!> \param[in] SIDE
!> \verbatim
!>          SIDE is CHARACTER*1
!>           On entry, SIDE specifies whether op( A ) appears on the left
!>           or right of X as follows:
!>
!>              SIDE = 'L' or 'l'   op( A )*X = alpha*B.
!>
!>              SIDE = 'R' or 'r'   X*op( A ) = alpha*B.
!> \endverbatim
!>
!> \param[in] UPLO
!> \verbatim
!>          UPLO is CHARACTER*1
!>           On entry, UPLO specifies whether the matrix A is an upper or
!>           lower triangular matrix as follows:
!>
!>              UPLO = 'U' or 'u'   A is an upper triangular matrix.
!>
!>              UPLO = 'L' or 'l'   A is a lower triangular matrix.
!> \endverbatim
!>
!> \param[in] TRANSA
!> \verbatim
!>          TRANSA is CHARACTER*1
!>           On entry, TRANSA specifies the form of op( A ) to be used in
!>           the matrix multiplication as follows:
!>
!>              TRANSA = 'N' or 'n'   op( A ) = A.
!>
!>              TRANSA = 'T' or 't'   op( A ) = A**T.
!>
!>              TRANSA = 'C' or 'c'   op( A ) = A**T.
!> \endverbatim
!>
!> \param[in] DIAG
!> \verbatim
!>          DIAG is CHARACTER*1
!>           On entry, DIAG specifies whether or not A is unit triangular
!>           as follows:
!>
!>              DIAG = 'U' or 'u'   A is assumed to be unit triangular.
!>
!>              DIAG = 'N' or 'n'   A is not assumed to be unit
!>                                  triangular.
!> \endverbatim
!>
!> \param[in] M
!> \verbatim
!>          M is INTEGER
!>           On entry, M specifies the number of rows of B. M must be at
!>           least zero.
!> \endverbatim
!>
!> \param[in] N
!> \verbatim
!>          N is INTEGER
!>           On entry, N specifies the number of columns of B.  N must be
!>           at least zero.
!> \endverbatim
!>
!> \param[in] ALPHA
!> \verbatim
!>          ALPHA is DOUBLE PRECISION.
!>           On entry,  ALPHA specifies the scalar  alpha. When  alpha is
!>           zero then  A is not referenced and  B need not be set before
!>           entry.
!> \endverbatim
!>
!> \param[in] A
!> \verbatim
!>          A is DOUBLE PRECISION array, dimension ( LDA, k ),
!>           where k is m when SIDE = 'L' or 'l'
!>             and k is n when SIDE = 'R' or 'r'.
!>           Before entry  with  UPLO = 'U' or 'u',  the  leading  k by k
!>           upper triangular part of the array  A must contain the upper
!>           triangular matrix  and the strictly lower triangular part of
!>           A is not referenced.
!>           Before entry  with  UPLO = 'L' or 'l',  the  leading  k by k
!>           lower triangular part of the array  A must contain the lower
!>           triangular matrix  and the strictly upper triangular part of
!>           A is not referenced.
!>           Note that when  DIAG = 'U' or 'u',  the diagonal elements of
!>           A  are not referenced either,  but are assumed to be  unity.
!> \endverbatim
!>
!> \param[in] LDA
!> \verbatim
!>          LDA is INTEGER
!>           On entry, LDA specifies the first dimension of A as declared
!>           in the calling (sub) program.  When  SIDE = 'L' or 'l'  then
!>           LDA  must be at least  max( 1, m ),  when  SIDE = 'R' or 'r'
!>           then LDA must be at least max( 1, n ).
!> \endverbatim
!>
!> \param[in,out] B
!> \verbatim
!>          B is DOUBLE PRECISION array, dimension ( LDB, N )
!>           Before entry,  the leading  m by n part of the array  B must
!>           contain  the  right-hand  side  matrix  B,  and  on exit  is
!>           overwritten by the solution matrix  X.
!> \endverbatim
!>
!> \param[in] LDB
!> \verbatim
!>          LDB is INTEGER
!>           On entry, LDB specifies the first dimension of B as declared
!>           in  the  calling  (sub)  program.   LDB  must  be  at  least
!>           max( 1, m ).
!> \endverbatim
!
!  Authors:
!  ========
!
!> \author Univ. of Tennessee
!> \author Univ. of California Berkeley
!> \author Univ. of Colorado Denver
!> \author NAG Ltd.
!
!> \date December 2016
!
!> \ingroup double_blas_level3
!
!> \par Further Details:
!  =====================
!>
!> \verbatim
!>
!>  Level 3 Blas routine.
!>
!>
!>  -- Written on 8-February-1989.
!>     Jack Dongarra, Argonne National Laboratory.
!>     Iain Duff, AERE Harwell.
!>     Jeremy Du Croz, Numerical Algorithms Group Ltd.
!>     Sven Hammarling, Numerical Algorithms Group Ltd.
!> \endverbatim
!>
!  =====================================================================
!
!  -- Reference BLAS level3 routine (version 3.7.0) --
!  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
!  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
!     December 2016
!
!     .. Scalar Arguments ..
!     ..
!     .. Array Arguments ..
!     ..
!
!  =====================================================================
!
!     .. External Functions ..
!     ..
!     .. External Subroutines ..
!     ..
!     .. Intrinsic Functions ..
!     ..
!     .. Local Scalars ..
!     ..
!     .. Parameters ..
!     ..
!
!     Test the input parameters.
!
!
!
!     Quick return if possible.
!
!
!     And when  alpha.eq.zero.
!
!
!     Start the operations.
!
!
!           Form  B := alpha*inv( A )*B.
!
!
!           Form  B := alpha*inv( A**T )*B.
!
!
!           Form  B := alpha*B*inv( A ).
!
!
!           Form  B := alpha*B*inv( A**T ).
!
!
!
!     End of DTRSM .
!
! END
use M_blas, only : dtrsm_=>DTRSM
implicit none
      DOUBLE PRECISION ALPHA
      INTEGER LDA,LDB,M,N
      CHARACTER DIAG,SIDE,TRANSA,UPLO
      DOUBLE PRECISION A(LDA,*),B(LDB,*)
    call  DTRSM_(SIDE,UPLO,TRANSA,DIAG,M,N,ALPHA,A,LDA,B,LDB)
end subroutine DTRSM

subroutine DTRSV(UPLO,TRANS,DIAG,N,A,LDA,X,INCX)
! COMMENT --file dtrsv.3m_blas.man
!> \brief \b DTRSV
!
!  =========== DOCUMENTATION ===========
!
! Online html documentation available at
!            http://www.netlib.org/lapack/explore-html/
!
!  Definition:
!  ===========
!
!       SUBROUTINE DTRSV(UPLO,TRANS,DIAG,N,A,LDA,X,INCX)
!
!       .. Scalar Arguments ..
!       INTEGER INCX,LDA,N
!       CHARACTER DIAG,TRANS,UPLO
!       ..
!       .. Array Arguments ..
!       DOUBLE PRECISION A(LDA,*),X(*)
!       ..
!
!
!> \par Purpose:
!  =============
!>
!> \verbatim
!>
!> DTRSV  solves one of the systems of equations
!>
!>    A*x = b,   or   A**T*x = b,
!>
!> where b and x are n element vectors and A is an n by n unit, or
!> non-unit, upper or lower triangular matrix.
!>
!> No test for singularity or near-singularity is included in this
!> routine. Such tests must be performed before calling this routine.
!> \endverbatim
!
!  Arguments:
!  ==========
!
!> \param[in] UPLO
!> \verbatim
!>          UPLO is CHARACTER*1
!>           On entry, UPLO specifies whether the matrix is an upper or
!>           lower triangular matrix as follows:
!>
!>              UPLO = 'U' or 'u'   A is an upper triangular matrix.
!>
!>              UPLO = 'L' or 'l'   A is a lower triangular matrix.
!> \endverbatim
!>
!> \param[in] TRANS
!> \verbatim
!>          TRANS is CHARACTER*1
!>           On entry, TRANS specifies the equations to be solved as
!>           follows:
!>
!>              TRANS = 'N' or 'n'   A*x = b.
!>
!>              TRANS = 'T' or 't'   A**T*x = b.
!>
!>              TRANS = 'C' or 'c'   A**T*x = b.
!> \endverbatim
!>
!> \param[in] DIAG
!> \verbatim
!>          DIAG is CHARACTER*1
!>           On entry, DIAG specifies whether or not A is unit
!>           triangular as follows:
!>
!>              DIAG = 'U' or 'u'   A is assumed to be unit triangular.
!>
!>              DIAG = 'N' or 'n'   A is not assumed to be unit
!>                                  triangular.
!> \endverbatim
!>
!> \param[in] N
!> \verbatim
!>          N is INTEGER
!>           On entry, N specifies the order of the matrix A.
!>           N must be at least zero.
!> \endverbatim
!>
!> \param[in] A
!> \verbatim
!>          A is DOUBLE PRECISION array, dimension ( LDA, N )
!>           Before entry with  UPLO = 'U' or 'u', the leading n by n
!>           upper triangular part of the array A must contain the upper
!>           triangular matrix and the strictly lower triangular part of
!>           A is not referenced.
!>           Before entry with UPLO = 'L' or 'l', the leading n by n
!>           lower triangular part of the array A must contain the lower
!>           triangular matrix and the strictly upper triangular part of
!>           A is not referenced.
!>           Note that when  DIAG = 'U' or 'u', the diagonal elements of
!>           A are not referenced either, but are assumed to be unity.
!> \endverbatim
!>
!> \param[in] LDA
!> \verbatim
!>          LDA is INTEGER
!>           On entry, LDA specifies the first dimension of A as declared
!>           in the calling (sub) program. LDA must be at least
!>           max( 1, n ).
!> \endverbatim
!>
!> \param[in,out] X
!> \verbatim
!>          X is DOUBLE PRECISION array, dimension at least
!>           ( 1 + ( n - 1 )*abs( INCX ) ).
!>           Before entry, the incremented array X must contain the n
!>           element right-hand side vector b. On exit, X is overwritten
!>           with the solution vector x.
!> \endverbatim
!>
!> \param[in] INCX
!> \verbatim
!>          INCX is INTEGER
!>           On entry, INCX specifies the increment for the elements of
!>           X. INCX must not be zero.
!>
!>  Level 2 Blas routine.
!>
!>  -- Written on 22-October-1986.
!>     Jack Dongarra, Argonne National Lab.
!>     Jeremy Du Croz, Nag Central Office.
!>     Sven Hammarling, Nag Central Office.
!>     Richard Hanson, Sandia National Labs.
!> \endverbatim
!
!  Authors:
!  ========
!
!> \author Univ. of Tennessee
!> \author Univ. of California Berkeley
!> \author Univ. of Colorado Denver
!> \author NAG Ltd.
!
!> \date December 2016
!
!> \ingroup double_blas_level1
!
!  =====================================================================
!
!  -- Reference BLAS level1 routine (version 3.7.0) --
!  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
!  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
!     December 2016
!
!     .. Scalar Arguments ..
!     ..
!     .. Array Arguments ..
!     ..
!
!  =====================================================================
!
!     .. Parameters ..
!     ..
!     .. Local Scalars ..
!     ..
!     .. External Functions ..
!     ..
!     .. External Subroutines ..
!     ..
!     .. Intrinsic Functions ..
!     ..
!
!     Test the input parameters.
!
!
!     Quick return if possible.
!
!
!
!     Set up the start point in X if the increment is not unity. This
!     will be  ( N - 1 )*INCX  too small for descending loops.
!
!
!     Start the operations. In this version the elements of A are
!     accessed sequentially with one pass through A.
!
!
!        Form  x := inv( A )*x.
!
!
!        Form  x := inv( A**T )*x.
!
!
!
!     End of DTRSV .
!
! END
use M_blas, only : dtrsv_=>DTRSV
implicit none
      INTEGER INCX,LDA,N
      CHARACTER DIAG,TRANS,UPLO
      DOUBLE PRECISION A(LDA,*),X(*)
    call  DTRSV_(UPLO,TRANS,DIAG,N,A,LDA,X,INCX)
end subroutine DTRSV

 DOUBLE PRECISION FUNCTION DZASUM(N,ZX,INCX)
! COMMENT --file dzasum.3m_blas.man
!> \brief \b DZASUM
!
!  =========== DOCUMENTATION ===========
!
! Online html documentation available at
!            http://www.netlib.org/lapack/explore-html/
!
!  Definition:
!  ===========
!
!       DOUBLE PRECISION FUNCTION DZASUM(N,ZX,INCX)
!
!       .. Scalar Arguments ..
!       INTEGER INCX,N
!       ..
!       .. Array Arguments ..
!       COMPLEX*16 ZX(*)
!       ..
!
!
!> \par Purpose:
!  =============
!>
!> \verbatim
!>
!>    DZASUM takes the sum of the (|Re(.)| + |Im(.)|)'s of a complex vector and
!>    returns a double precision result.
!> \endverbatim
!
!  Arguments:
!  ==========
!
!> \param[in] N
!> \verbatim
!>          N is INTEGER
!>         number of elements in input vector(s)
!> \endverbatim
!>
!> \param[in,out] ZX
!> \verbatim
!>          ZX is COMPLEX*16 array, dimension ( 1 + ( N - 1 )*abs( INCX ) )
!> \endverbatim
!>
!> \param[in] INCX
!> \verbatim
!>          INCX is INTEGER
!>         storage spacing between elements of ZX
!> \endverbatim
!
!  Authors:
!  ========
!
!> \author Univ. of Tennessee
!> \author Univ. of California Berkeley
!> \author Univ. of Colorado Denver
!> \author NAG Ltd.
!
!> \date November 2017
!
!> \ingroup double_blas_level1
!
!> \par Further Details:
!  =====================
!>
!> \verbatim
!>
!>     jack dongarra, 3/11/78.
!>     modified 3/93 to return if incx .le. 0.
!>     modified 12/3/93, array(1) declarations changed to array(*)
!> \endverbatim
!>
!  =====================================================================
!
!  -- Reference BLAS level1 routine (version 3.8.0) --
!  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
!  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
!     November 2017
!
!     .. Scalar Arguments ..
!     ..
!     .. Array Arguments ..
!     ..
!
!  =====================================================================
!
!     .. Local Scalars ..
!     ..
!     .. External Functions ..
!     ..
!
!        code for increment equal to 1
!
!
!        code for increment not equal to 1
!
! END
use M_blas, only : dzasum_=>DZASUM
implicit none
      INTEGER INCX,N
      COMPLEX*16 ZX(*)
      dzasum=DZASUM_(N,ZX,INCX)
      END FUNCTION DZASUM

 DOUBLE PRECISION FUNCTION DZNRM2(N,X,INCX)
! COMMENT --file dznrm2.3m_blas.man
!> \brief \b DZNRM2
!
!  =========== DOCUMENTATION ===========
!
! Online html documentation available at
!            http://www.netlib.org/lapack/explore-html/
!
!  Definition:
!  ===========
!
!       DOUBLE PRECISION FUNCTION DZNRM2(N,X,INCX)
!
!       .. Scalar Arguments ..
!       INTEGER INCX,N
!       ..
!       .. Array Arguments ..
!       COMPLEX*16 X(*)
!       ..
!
!
!> \par Purpose:
!  =============
!>
!> \verbatim
!>
!> DZNRM2 returns the euclidean norm of a vector via the function
!> name, so that
!>
!>    DZNRM2 := sqrt( x**H*x )
!> \endverbatim
!
!  Arguments:
!  ==========
!
!> \param[in] N
!> \verbatim
!>          N is INTEGER
!>         number of elements in input vector(s)
!> \endverbatim
!>
!> \param[in] X
!> \verbatim
!>          X is COMPLEX*16 array, dimension (N)
!>         complex vector with N elements
!> \endverbatim
!>
!> \param[in] INCX
!> \verbatim
!>          INCX is INTEGER
!>         storage spacing between elements of X
!> \endverbatim
!
!  Authors:
!  ========
!
!> \author Univ. of Tennessee
!> \author Univ. of California Berkeley
!> \author Univ. of Colorado Denver
!> \author NAG Ltd.
!
!> \date November 2017
!
!> \ingroup double_blas_level1
!
!> \par Further Details:
!  =====================
!>
!> \verbatim
!>
!>  -- This version written on 25-October-1982.
!>     Modified on 14-October-1993 to inline the call to ZLASSQ.
!>     Sven Hammarling, Nag Ltd.
!> \endverbatim
!>
!  =====================================================================
!
!  -- Reference BLAS level1 routine (version 3.8.0) --
!  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
!  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
!     November 2017
!
!     .. Scalar Arguments ..
!     ..
!     .. Array Arguments ..
!     ..
!
!  =====================================================================
!
!     .. Parameters ..
!     ..
!     .. Local Scalars ..
!     ..
!     .. Intrinsic Functions ..
!     ..
!        The following loop is equivalent to this call to the LAPACK
!        auxiliary routine:
!        CALL ZLASSQ( N, X, INCX, SCALE, SSQ )
!
!
!
!     End of DZNRM2.
!
! END
use M_blas, only : dznrm2_=>DZNRM2
implicit none
      INTEGER INCX,N
      COMPLEX*16 X(*)
      dznrm2=DZNRM2_(N,X,INCX)
      END FUNCTION DZNRM2

 INTEGER FUNCTION ICAMAX(N,CX,INCX)
! COMMENT --file icamax.3m_blas.man
!> \brief \b ICAMAX
!
!  =========== DOCUMENTATION ===========
!
! Online html documentation available at
!            http://www.netlib.org/lapack/explore-html/
!
!  Definition:
!  ===========
!
!       INTEGER FUNCTION ICAMAX(N,CX,INCX)
!
!       .. Scalar Arguments ..
!       INTEGER INCX,N
!       ..
!       .. Array Arguments ..
!       COMPLEX CX(*)
!       ..
!
!
!> \par Purpose:
!  =============
!>
!> \verbatim
!>
!>    ICAMAX finds the index of the first element having maximum |Re(.)| + |Im(.)|
!> \endverbatim
!
!  Arguments:
!  ==========
!
!> \param[in] N
!> \verbatim
!>          N is INTEGER
!>         number of elements in input vector(s)
!> \endverbatim
!>
!> \param[in] CX
!> \verbatim
!>          CX is COMPLEX array, dimension ( 1 + ( N - 1 )*abs( INCX ) )
!> \endverbatim
!>
!> \param[in] INCX
!> \verbatim
!>          INCX is INTEGER
!>         storage spacing between elements of CX
!> \endverbatim
!
!  Authors:
!  ========
!
!> \author Univ. of Tennessee
!> \author Univ. of California Berkeley
!> \author Univ. of Colorado Denver
!> \author NAG Ltd.
!
!> \date November 2017
!
!> \ingroup aux_blas
!
!> \par Further Details:
!  =====================
!>
!> \verbatim
!>
!>     jack dongarra, linpack, 3/11/78.
!>     modified 3/93 to return if incx .le. 0.
!>     modified 12/3/93, array(1) declarations changed to array(*)
!> \endverbatim
!>
!  =====================================================================
!
!  -- Reference BLAS level1 routine (version 3.8.0) --
!  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
!  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
!     November 2017
!
!     .. Scalar Arguments ..
!     ..
!     .. Array Arguments ..
!     ..
!
!  =====================================================================
!
!     .. Local Scalars ..
!     ..
!     .. External Functions ..
!     ..
!
!        code for increment equal to 1
!
!
!        code for increment not equal to 1
!
! END
use M_blas, only : icamax_=>ICAMAX
implicit none
      INTEGER INCX,N
      COMPLEX CX(*)
      icamax=ICAMAX_(N,CX,INCX)
      END FUNCTION ICAMAX

 INTEGER FUNCTION IDAMAX(N,DX,INCX)
! COMMENT --file idamax.3m_blas.man
!> \brief \b IDAMAX
!
!  =========== DOCUMENTATION ===========
!
! Online html documentation available at
!            http://www.netlib.org/lapack/explore-html/
!
!  Definition:
!  ===========
!
!       INTEGER FUNCTION IDAMAX(N,DX,INCX)
!
!       .. Scalar Arguments ..
!       INTEGER INCX,N
!       ..
!       .. Array Arguments ..
!       DOUBLE PRECISION DX(*)
!       ..
!
!
!> \par Purpose:
!  =============
!>
!> \verbatim
!>
!>    IDAMAX finds the index of the first element having maximum absolute value.
!> \endverbatim
!
!  Arguments:
!  ==========
!
!> \param[in] N
!> \verbatim
!>          N is INTEGER
!>         number of elements in input vector(s)
!> \endverbatim
!>
!> \param[in] DX
!> \verbatim
!>          DX is DOUBLE PRECISION array, dimension ( 1 + ( N - 1 )*abs( INCX ) )
!> \endverbatim
!>
!> \param[in] INCX
!> \verbatim
!>          INCX is INTEGER
!>         storage spacing between elements of DX
!> \endverbatim
!
!  Authors:
!  ========
!
!> \author Univ. of Tennessee
!> \author Univ. of California Berkeley
!> \author Univ. of Colorado Denver
!> \author NAG Ltd.
!
!> \date November 2017
!
!> \ingroup aux_blas
!
!> \par Further Details:
!  =====================
!>
!> \verbatim
!>
!>     jack dongarra, linpack, 3/11/78.
!>     modified 3/93 to return if incx .le. 0.
!>     modified 12/3/93, array(1) declarations changed to array(*)
!> \endverbatim
!>
!  =====================================================================
!
!  -- Reference BLAS level1 routine (version 3.8.0) --
!  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
!  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
!     November 2017
!
!     .. Scalar Arguments ..
!     ..
!     .. Array Arguments ..
!     ..
!
!  =====================================================================
!
!     .. Local Scalars ..
!     ..
!     .. Intrinsic Functions ..
!     ..
!
!        code for increment equal to 1
!
!
!        code for increment not equal to 1
!
! END
use M_blas, only : idamax_=>IDAMAX
implicit none
      INTEGER INCX,N
      DOUBLE PRECISION DX(*)
      idamax=IDAMAX_(N,DX,INCX)
      END FUNCTION IDAMAX

 INTEGER FUNCTION ISAMAX(N,SX,INCX)
! COMMENT --file isamax.3m_blas.man
!> \brief \b ISAMAX
!
!  =========== DOCUMENTATION ===========
!
! Online html documentation available at
!            http://www.netlib.org/lapack/explore-html/
!
!  Definition:
!  ===========
!
!       INTEGER FUNCTION ISAMAX(N,SX,INCX)
!
!       .. Scalar Arguments ..
!       INTEGER INCX,N
!       ..
!       .. Array Arguments ..
!       REAL SX(*)
!       ..
!
!
!> \par Purpose:
!  =============
!>
!> \verbatim
!>
!>    ISAMAX finds the index of the first element having maximum absolute value.
!> \endverbatim
!
!  Arguments:
!  ==========
!
!> \param[in] N
!> \verbatim
!>          N is INTEGER
!>         number of elements in input vector(s)
!> \endverbatim
!>
!> \param[in] SX
!> \verbatim
!>          SX is REAL array, dimension ( 1 + ( N - 1 )*abs( INCX ) )
!> \endverbatim
!>
!> \param[in] INCX
!> \verbatim
!>          INCX is INTEGER
!>         storage spacing between elements of SX
!> \endverbatim
!
!  Authors:
!  ========
!
!> \author Univ. of Tennessee
!> \author Univ. of California Berkeley
!> \author Univ. of Colorado Denver
!> \author NAG Ltd.
!
!> \date November 2017
!
!> \ingroup aux_blas
!
!> \par Further Details:
!  =====================
!>
!> \verbatim
!>
!>     jack dongarra, linpack, 3/11/78.
!>     modified 3/93 to return if incx .le. 0.
!>     modified 12/3/93, array(1) declarations changed to array(*)
!> \endverbatim
!>
!  =====================================================================
!
!  -- Reference BLAS level1 routine (version 3.8.0) --
!  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
!  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
!     November 2017
!
!     .. Scalar Arguments ..
!     ..
!     .. Array Arguments ..
!     ..
!
!  =====================================================================
!
!     .. Local Scalars ..
!     ..
!     .. Intrinsic Functions ..
!     ..
!
!        code for increment equal to 1
!
!
!        code for increment not equal to 1
!
! END
use M_blas, only : isamax_=>ISAMAX
implicit none
      INTEGER INCX,N
      REAL SX(*)
      isamax=ISAMAX_(N,SX,INCX)
      END FUNCTION ISAMAX

 INTEGER FUNCTION IZAMAX(N,ZX,INCX)
! COMMENT --file izamax.3m_blas.man
!> \brief \b IZAMAX
!
!  =========== DOCUMENTATION ===========
!
! Online html documentation available at
!            http://www.netlib.org/lapack/explore-html/
!
!  Definition:
!  ===========
!
!       INTEGER FUNCTION IZAMAX(N,ZX,INCX)
!
!       .. Scalar Arguments ..
!       INTEGER INCX,N
!       ..
!       .. Array Arguments ..
!       COMPLEX*16 ZX(*)
!       ..
!
!
!> \par Purpose:
!  =============
!>
!> \verbatim
!>
!>    IZAMAX finds the index of the first element having maximum |Re(.)| + |Im(.)|
!> \endverbatim
!
!  Arguments:
!  ==========
!
!> \param[in] N
!> \verbatim
!>          N is INTEGER
!>         number of elements in input vector(s)
!> \endverbatim
!>
!> \param[in] ZX
!> \verbatim
!>          ZX is COMPLEX*16 array, dimension ( 1 + ( N - 1 )*abs( INCX ) )
!> \endverbatim
!>
!> \param[in] INCX
!> \verbatim
!>          INCX is INTEGER
!>         storage spacing between elements of ZX
!> \endverbatim
!
!  Authors:
!  ========
!
!> \author Univ. of Tennessee
!> \author Univ. of California Berkeley
!> \author Univ. of Colorado Denver
!> \author NAG Ltd.
!
!> \date November 2017
!
!> \ingroup aux_blas
!
!> \par Further Details:
!  =====================
!>
!> \verbatim
!>
!>     jack dongarra, 1/15/85.
!>     modified 3/93 to return if incx .le. 0.
!>     modified 12/3/93, array(1) declarations changed to array(*)
!> \endverbatim
!>
!  =====================================================================
!
!  -- Reference BLAS level1 routine (version 3.8.0) --
!  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
!  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
!     November 2017
!
!     .. Scalar Arguments ..
!     ..
!     .. Array Arguments ..
!     ..
!
!  =====================================================================
!
!     .. Local Scalars ..
!     ..
!     .. External Functions ..
!     ..
!
!        code for increment equal to 1
!
!
!        code for increment not equal to 1
!
! END
use M_blas, only : izamax_=>IZAMAX
implicit none
      INTEGER INCX,N
      COMPLEX*16 ZX(*)
      izamax=IZAMAX_(N,ZX,INCX)
      END FUNCTION IZAMAX

 LOGICAL FUNCTION LSAME(CA,CB)
! COMMENT --file lsame.3m_blas.man
!> \brief \b LSAME
!
!  =========== DOCUMENTATION ===========
!
! Online html documentation available at
!            http://www.netlib.org/lapack/explore-html/
!
!  Definition:
!  ===========
!
!       LOGICAL FUNCTION LSAME(CA,CB)
!
!       .. Scalar Arguments ..
!       CHARACTER CA,CB
!       ..
!
!
!> \par Purpose:
!  =============
!>
!> \verbatim
!>
!> LSAME returns .TRUE. if CA is the same letter as CB regardless of
!> case.
!> \endverbatim
!
!  Arguments:
!  ==========
!
!> \param[in] CA
!> \verbatim
!>          CA is CHARACTER*1
!> \endverbatim
!>
!> \param[in] CB
!> \verbatim
!>          CB is CHARACTER*1
!>          CA and CB specify the single characters to be compared.
!> \endverbatim
!
!  Authors:
!  ========
!
!> \author Univ. of Tennessee
!> \author Univ. of California Berkeley
!> \author Univ. of Colorado Denver
!> \author NAG Ltd.
!
!> \date December 2016
!
!> \ingroup aux_blas
!
!  =====================================================================
!
!  -- Reference BLAS level1 routine (version 3.1) --
!  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
!  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
!     December 2016
!
!     .. Scalar Arguments ..
!     ..
!
! =====================================================================
!
!     .. Intrinsic Functions ..
!     ..
!     .. Local Scalars ..
!     ..
!
!     Test if the characters are equal
!
!
!     Now test for equivalence if both characters are alphabetic.
!
!
!     Use 'Z' rather than 'A' so that ASCII can be detected on Prime
!     machines, on which ICHAR returns a value with bit 8 set.
!     ICHAR('A') on Prime machines returns 193 which is the same as
!     ICHAR('A') on an EBCDIC machine.
!
!
!
!        ASCII is assumed - ZCODE is the ASCII code of either lower or
!        upper case 'Z'.
!
!
!
!        EBCDIC is assumed - ZCODE is the EBCDIC code of either lower or
!        upper case 'Z'.
!
!
!
!        ASCII is assumed, on Prime machines - ZCODE is the ASCII code
!        plus 128 of either lower or upper case 'Z'.
!
!
!     RETURN
!
!     End of LSAME
!
! END
use M_blas, only : lsame_=>LSAME
implicit none
      CHARACTER CA,CB
      lsame=LSAME_(CA,CB)
      END FUNCTION LSAME

 REAL FUNCTION SASUM(N,SX,INCX)
! COMMENT --file sasum.3m_blas.man
!> \brief \b SASUM
!
!  =========== DOCUMENTATION ===========
!
! Online html documentation available at
!            http://www.netlib.org/lapack/explore-html/
!
!  Definition:
!  ===========
!
!       REAL FUNCTION SASUM(N,SX,INCX)
!
!       .. Scalar Arguments ..
!       INTEGER INCX,N
!       ..
!       .. Array Arguments ..
!       REAL SX(*)
!       ..
!
!
!> \par Purpose:
!  =============
!>
!> \verbatim
!>
!>    SASUM takes the sum of the absolute values.
!>    uses unrolled loops for increment equal to one.
!> \endverbatim
!
!  Arguments:
!  ==========
!
!> \param[in] N
!> \verbatim
!>          N is INTEGER
!>         number of elements in input vector(s)
!> \endverbatim
!>
!> \param[in] SX
!> \verbatim
!>          SX is REAL array, dimension ( 1 + ( N - 1 )*abs( INCX ) )
!> \endverbatim
!>
!> \param[in] INCX
!> \verbatim
!>          INCX is INTEGER
!>         storage spacing between elements of SX
!> \endverbatim
!
!  Authors:
!  ========
!
!> \author Univ. of Tennessee
!> \author Univ. of California Berkeley
!> \author Univ. of Colorado Denver
!> \author NAG Ltd.
!
!> \date November 2017
!
!> \ingroup single_blas_level1
!
!> \par Further Details:
!  =====================
!>
!> \verbatim
!>
!>     jack dongarra, linpack, 3/11/78.
!>     modified 3/93 to return if incx .le. 0.
!>     modified 12/3/93, array(1) declarations changed to array(*)
!> \endverbatim
!>
!  =====================================================================
!
!  -- Reference BLAS level1 routine (version 3.8.0) --
!  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
!  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
!     November 2017
!
!     .. Scalar Arguments ..
!     ..
!     .. Array Arguments ..
!     ..
!
!  =====================================================================
!
!     .. Local Scalars ..
!     ..
!     .. Intrinsic Functions ..
!     ..
!        code for increment equal to 1
!
!
!        clean-up loop
!
!
!        code for increment not equal to 1
!
! END
use M_blas, only : sasum_=>SASUM
implicit none
      INTEGER INCX,N
      REAL SX(*)
      sasum=SASUM_(N,SX,INCX)
      END FUNCTION SASUM

subroutine SAXPY(N,SA,SX,INCX,SY,INCY)
! COMMENT --file saxpy.3m_blas.man
!> \brief \b SAXPY
!
!  =========== DOCUMENTATION ===========
!
! Online html documentation available at
!            http://www.netlib.org/lapack/explore-html/
!
!  Definition:
!  ===========
!
!       SUBROUTINE SAXPY(N,SA,SX,INCX,SY,INCY)
!
!       .. Scalar Arguments ..
!       REAL SA
!       INTEGER INCX,INCY,N
!       ..
!       .. Array Arguments ..
!       REAL SX(*),SY(*)
!       ..
!
!
!> \par Purpose:
!  =============
!>
!> \verbatim
!>
!>    SAXPY constant times a vector plus a vector.
!>    uses unrolled loops for increments equal to one.
!> \endverbatim
!
!  Arguments:
!  ==========
!
!> \param[in] N
!> \verbatim
!>          N is INTEGER
!>         number of elements in input vector(s)
!> \endverbatim
!>
!> \param[in] SA
!> \verbatim
!>          SA is REAL
!>           On entry, SA specifies the scalar alpha.
!> \endverbatim
!>
!> \param[in] SX
!> \verbatim
!>          SX is REAL array, dimension ( 1 + ( N - 1 )*abs( INCX ) )
!> \endverbatim
!>
!> \param[in] INCX
!> \verbatim
!>          INCX is INTEGER
!>         storage spacing between elements of SX
!> \endverbatim
!>
!> \param[in,out] SY
!> \verbatim
!>          SY is REAL array, dimension ( 1 + ( N - 1 )*abs( INCY ) )
!> \endverbatim
!>
!> \param[in] INCY
!> \verbatim
!>          INCY is INTEGER
!>         storage spacing between elements of SY
!> \endverbatim
!
!  Authors:
!  ========
!
!> \author Univ. of Tennessee
!> \author Univ. of California Berkeley
!> \author Univ. of Colorado Denver
!> \author NAG Ltd.
!
!> \date November 2017
!
!> \ingroup single_blas_level1
!
!> \par Further Details:
!  =====================
!>
!> \verbatim
!>
!>     jack dongarra, linpack, 3/11/78.
!>     modified 12/3/93, array(1) declarations changed to array(*)
!> \endverbatim
!>
!  =====================================================================
!
!  -- Reference BLAS level1 routine (version 3.8.0) --
!  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
!  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
!     November 2017
!
!     .. Scalar Arguments ..
!     ..
!     .. Array Arguments ..
!     ..
!
!  =====================================================================
!
!     .. Local Scalars ..
!     ..
!     .. Intrinsic Functions ..
!     ..
!
!        code for both increments equal to 1
!
!
!        clean-up loop
!
!
!        code for unequal increments or equal increments
!          not equal to 1
!
! END
use M_blas, only : saxpy_=>SAXPY
implicit none
      REAL SA
      INTEGER INCX,INCY,N
      REAL SX(*),SY(*)
    call SAXPY_(N,SA,SX,INCX,SY,INCY)
end subroutine SAXPY

 real function scabs1(z)
! COMMENT --file scabs1.3m_blas.man
!> \brief \b SCABS1
!
!  =========== DOCUMENTATION ===========
!
! Online html documentation available at
!            http://www.netlib.org/lapack/explore-html/
!
!  Definition:
!  ===========
!
!       REAL FUNCTION SCABS1(Z)
!
!       .. Scalar Arguments ..
!       COMPLEX Z
!       ..
!
!
!> \par Purpose:
!  =============
!>
!> \verbatim
!>
!> SCABS1 computes |Re(.)| + |Im(.)| of a complex number
!> \endverbatim
!
!  Arguments:
!  ==========
!
!> \param[in] Z
!> \verbatim
!>          Z is COMPLEX
!> \endverbatim
!
!  Authors:
!  ========
!
!> \author Univ. of Tennessee
!> \author Univ. of California Berkeley
!> \author Univ. of Colorado Denver
!> \author NAG Ltd.
!
!> \date November 2017
!
!> \ingroup single_blas_level1
!
!  =====================================================================
!
!  -- Reference BLAS level1 routine (version 3.8.0) --
!  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
!  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
!     November 2017
!
!     .. Scalar Arguments ..
!     ..
!
!  =====================================================================
!
!     .. Intrinsic Functions ..
!     ..
! END
use M_blas, only : scabs1_=>SCAbs1
implicit none
complex,intent(in) :: z
   scabs1 = scabs1_(z)
end function scabs1

 REAL FUNCTION SCASUM(N,CX,INCX)
! COMMENT --file scasum.3m_blas.man
!> \brief \b SCASUM
!
!  =========== DOCUMENTATION ===========
!
! Online html documentation available at
!            http://www.netlib.org/lapack/explore-html/
!
!  Definition:
!  ===========
!
!       REAL FUNCTION SCASUM(N,CX,INCX)
!
!       .. Scalar Arguments ..
!       INTEGER INCX,N
!       ..
!       .. Array Arguments ..
!       COMPLEX CX(*)
!       ..
!
!
!> \par Purpose:
!  =============
!>
!> \verbatim
!>
!>    SCASUM takes the sum of the (|Re(.)| + |Im(.)|)'s of a complex vector and
!>    returns a single precision result.
!> \endverbatim
!
!  Arguments:
!  ==========
!
!> \param[in] N
!> \verbatim
!>          N is INTEGER
!>         number of elements in input vector(s)
!> \endverbatim
!>
!> \param[in,out] CX
!> \verbatim
!>          CX is COMPLEX array, dimension ( 1 + ( N - 1 )*abs( INCX ) )
!> \endverbatim
!>
!> \param[in] INCX
!> \verbatim
!>          INCX is INTEGER
!>         storage spacing between elements of SX
!> \endverbatim
!
!  Authors:
!  ========
!
!> \author Univ. of Tennessee
!> \author Univ. of California Berkeley
!> \author Univ. of Colorado Denver
!> \author NAG Ltd.
!
!> \date November 2017
!
!> \ingroup single_blas_level1
!
!> \par Further Details:
!  =====================
!>
!> \verbatim
!>
!>     jack dongarra, linpack, 3/11/78.
!>     modified 3/93 to return if incx .le. 0.
!>     modified 12/3/93, array(1) declarations changed to array(*)
!> \endverbatim
!>
!  =====================================================================
!
!  -- Reference BLAS level1 routine (version 3.8.0) --
!  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
!  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
!     November 2017
!
!     .. Scalar Arguments ..
!     ..
!     .. Array Arguments ..
!     ..
!
!  =====================================================================
!
!     .. Local Scalars ..
!     ..
!     .. Intrinsic Functions ..
!     ..
!
!        code for increment equal to 1
!
!
!        code for increment not equal to 1
!
! END
use M_blas, only : scasum_=>SCASUM
implicit none
      INTEGER INCX,N
      COMPLEX CX(*)
     scasum=SCASUM_(N,CX,INCX)
      END FUNCTION SCASUM

 REAL FUNCTION SCNRM2(N,X,INCX)
! COMMENT --file scnrm2.3m_blas.man
!> \brief \b SCNRM2
!
!  =========== DOCUMENTATION ===========
!
! Online html documentation available at
!            http://www.netlib.org/lapack/explore-html/
!
!  Definition:
!  ===========
!
!       REAL FUNCTION SCNRM2(N,X,INCX)
!
!       .. Scalar Arguments ..
!       INTEGER INCX,N
!       ..
!       .. Array Arguments ..
!       COMPLEX X(*)
!       ..
!
!
!> \par Purpose:
!  =============
!>
!> \verbatim
!>
!> SCNRM2 returns the euclidean norm of a vector via the function
!> name, so that
!>
!>    SCNRM2 := sqrt( x**H*x )
!> \endverbatim
!
!  Arguments:
!  ==========
!
!> \param[in] N
!> \verbatim
!>          N is INTEGER
!>         number of elements in input vector(s)
!> \endverbatim
!>
!> \param[in] X
!> \verbatim
!>          X is COMPLEX array, dimension (N)
!>         complex vector with N elements
!> \endverbatim
!>
!> \param[in] INCX
!> \verbatim
!>          INCX is INTEGER
!>         storage spacing between elements of X
!> \endverbatim
!
!  Authors:
!  ========
!
!> \author Univ. of Tennessee
!> \author Univ. of California Berkeley
!> \author Univ. of Colorado Denver
!> \author NAG Ltd.
!
!> \date November 2017
!
!> \ingroup single_blas_level1
!
!> \par Further Details:
!  =====================
!>
!> \verbatim
!>
!>  -- This version written on 25-October-1982.
!>     Modified on 14-October-1993 to inline the call to CLASSQ.
!>     Sven Hammarling, Nag Ltd.
!> \endverbatim
!>
!  =====================================================================
!
!  -- Reference BLAS level1 routine (version 3.8.0) --
!  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
!  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
!     November 2017
!
!     .. Scalar Arguments ..
!     ..
!     .. Array Arguments ..
!     ..
!
!  =====================================================================
!
!     .. Parameters ..
!     ..
!     .. Local Scalars ..
!     ..
!     .. Intrinsic Functions ..
!     ..
!        The following loop is equivalent to this call to the LAPACK
!        auxiliary routine:
!        CALL CLASSQ( N, X, INCX, SCALE, SSQ )
!
!
!
!     End of SCNRM2.
!
! END
use M_blas, only : scnrm2_=>SCNRM2
implicit none
      INTEGER INCX,N
      COMPLEX X(*)
      scnrm2=SCNRM2_(N,X,INCX)
      END FUNCTION SCNRM2

subroutine SCOPY(N,SX,INCX,SY,INCY)
! COMMENT --file scopy.3m_blas.man
!> \brief \b SCOPY
!
!  =========== DOCUMENTATION ===========
!
! Online html documentation available at
!            http://www.netlib.org/lapack/explore-html/
!
!  Definition:
!  ===========
!
!       SUBROUTINE SCOPY(N,SX,INCX,SY,INCY)
!
!       .. Scalar Arguments ..
!       INTEGER INCX,INCY,N
!       ..
!       .. Array Arguments ..
!       REAL SX(*),SY(*)
!       ..
!
!
!> \par Purpose:
!  =============
!>
!> \verbatim
!>
!>    SCOPY copies a vector, x, to a vector, y.
!>    uses unrolled loops for increments equal to 1.
!> \endverbatim
!
!  Arguments:
!  ==========
!
!> \param[in] N
!> \verbatim
!>          N is INTEGER
!>         number of elements in input vector(s)
!> \endverbatim
!>
!> \param[in] SX
!> \verbatim
!>          SX is REAL array, dimension ( 1 + ( N - 1 )*abs( INCX ) )
!> \endverbatim
!>
!> \param[in] INCX
!> \verbatim
!>          INCX is INTEGER
!>         storage spacing between elements of SX
!> \endverbatim
!>
!> \param[out] SY
!> \verbatim
!>          SY is REAL array, dimension ( 1 + ( N - 1 )*abs( INCY ) )
!> \endverbatim
!>
!> \param[in] INCY
!> \verbatim
!>          INCY is INTEGER
!>         storage spacing between elements of SY
!> \endverbatim
!
!  Authors:
!  ========
!
!> \author Univ. of Tennessee
!> \author Univ. of California Berkeley
!> \author Univ. of Colorado Denver
!> \author NAG Ltd.
!
!> \date November 2017
!
!> \ingroup single_blas_level1
!
!> \par Further Details:
!  =====================
!>
!> \verbatim
!>
!>     jack dongarra, linpack, 3/11/78.
!>     modified 12/3/93, array(1) declarations changed to array(*)
!> \endverbatim
!>
!  =====================================================================
!
!  -- Reference BLAS level1 routine (version 3.8.0) --
!  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
!  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
!     November 2017
!
!     .. Scalar Arguments ..
!     ..
!     .. Array Arguments ..
!     ..
!
!  =====================================================================
!
!     .. Local Scalars ..
!     ..
!     .. Intrinsic Functions ..
!     ..
!
!        code for both increments equal to 1
!
!
!        clean-up loop
!
!
!        code for unequal increments or equal increments
!          not equal to 1
!
! END
use M_blas, only : scopy_=>SCOPY
implicit none
      INTEGER INCX,INCY,N
      REAL SX(*),SY(*)
    call SCOPY_(N,SX,INCX,SY,INCY)
end subroutine SCOPY

 REAL FUNCTION SDOT(N,SX,INCX,SY,INCY)
! COMMENT --file sdot.3m_blas.man
!> \brief \b SDOT
!
!  =========== DOCUMENTATION ===========
!
! Online html documentation available at
!            http://www.netlib.org/lapack/explore-html/
!
!  Definition:
!  ===========
!
!       REAL FUNCTION SDOT(N,SX,INCX,SY,INCY)
!
!       .. Scalar Arguments ..
!       INTEGER INCX,INCY,N
!       ..
!       .. Array Arguments ..
!       REAL SX(*),SY(*)
!       ..
!
!
!> \par Purpose:
!  =============
!>
!> \verbatim
!>
!>    SDOT forms the dot product of two vectors.
!>    uses unrolled loops for increments equal to one.
!> \endverbatim
!
!  Arguments:
!  ==========
!
!> \param[in] N
!> \verbatim
!>          N is INTEGER
!>         number of elements in input vector(s)
!> \endverbatim
!>
!> \param[in] SX
!> \verbatim
!>          SX is REAL array, dimension ( 1 + ( N - 1 )*abs( INCX ) )
!> \endverbatim
!>
!> \param[in] INCX
!> \verbatim
!>          INCX is INTEGER
!>         storage spacing between elements of SX
!> \endverbatim
!>
!> \param[in] SY
!> \verbatim
!>          SY is REAL array, dimension ( 1 + ( N - 1 )*abs( INCY ) )
!> \endverbatim
!>
!> \param[in] INCY
!> \verbatim
!>          INCY is INTEGER
!>         storage spacing between elements of SY
!> \endverbatim
!
!  Authors:
!  ========
!
!> \author Univ. of Tennessee
!> \author Univ. of California Berkeley
!> \author Univ. of Colorado Denver
!> \author NAG Ltd.
!
!> \date November 2017
!
!> \ingroup single_blas_level1
!
!> \par Further Details:
!  =====================
!>
!> \verbatim
!>
!>     jack dongarra, linpack, 3/11/78.
!>     modified 12/3/93, array(1) declarations changed to array(*)
!> \endverbatim
!>
!  =====================================================================
!
!  -- Reference BLAS level1 routine (version 3.8.0) --
!  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
!  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
!     November 2017
!
!     .. Scalar Arguments ..
!     ..
!     .. Array Arguments ..
!     ..
!
!  =====================================================================
!
!     .. Local Scalars ..
!     ..
!     .. Intrinsic Functions ..
!     ..
!
!        code for both increments equal to 1
!
!
!        clean-up loop
!
!
!        code for unequal increments or equal increments
!          not equal to 1
!
! END
use M_blas, only : sdot_=>SDOT
implicit none
      INTEGER INCX,INCY,N
      REAL SX(*),SY(*)
      sdot=SDOT_(N,SX,INCX,SY,INCY)
      END FUNCTION SDOT

 REAL FUNCTION SDSDOT(N,SB,SX,INCX,SY,INCY)
! COMMENT --file sdsdot.3m_blas.man
!> \brief \b SDSDOT
!
!  =========== DOCUMENTATION ===========
!
! Online html documentation available at
!            http://www.netlib.org/lapack/explore-html/
!
!  Definition:
!  ===========
!
!       REAL FUNCTION SDSDOT(N,SB,SX,INCX,SY,INCY)
!
!       .. Scalar Arguments ..
!       REAL SB
!       INTEGER INCX,INCY,N
!       ..
!       .. Array Arguments ..
!       REAL SX(*),SY(*)
!       ..
!
!> \par Purpose:
!  =============
!>
!> \verbatim
!>
!>   Compute the inner product of two vectors with extended
!>   precision accumulation.
!>
!>   Returns S.P. result with dot product accumulated in D.P.
!>   SDSDOT = SB + sum for I = 0 to N-1 of SX(LX+I*INCX)*SY(LY+I*INCY),
!>   where LX = 1 if INCX .GE. 0, else LX = 1+(1-N)*INCX, and LY is
!>   defined in a similar way using INCY.
!> \endverbatim
!
!  Arguments:
!  ==========
!
!> \param[in] N
!> \verbatim
!>          N is INTEGER
!>          number of elements in input vector(s)
!> \endverbatim
!>
!> \param[in] SB
!> \verbatim
!>          SB is REAL
!>          single precision scalar to be added to inner product
!> \endverbatim
!>
!> \param[in] SX
!> \verbatim
!>          SX is REAL array, dimension ( 1 + ( N - 1 )*abs( INCX ) )
!>          single precision vector with N elements
!> \endverbatim
!>
!> \param[in] INCX
!> \verbatim
!>          INCX is INTEGER
!>          storage spacing between elements of SX
!> \endverbatim
!>
!> \param[in] SY
!> \verbatim
!>          SY is REAL array, dimension ( 1 + ( N - 1 )*abs( INCX ) )
!>          single precision vector with N elements
!> \endverbatim
!>
!> \param[in] INCY
!> \verbatim
!>          INCY is INTEGER
!>          storage spacing between elements of SY
!> \endverbatim
!
!  Authors:
!  ========
!
!> \author Lawson, C. L., (JPL), Hanson, R. J., (SNLA),
!> \author Kincaid, D. R., (U. of Texas), Krogh, F. T., (JPL)
!
!> \author Univ. of Tennessee
!> \author Univ. of California Berkeley
!> \author Univ. of Colorado Denver
!> \author NAG Ltd.
!
!> \date November 2017
!
!> \ingroup single_blas_level1
!
!> \par Further Details:
!  =====================
!>
!> \verbatim
!>
!>    REFERENCES
!>
!>    C. L. Lawson, R. J. Hanson, D. R. Kincaid and F. T.
!>    Krogh, Basic linear algebra subprograms for Fortran
!>    usage, Algorithm No. 539, Transactions on Mathematical
!>    Software 5, 3 (September 1979), pp. 308-323.
!>
!>    REVISION HISTORY  (YYMMDD)
!>
!>    791001  DATE WRITTEN
!>    890531  Changed all specific intrinsics to generic.  (WRB)
!>    890831  Modified array declarations.  (WRB)
!>    890831  REVISION DATE from Version 3.2
!>    891214  Prologue converted to Version 4.0 format.  (BAB)
!>    920310  Corrected definition of LX in DESCRIPTION.  (WRB)
!>    920501  Reformatted the REFERENCES section.  (WRB)
!>    070118  Reformat to LAPACK coding style
!> \endverbatim
!>
!  =====================================================================
!
!  -- Reference BLAS level1 routine (version 3.8.0) --
!  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
!  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
!     November 2017
!
!     .. Scalar Arguments ..
!     ..
!     .. Array Arguments ..
!     .. Local Scalars ..
!     ..
!     .. Intrinsic Functions ..
!     ..
!
!     Code for equal and positive increments.
!
!
!     Code for unequal or nonpositive increments.
!
! END
use M_blas, only : sdsdot_=>SDSDOT
implicit none
      REAL SB
      INTEGER INCX,INCY,N
      REAL SX(*),SY(*)
      sdsdot=SDSDOT_(N,SB,SX,INCX,SY,INCY)
      END FUNCTION SDSDOT

subroutine SGBMV(TRANS,M,N,KL,KU,ALPHA,A,LDA,X,INCX,BETA,Y,INCY)
! COMMENT --file sgbmv.3m_blas.man
!> \brief \b SGBMV
!
!  =========== DOCUMENTATION ===========
!
! Online html documentation available at
!            http://www.netlib.org/lapack/explore-html/
!
!  Definition:
!  ===========
!
!       SUBROUTINE SGBMV(TRANS,M,N,KL,KU,ALPHA,A,LDA,X,INCX,BETA,Y,INCY)
!
!       .. Scalar Arguments ..
!       REAL ALPHA,BETA
!       INTEGER INCX,INCY,KL,KU,LDA,M,N
!       CHARACTER TRANS
!       ..
!       .. Array Arguments ..
!       REAL A(LDA,*),X(*),Y(*)
!       ..
!
!
!> \par Purpose:
!  =============
!>
!> \verbatim
!>
!> SGBMV  performs one of the matrix-vector operations
!>
!>    y := alpha*A*x + beta*y,   or   y := alpha*A**T*x + beta*y,
!>
!> where alpha and beta are scalars, x and y are vectors and A is an
!> m by n band matrix, with kl sub-diagonals and ku super-diagonals.
!> \endverbatim
!
!  Arguments:
!  ==========
!
!> \param[in] TRANS
!> \verbatim
!>          TRANS is CHARACTER*1
!>           On entry, TRANS specifies the operation to be performed as
!>           follows:
!>
!>              TRANS = 'N' or 'n'   y := alpha*A*x + beta*y.
!>
!>              TRANS = 'T' or 't'   y := alpha*A**T*x + beta*y.
!>
!>              TRANS = 'C' or 'c'   y := alpha*A**T*x + beta*y.
!> \endverbatim
!>
!> \param[in] M
!> \verbatim
!>          M is INTEGER
!>           On entry, M specifies the number of rows of the matrix A.
!>           M must be at least zero.
!> \endverbatim
!>
!> \param[in] N
!> \verbatim
!>          N is INTEGER
!>           On entry, N specifies the number of columns of the matrix A.
!>           N must be at least zero.
!> \endverbatim
!>
!> \param[in] KL
!> \verbatim
!>          KL is INTEGER
!>           On entry, KL specifies the number of sub-diagonals of the
!>           matrix A. KL must satisfy  0 .le. KL.
!> \endverbatim
!>
!> \param[in] KU
!> \verbatim
!>          KU is INTEGER
!>           On entry, KU specifies the number of super-diagonals of the
!>           matrix A. KU must satisfy  0 .le. KU.
!> \endverbatim
!>
!> \param[in] ALPHA
!> \verbatim
!>          ALPHA is REAL
!>           On entry, ALPHA specifies the scalar alpha.
!> \endverbatim
!>
!> \param[in] A
!> \verbatim
!>          A is REAL array, dimension ( LDA, N )
!>           Before entry, the leading ( kl + ku + 1 ) by n part of the
!>           array A must contain the matrix of coefficients, supplied
!>           column by column, with the leading diagonal of the matrix in
!>           row ( ku + 1 ) of the array, the first super-diagonal
!>           starting at position 2 in row ku, the first sub-diagonal
!>           starting at position 1 in row ( ku + 2 ), and so on.
!>           Elements in the array A that do not correspond to elements
!>           in the band matrix (such as the top left ku by ku triangle)
!>           are not referenced.
!>           The following program segment will transfer a band matrix
!>           from conventional full matrix storage to band storage:
!>
!>                 DO 20, J = 1, N
!>                    K = KU + 1 - J
!>                    DO 10, I = MAX( 1, J - KU ), MIN( M, J + KL )
!>                       A( K + I, J ) = matrix( I, J )
!>              10    CONTINUE
!>              20 CONTINUE
!> \endverbatim
!>
!> \param[in] LDA
!> \verbatim
!>          LDA is INTEGER
!>           On entry, LDA specifies the first dimension of A as declared
!>           in the calling (sub) program. LDA must be at least
!>           ( kl + ku + 1 ).
!> \endverbatim
!>
!> \param[in] X
!> \verbatim
!>          X is REAL array, dimension at least
!>           ( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n'
!>           and at least
!>           ( 1 + ( m - 1 )*abs( INCX ) ) otherwise.
!>           Before entry, the incremented array X must contain the
!>           vector x.
!> \endverbatim
!>
!> \param[in] INCX
!> \verbatim
!>          INCX is INTEGER
!>           On entry, INCX specifies the increment for the elements of
!>           X. INCX must not be zero.
!> \endverbatim
!>
!> \param[in] BETA
!> \verbatim
!>          BETA is REAL
!>           On entry, BETA specifies the scalar beta. When BETA is
!>           supplied as zero then Y need not be set on input.
!> \endverbatim
!>
!> \param[in,out] Y
!> \verbatim
!>          Y is REAL array, dimension at least
!>           ( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n'
!>           and at least
!>           ( 1 + ( n - 1 )*abs( INCY ) ) otherwise.
!>           Before entry, the incremented array Y must contain the
!>           vector y. On exit, Y is overwritten by the updated vector y.
!> \endverbatim
!>
!> \param[in] INCY
!> \verbatim
!>          INCY is INTEGER
!>           On entry, INCY specifies the increment for the elements of
!>           Y. INCY must not be zero.
!> \endverbatim
!
!  Authors:
!  ========
!
!> \author Univ. of Tennessee
!> \author Univ. of California Berkeley
!> \author Univ. of Colorado Denver
!> \author NAG Ltd.
!
!> \date December 2016
!
!> \ingroup single_blas_level2
!
!> \par Further Details:
!  =====================
!>
!> \verbatim
!>
!>  Level 2 Blas routine.
!>  The vector and matrix arguments are not referenced when N = 0, or M = 0
!>
!>  -- Written on 22-October-1986.
!>     Jack Dongarra, Argonne National Lab.
!>     Jeremy Du Croz, Nag Central Office.
!>     Sven Hammarling, Nag Central Office.
!>     Richard Hanson, Sandia National Labs.
!> \endverbatim
!>
!  =====================================================================
!
!  -- Reference BLAS level2 routine (version 3.7.0) --
!  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
!  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
!     December 2016
!
!     .. Scalar Arguments ..
!     ..
!     .. Array Arguments ..
!     ..
!
!  =====================================================================
!
!     .. Parameters ..
!     ..
!     .. Local Scalars ..
!     ..
!     .. External Functions ..
!     ..
!     .. External Subroutines ..
!     ..
!     .. Intrinsic Functions ..
!     ..
!
!     Test the input parameters.
!
!
!     Quick return if possible.
!
!
!     Set  LENX  and  LENY, the lengths of the vectors x and y, and set
!     up the start points in  X  and  Y.
!
!
!     Start the operations. In this version the elements of A are
!     accessed sequentially with one pass through the band part of A.
!
!     First form  y := beta*y.
!
!
!        Form  y := alpha*A*x + y.
!
!
!        Form  y := alpha*A**T*x + y.
!
!
!
!     End of SGBMV .
!
! END
use M_blas, only : sgbmv_=>SGBMV
implicit none
      CHARACTER(len=1),intent(in) :: TRANS
      REAL ALPHA,BETA
      INTEGER INCX,INCY,KL,KU,LDA,M,N
      REAL A(LDA,*),X(*),Y(*)
    call SGBMV_(TRANS,M,N,KL,KU,ALPHA,A,LDA,X,INCX,BETA,Y,INCY)
end subroutine SGBMV

subroutine SGEMM(TRANSA,TRANSB,M,N,K,ALPHA,A,LDA,B,LDB,BETA,C,LDC)
! COMMENT --file sgemm.3m_blas.man
!> \brief \b SGEMM
!
!  =========== DOCUMENTATION ===========
!
! Online html documentation available at
!            http://www.netlib.org/lapack/explore-html/
!
!  Definition:
!  ===========
!
!       SUBROUTINE SGEMM(TRANSA,TRANSB,M,N,K,ALPHA,A,LDA,B,LDB,BETA,C,LDC)
!
!       .. Scalar Arguments ..
!       REAL ALPHA,BETA
!       INTEGER K,LDA,LDB,LDC,M,N
!       CHARACTER TRANSA,TRANSB
!       ..
!       .. Array Arguments ..
!       REAL A(LDA,*),B(LDB,*),C(LDC,*)
!       ..
!
!
!> \par Purpose:
!  =============
!>
!> \verbatim
!>
!> SGEMM  performs one of the matrix-matrix operations
!>
!>    C := alpha*op( A )*op( B ) + beta*C,
!>
!> where  op( X ) is one of
!>
!>    op( X ) = X   or   op( X ) = X**T,
!>
!> alpha and beta are scalars, and A, B and C are matrices, with op( A )
!> an m by k matrix,  op( B )  a  k by n matrix and  C an m by n matrix.
!> \endverbatim
!
!  Arguments:
!  ==========
!
!> \param[in] TRANSA
!> \verbatim
!>          TRANSA is CHARACTER*1
!>           On entry, TRANSA specifies the form of op( A ) to be used in
!>           the matrix multiplication as follows:
!>
!>              TRANSA = 'N' or 'n',  op( A ) = A.
!>
!>              TRANSA = 'T' or 't',  op( A ) = A**T.
!>
!>              TRANSA = 'C' or 'c',  op( A ) = A**T.
!> \endverbatim
!>
!> \param[in] TRANSB
!> \verbatim
!>          TRANSB is CHARACTER*1
!>           On entry, TRANSB specifies the form of op( B ) to be used in
!>           the matrix multiplication as follows:
!>
!>              TRANSB = 'N' or 'n',  op( B ) = B.
!>
!>              TRANSB = 'T' or 't',  op( B ) = B**T.
!>
!>              TRANSB = 'C' or 'c',  op( B ) = B**T.
!> \endverbatim
!>
!> \param[in] M
!> \verbatim
!>          M is INTEGER
!>           On entry,  M  specifies  the number  of rows  of the  matrix
!>           op( A )  and of the  matrix  C.  M  must  be at least  zero.
!> \endverbatim
!>
!> \param[in] N
!> \verbatim
!>          N is INTEGER
!>           On entry,  N  specifies the number  of columns of the matrix
!>           op( B ) and the number of columns of the matrix C. N must be
!>           at least zero.
!> \endverbatim
!>
!> \param[in] K
!> \verbatim
!>          K is INTEGER
!>           On entry,  K  specifies  the number of columns of the matrix
!>           op( A ) and the number of rows of the matrix op( B ). K must
!>           be at least  zero.
!> \endverbatim
!>
!> \param[in] ALPHA
!> \verbatim
!>          ALPHA is REAL
!>           On entry, ALPHA specifies the scalar alpha.
!> \endverbatim
!>
!> \param[in] A
!> \verbatim
!>          A is REAL array, dimension ( LDA, ka ), where ka is
!>           k  when  TRANSA = 'N' or 'n',  and is  m  otherwise.
!>           Before entry with  TRANSA = 'N' or 'n',  the leading  m by k
!>           part of the array  A  must contain the matrix  A,  otherwise
!>           the leading  k by m  part of the array  A  must contain  the
!>           matrix A.
!> \endverbatim
!>
!> \param[in] LDA
!> \verbatim
!>          LDA is INTEGER
!>           On entry, LDA specifies the first dimension of A as declared
!>           in the calling (sub) program. When  TRANSA = 'N' or 'n' then
!>           LDA must be at least  max( 1, m ), otherwise  LDA must be at
!>           least  max( 1, k ).
!> \endverbatim
!>
!> \param[in] B
!> \verbatim
!>          B is REAL array, dimension ( LDB, kb ), where kb is
!>           n  when  TRANSB = 'N' or 'n',  and is  k  otherwise.
!>           Before entry with  TRANSB = 'N' or 'n',  the leading  k by n
!>           part of the array  B  must contain the matrix  B,  otherwise
!>           the leading  n by k  part of the array  B  must contain  the
!>           matrix B.
!> \endverbatim
!>
!> \param[in] LDB
!> \verbatim
!>          LDB is INTEGER
!>           On entry, LDB specifies the first dimension of B as declared
!>           in the calling (sub) program. When  TRANSB = 'N' or 'n' then
!>           LDB must be at least  max( 1, k ), otherwise  LDB must be at
!>           least  max( 1, n ).
!> \endverbatim
!>
!> \param[in] BETA
!> \verbatim
!>          BETA is REAL
!>           On entry,  BETA  specifies the scalar  beta.  When  BETA  is
!>           supplied as zero then C need not be set on input.
!> \endverbatim
!>
!> \param[in,out] C
!> \verbatim
!>          C is REAL array, dimension ( LDC, N )
!>           Before entry, the leading  m by n  part of the array  C must
!>           contain the matrix  C,  except when  beta  is zero, in which
!>           case C need not be set on entry.
!>           On exit, the array  C  is overwritten by the  m by n  matrix
!>           ( alpha*op( A )*op( B ) + beta*C ).
!> \endverbatim
!>
!> \param[in] LDC
!> \verbatim
!>          LDC is INTEGER
!>           On entry, LDC specifies the first dimension of C as declared
!>           in  the  calling  (sub)  program.   LDC  must  be  at  least
!>           max( 1, m ).
!> \endverbatim
!
!  Authors:
!  ========
!
!> \author Univ. of Tennessee
!> \author Univ. of California Berkeley
!> \author Univ. of Colorado Denver
!> \author NAG Ltd.
!
!> \date December 2016
!
!> \ingroup single_blas_level3
!
!> \par Further Details:
!  =====================
!>
!> \verbatim
!>
!>  Level 3 Blas routine.
!>
!>  -- Written on 8-February-1989.
!>     Jack Dongarra, Argonne National Laboratory.
!>     Iain Duff, AERE Harwell.
!>     Jeremy Du Croz, Numerical Algorithms Group Ltd.
!>     Sven Hammarling, Numerical Algorithms Group Ltd.
!> \endverbatim
!>
!  =====================================================================
!
!  -- Reference BLAS level3 routine (version 3.7.0) --
!  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
!  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
!     December 2016
!
!     .. Scalar Arguments ..
!     ..
!     .. Array Arguments ..
!     ..
!
!  =====================================================================
!
!     .. External Functions ..
!     ..
!     .. External Subroutines ..
!     ..
!     .. Intrinsic Functions ..
!     ..
!     .. Local Scalars ..
!     ..
!     .. Parameters ..
!     ..
!
!     Set  NOTA  and  NOTB  as  true if  A  and  B  respectively are not
!     transposed and set  NROWA and NROWB  as the number of rows of  A
!     and  B  respectively.
!
!
!     Test the input parameters.
!
!
!     Quick return if possible.
!
!
!     And if  alpha.eq.zero.
!
!
!     Start the operations.
!
!
!           Form  C := alpha*A*B + beta*C.
!
!
!           Form  C := alpha*A**T*B + beta*C
!
!
!           Form  C := alpha*A*B**T + beta*C
!
!
!           Form  C := alpha*A**T*B**T + beta*C
!
!
!
!     End of SGEMM .
!
! END
use M_blas, only : sgemm_=>SGEMM
implicit none
      REAL ALPHA,BETA
      INTEGER K,LDA,LDB,LDC,M,N
      CHARACTER TRANSA,TRANSB
      REAL A(LDA,*),B(LDB,*),C(LDC,*)
    call SGEMM_(TRANSA,TRANSB,M,N,K,ALPHA,A,LDA,B,LDB,BETA,C,LDC)
end subroutine SGEMM

subroutine SGEMV(TRANS,M,N,ALPHA,A,LDA,X,INCX,BETA,Y,INCY)
! COMMENT --file sgemv.3m_blas.man
!> \brief \b SGEMV
!
!  =========== DOCUMENTATION ===========
!
! Online html documentation available at
!            http://www.netlib.org/lapack/explore-html/
!
!  Definition:
!  ===========
!
!       SUBROUTINE SGEMV(TRANS,M,N,ALPHA,A,LDA,X,INCX,BETA,Y,INCY)
!
!       .. Scalar Arguments ..
!       REAL ALPHA,BETA
!       INTEGER INCX,INCY,LDA,M,N
!       CHARACTER TRANS
!       ..
!       .. Array Arguments ..
!       REAL A(LDA,*),X(*),Y(*)
!       ..
!
!
!> \par Purpose:
!  =============
!>
!> \verbatim
!>
!> SGEMV  performs one of the matrix-vector operations
!>
!>    y := alpha*A*x + beta*y,   or   y := alpha*A**T*x + beta*y,
!>
!> where alpha and beta are scalars, x and y are vectors and A is an
!> m by n matrix.
!> \endverbatim
!
!  Arguments:
!  ==========
!
!> \param[in] TRANS
!> \verbatim
!>          TRANS is CHARACTER*1
!>           On entry, TRANS specifies the operation to be performed as
!>           follows:
!>
!>              TRANS = 'N' or 'n'   y := alpha*A*x + beta*y.
!>
!>              TRANS = 'T' or 't'   y := alpha*A**T*x + beta*y.
!>
!>              TRANS = 'C' or 'c'   y := alpha*A**T*x + beta*y.
!> \endverbatim
!>
!> \param[in] M
!> \verbatim
!>          M is INTEGER
!>           On entry, M specifies the number of rows of the matrix A.
!>           M must be at least zero.
!> \endverbatim
!>
!> \param[in] N
!> \verbatim
!>          N is INTEGER
!>           On entry, N specifies the number of columns of the matrix A.
!>           N must be at least zero.
!> \endverbatim
!>
!> \param[in] ALPHA
!> \verbatim
!>          ALPHA is REAL
!>           On entry, ALPHA specifies the scalar alpha.
!> \endverbatim
!>
!> \param[in] A
!> \verbatim
!>          A is REAL array, dimension ( LDA, N )
!>           Before entry, the leading m by n part of the array A must
!>           contain the matrix of coefficients.
!> \endverbatim
!>
!> \param[in] LDA
!> \verbatim
!>          LDA is INTEGER
!>           On entry, LDA specifies the first dimension of A as declared
!>           in the calling (sub) program. LDA must be at least
!>           max( 1, m ).
!> \endverbatim
!>
!> \param[in] X
!> \verbatim
!>          X is REAL array, dimension at least
!>           ( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n'
!>           and at least
!>           ( 1 + ( m - 1 )*abs( INCX ) ) otherwise.
!>           Before entry, the incremented array X must contain the
!>           vector x.
!> \endverbatim
!>
!> \param[in] INCX
!> \verbatim
!>          INCX is INTEGER
!>           On entry, INCX specifies the increment for the elements of
!>           X. INCX must not be zero.
!> \endverbatim
!>
!> \param[in] BETA
!> \verbatim
!>          BETA is REAL
!>           On entry, BETA specifies the scalar beta. When BETA is
!>           supplied as zero then Y need not be set on input.
!> \endverbatim
!>
!> \param[in,out] Y
!> \verbatim
!>          Y is REAL array, dimension at least
!>           ( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n'
!>           and at least
!>           ( 1 + ( n - 1 )*abs( INCY ) ) otherwise.
!>           Before entry with BETA non-zero, the incremented array Y
!>           must contain the vector y. On exit, Y is overwritten by the
!>           updated vector y.
!> \endverbatim
!>
!> \param[in] INCY
!> \verbatim
!>          INCY is INTEGER
!>           On entry, INCY specifies the increment for the elements of
!>           Y. INCY must not be zero.
!> \endverbatim
!
!  Authors:
!  ========
!
!> \author Univ. of Tennessee
!> \author Univ. of California Berkeley
!> \author Univ. of Colorado Denver
!> \author NAG Ltd.
!
!> \date December 2016
!
!> \ingroup single_blas_level2
!
!> \par Further Details:
!  =====================
!>
!> \verbatim
!>
!>  Level 2 Blas routine.
!>  The vector and matrix arguments are not referenced when N = 0, or M = 0
!>
!>  -- Written on 22-October-1986.
!>     Jack Dongarra, Argonne National Lab.
!>     Jeremy Du Croz, Nag Central Office.
!>     Sven Hammarling, Nag Central Office.
!>     Richard Hanson, Sandia National Labs.
!> \endverbatim
!>
!  =====================================================================
!
!  -- Reference BLAS level2 routine (version 3.7.0) --
!  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
!  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
!     December 2016
!
!     .. Scalar Arguments ..
!     ..
!     .. Array Arguments ..
!     ..
!
!  =====================================================================
!
!     .. Parameters ..
!     ..
!     .. Local Scalars ..
!     ..
!     .. External Functions ..
!     ..
!     .. External Subroutines ..
!     ..
!     .. Intrinsic Functions ..
!     ..
!
!     Test the input parameters.
!
!
!     Quick return if possible.
!
!
!     Set  LENX  and  LENY, the lengths of the vectors x and y, and set
!     up the start points in  X  and  Y.
!
!
!     Start the operations. In this version the elements of A are
!     accessed sequentially with one pass through A.
!
!     First form  y := beta*y.
!
!
!        Form  y := alpha*A*x + y.
!
!
!        Form  y := alpha*A**T*x + y.
!
!
!
!     End of SGEMV .
!
! END
use M_blas, only : sgemv_=>SGEMV
implicit none
      REAL ALPHA,BETA
      INTEGER INCX,INCY,LDA,M,N
      CHARACTER TRANS
      REAL A(LDA,*),X(*),Y(*)
    call SGEMV_(TRANS,M,N,ALPHA,A,LDA,X,INCX,BETA,Y,INCY)
end subroutine SGEMV

subroutine SGER(M,N,ALPHA,X,INCX,Y,INCY,A,LDA)
! COMMENT --file sger.3m_blas.man
!> \brief \b SGER
!
!  =========== DOCUMENTATION ===========
!
! Online html documentation available at
!            http://www.netlib.org/lapack/explore-html/
!
!  Definition:
!  ===========
!
!       SUBROUTINE SGER(M,N,ALPHA,X,INCX,Y,INCY,A,LDA)
!
!       .. Scalar Arguments ..
!       REAL ALPHA
!       INTEGER INCX,INCY,LDA,M,N
!       ..
!       .. Array Arguments ..
!       REAL A(LDA,*),X(*),Y(*)
!       ..
!
!
!> \par Purpose:
!  =============
!>
!> \verbatim
!>
!> SGER   performs the rank 1 operation
!>
!>    A := alpha*x*y**T + A,
!>
!> where alpha is a scalar, x is an m element vector, y is an n element
!> vector and A is an m by n matrix.
!> \endverbatim
!
!  Arguments:
!  ==========
!
!> \param[in] M
!> \verbatim
!>          M is INTEGER
!>           On entry, M specifies the number of rows of the matrix A.
!>           M must be at least zero.
!> \endverbatim
!>
!> \param[in] N
!> \verbatim
!>          N is INTEGER
!>           On entry, N specifies the number of columns of the matrix A.
!>           N must be at least zero.
!> \endverbatim
!>
!> \param[in] ALPHA
!> \verbatim
!>          ALPHA is REAL
!>           On entry, ALPHA specifies the scalar alpha.
!> \endverbatim
!>
!> \param[in] X
!> \verbatim
!>          X is REAL array, dimension at least
!>           ( 1 + ( m - 1 )*abs( INCX ) ).
!>           Before entry, the incremented array X must contain the m
!>           element vector x.
!> \endverbatim
!>
!> \param[in] INCX
!> \verbatim
!>          INCX is INTEGER
!>           On entry, INCX specifies the increment for the elements of
!>           X. INCX must not be zero.
!> \endverbatim
!>
!> \param[in] Y
!> \verbatim
!>          Y is REAL array, dimension at least
!>           ( 1 + ( n - 1 )*abs( INCY ) ).
!>           Before entry, the incremented array Y must contain the n
!>           element vector y.
!> \endverbatim
!>
!> \param[in] INCY
!> \verbatim
!>          INCY is INTEGER
!>           On entry, INCY specifies the increment for the elements of
!>           Y. INCY must not be zero.
!> \endverbatim
!>
!> \param[in,out] A
!> \verbatim
!>          A is REAL array, dimension ( LDA, N )
!>           Before entry, the leading m by n part of the array A must
!>           contain the matrix of coefficients. On exit, A is
!>           overwritten by the updated matrix.
!> \endverbatim
!>
!> \param[in] LDA
!> \verbatim
!>          LDA is INTEGER
!>           On entry, LDA specifies the first dimension of A as declared
!>           in the calling (sub) program. LDA must be at least
!>           max( 1, m ).
!> \endverbatim
!
!  Authors:
!  ========
!
!> \author Univ. of Tennessee
!> \author Univ. of California Berkeley
!> \author Univ. of Colorado Denver
!> \author NAG Ltd.
!
!> \date December 2016
!
!> \ingroup single_blas_level2
!
!> \par Further Details:
!  =====================
!>
!> \verbatim
!>
!>  Level 2 Blas routine.
!>
!>  -- Written on 22-October-1986.
!>     Jack Dongarra, Argonne National Lab.
!>     Jeremy Du Croz, Nag Central Office.
!>     Sven Hammarling, Nag Central Office.
!>     Richard Hanson, Sandia National Labs.
!> \endverbatim
!>
!  =====================================================================
!
!  -- Reference BLAS level2 routine (version 3.7.0) --
!  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
!  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
!     December 2016
!
!     .. Scalar Arguments ..
!     ..
!     .. Array Arguments ..
!     ..
!
!  =====================================================================
!
!     .. Parameters ..
!     ..
!     .. Local Scalars ..
!     ..
!     .. External Subroutines ..
!     ..
!     .. Intrinsic Functions ..
!     ..
!
!     Test the input parameters.
!
!
!     Quick return if possible.
!
!
!     Start the operations. In this version the elements of A are
!     accessed sequentially with one pass through A.
!
!
!
!     End of SGER  .
!
! END
use M_blas, only : sger_=>SGER
implicit none
      REAL ALPHA
      INTEGER INCX,INCY,LDA,M,N
      REAL A(LDA,*),X(*),Y(*)
    call SGER_(M,N,ALPHA,X,INCX,Y,INCY,A,LDA)
end subroutine SGER

 REAL FUNCTION SNRM2(N,X,INCX)
! COMMENT --file snrm2.3m_blas.man
!> \brief \b SNRM2
!
!  =========== DOCUMENTATION ===========
!
! Online html documentation available at
!            http://www.netlib.org/lapack/explore-html/
!
!  Definition:
!  ===========
!
!       REAL FUNCTION SNRM2(N,X,INCX)
!
!       .. Scalar Arguments ..
!       INTEGER INCX,N
!       ..
!       .. Array Arguments ..
!       REAL X(*)
!       ..
!
!
!> \par Purpose:
!  =============
!>
!> \verbatim
!>
!> SNRM2 returns the euclidean norm of a vector via the function
!> name, so that
!>
!>    SNRM2 := sqrt( x'*x ).
!> \endverbatim
!
!  Arguments:
!  ==========
!
!> \param[in] N
!> \verbatim
!>          N is INTEGER
!>         number of elements in input vector(s)
!> \endverbatim
!>
!> \param[in] X
!> \verbatim
!>          X is REAL array, dimension ( 1 + ( N - 1 )*abs( INCX ) )
!> \endverbatim
!>
!> \param[in] INCX
!> \verbatim
!>          INCX is INTEGER
!>         storage spacing between elements of SX
!> \endverbatim
!
!  Authors:
!  ========
!
!> \author Univ. of Tennessee
!> \author Univ. of California Berkeley
!> \author Univ. of Colorado Denver
!> \author NAG Ltd.
!
!> \date November 2017
!
!> \ingroup single_blas_level1
!
!> \par Further Details:
!  =====================
!>
!> \verbatim
!>
!>  -- This version written on 25-October-1982.
!>     Modified on 14-October-1993 to inline the call to SLASSQ.
!>     Sven Hammarling, Nag Ltd.
!> \endverbatim
!>
!  =====================================================================
!
!  -- Reference BLAS level1 routine (version 3.8.0) --
!  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
!  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
!     November 2017
!
!     .. Scalar Arguments ..
!     ..
!     .. Array Arguments ..
!     ..
!
!  =====================================================================
!
!     .. Parameters ..
!     ..
!     .. Local Scalars ..
!     ..
!     .. Intrinsic Functions ..
!     ..
!        The following loop is equivalent to this call to the LAPACK
!        auxiliary routine:
!        CALL SLASSQ( N, X, INCX, SCALE, SSQ )
!
!
!
!     End of SNRM2.
!
! END
use M_blas, only : snrm2_=>SNRM2
implicit none
      INTEGER INCX,N
      REAL X(*)
      snrm2=SNRM2_(N,X,INCX)
      END FUNCTION SNRM2

subroutine SROT(N,SX,INCX,SY,INCY,C,S)
! COMMENT --file srot.3m_blas.man
!> \brief \b SROT
!
!  =========== DOCUMENTATION ===========
!
! Online html documentation available at
!            http://www.netlib.org/lapack/explore-html/
!
!  Definition:
!  ===========
!
!       SUBROUTINE SROT(N,SX,INCX,SY,INCY,C,S)
!
!       .. Scalar Arguments ..
!       REAL C,S
!       INTEGER INCX,INCY,N
!       ..
!       .. Array Arguments ..
!       REAL SX(*),SY(*)
!       ..
!
!
!> \par Purpose:
!  =============
!>
!> \verbatim
!>
!>    applies a plane rotation.
!> \endverbatim
!
!  Arguments:
!  ==========
!
!> \param[in] N
!> \verbatim
!>          N is INTEGER
!>         number of elements in input vector(s)
!> \endverbatim
!>
!> \param[in,out] SX
!> \verbatim
!>          SX is REAL array, dimension ( 1 + ( N - 1 )*abs( INCX ) )
!> \endverbatim
!>
!> \param[in] INCX
!> \verbatim
!>          INCX is INTEGER
!>         storage spacing between elements of SX
!> \endverbatim
!>
!> \param[in,out] SY
!> \verbatim
!>          SY is REAL array, dimension ( 1 + ( N - 1 )*abs( INCY ) )
!> \endverbatim
!>
!> \param[in] INCY
!> \verbatim
!>          INCY is INTEGER
!>         storage spacing between elements of SY
!> \endverbatim
!>
!> \param[in] C
!> \verbatim
!>          C is REAL
!> \endverbatim
!>
!> \param[in] S
!> \verbatim
!>          S is REAL
!> \endverbatim
!
!  Authors:
!  ========
!
!> \author Univ. of Tennessee
!> \author Univ. of California Berkeley
!> \author Univ. of Colorado Denver
!> \author NAG Ltd.
!
!> \date November 2017
!
!> \ingroup single_blas_level1
!
!> \par Further Details:
!  =====================
!>
!> \verbatim
!>
!>     jack dongarra, linpack, 3/11/78.
!>     modified 12/3/93, array(1) declarations changed to array(*)
!> \endverbatim
!>
!  =====================================================================
!
!  -- Reference BLAS level1 routine (version 3.8.0) --
!  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
!  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
!     November 2017
!
!     .. Scalar Arguments ..
!     ..
!     .. Array Arguments ..
!     ..
!
!  =====================================================================
!
!     .. Local Scalars ..
!     ..
!
!       code for both increments equal to 1
!
!
!       code for unequal increments or equal increments not equal
!         to 1
!
! END
use M_blas, only : srot_=>SROT
implicit none
      REAL C,S
      INTEGER INCX,INCY,N
      REAL SX(*),SY(*)
    call SROT_(N,SX,INCX,SY,INCY,C,S)
end subroutine SROT

subroutine SROTG(SA,SB,C,S)
! COMMENT --file srotg.3m_blas.man
!> \brief \b SROTG
!
!  =========== DOCUMENTATION ===========
!
! Online html documentation available at
!            http://www.netlib.org/lapack/explore-html/
!
!  Definition:
!  ===========
!
!       SUBROUTINE SROTG(SA,SB,C,S)
!
!       .. Scalar Arguments ..
!       REAL C,S,SA,SB
!       ..
!
!
!> \par Purpose:
!  =============
!>
!> \verbatim
!>
!>    SROTG construct givens plane rotation.
!> \endverbatim
!
!  Arguments:
!  ==========
!
!> \param[in,out] SA
!> \verbatim
!>          SA is REAL
!> \endverbatim
!>
!> \param[in,out] SB
!> \verbatim
!>          SB is REAL
!> \endverbatim
!>
!> \param[out] C
!> \verbatim
!>          C is REAL
!> \endverbatim
!>
!> \param[out] S
!> \verbatim
!>          S is REAL
!> \endverbatim
!
!  Authors:
!  ========
!
!> \author Univ. of Tennessee
!> \author Univ. of California Berkeley
!> \author Univ. of Colorado Denver
!> \author NAG Ltd.
!
!> \date November 2017
!
!> \ingroup single_blas_level1
!
!> \par Further Details:
!  =====================
!>
!> \verbatim
!>
!>     jack dongarra, linpack, 3/11/78.
!> \endverbatim
!>
!  =====================================================================
!
!  -- Reference BLAS level1 routine (version 3.8.0) --
!  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
!  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
!     November 2017
!
!     .. Scalar Arguments ..
!     ..
!
!  =====================================================================
!
!     .. Local Scalars ..
!     ..
!     .. Intrinsic Functions ..
!     ..
! END
use M_blas, only : srotg_=>SROTG
implicit none
      REAL C,S,SA,SB
    call SROTG_(SA,SB,C,S)
end subroutine SROTG

subroutine SROTM(N,SX,INCX,SY,INCY,SPARAM)
! COMMENT --file srotm.3m_blas.man
!> \brief \b SROTM
!
!  =========== DOCUMENTATION ===========
!
! Online html documentation available at
!            http://www.netlib.org/lapack/explore-html/
!
!  Definition:
!  ===========
!
!       SUBROUTINE SROTM(N,SX,INCX,SY,INCY,SPARAM)
!
!       .. Scalar Arguments ..
!       INTEGER INCX,INCY,N
!       ..
!       .. Array Arguments ..
!       REAL SPARAM(5),SX(*),SY(*)
!       ..
!
!
!> \par Purpose:
!  =============
!>
!> \verbatim
!>
!>    APPLY THE MODIFIED GIVENS TRANSFORMATION, H, TO THE 2 BY N MATRIX
!>
!>    (SX**T) , WHERE **T INDICATES TRANSPOSE. THE ELEMENTS OF SX ARE IN
!>    (SX**T)
!>
!>    SX(LX+I*INCX), I = 0 TO N-1, WHERE LX = 1 IF INCX .GE. 0, ELSE
!>    LX = (-INCX)*N, AND SIMILARLY FOR SY USING USING LY AND INCY.
!>    WITH SPARAM(1)=SFLAG, H HAS ONE OF THE FOLLOWING FORMS..
!>
!>    SFLAG=-1.E0     SFLAG=0.E0        SFLAG=1.E0     SFLAG=-2.E0
!>
!>      (SH11  SH12)    (1.E0  SH12)    (SH11  1.E0)    (1.E0  0.E0)
!>    H=(          )    (          )    (          )    (          )
!>      (SH21  SH22),   (SH21  1.E0),   (-1.E0 SH22),   (0.E0  1.E0).
!>    SEE  SROTMG FOR A DESCRIPTION OF DATA STORAGE IN SPARAM.
!>
!> \endverbatim
!
!  Arguments:
!  ==========
!
!> \param[in] N
!> \verbatim
!>          N is INTEGER
!>         number of elements in input vector(s)
!> \endverbatim
!>
!> \param[in,out] SX
!> \verbatim
!>          SX is REAL array, dimension ( 1 + ( N - 1 )*abs( INCX ) )
!> \endverbatim
!>
!> \param[in] INCX
!> \verbatim
!>          INCX is INTEGER
!>         storage spacing between elements of SX
!> \endverbatim
!>
!> \param[in,out] SY
!> \verbatim
!>          SY is REAL array, dimension ( 1 + ( N - 1 )*abs( INCY ) )
!> \endverbatim
!>
!> \param[in] INCY
!> \verbatim
!>          INCY is INTEGER
!>         storage spacing between elements of SY
!> \endverbatim
!>
!> \param[in] SPARAM
!> \verbatim
!>          SPARAM is REAL array, dimension (5)
!>     SPARAM(1)=SFLAG
!>     SPARAM(2)=SH11
!>     SPARAM(3)=SH21
!>     SPARAM(4)=SH12
!>     SPARAM(5)=SH22
!> \endverbatim
!
!  Authors:
!  ========
!
!> \author Univ. of Tennessee
!> \author Univ. of California Berkeley
!> \author Univ. of Colorado Denver
!> \author NAG Ltd.
!
!> \date November 2017
!
!> \ingroup single_blas_level1
!
!  =====================================================================
!
!  -- Reference BLAS level1 routine (version 3.8.0) --
!  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
!  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
!     November 2017
!
!     .. Scalar Arguments ..
!     ..
!     .. Array Arguments ..
!     ..
!
!  =====================================================================
!
!     .. Local Scalars ..
!     ..
!     .. Data statements ..
!     ..
!
!
!
! END
use M_blas, only : srotm_=>SROTM
implicit none
      INTEGER INCX,INCY,N
      REAL SPARAM(5),SX(*),SY(*)
    call SROTM_(N,SX,INCX,SY,INCY,SPARAM)
end subroutine SROTM

subroutine SROTMG(SD1,SD2,SX1,SY1,SPARAM)
! COMMENT --file srotmg.3m_blas.man
!> \brief \b SROTMG
!
!  =========== DOCUMENTATION ===========
!
! Online html documentation available at
!            http://www.netlib.org/lapack/explore-html/
!
!  Definition:
!  ===========
!
!       SUBROUTINE SROTMG(SD1,SD2,SX1,SY1,SPARAM)
!
!       .. Scalar Arguments ..
!       REAL SD1,SD2,SX1,SY1
!       ..
!       .. Array Arguments ..
!       REAL SPARAM(5)
!       ..
!
!
!> \par Purpose:
!  =============
!>
!> \verbatim
!>
!>    CONSTRUCT THE MODIFIED GIVENS TRANSFORMATION MATRIX H WHICH ZEROS
!>    THE SECOND COMPONENT OF THE 2-VECTOR  (SQRT(SD1)*SX1,SQRT(SD2)*>    SY2)**T.
!>    WITH SPARAM(1)=SFLAG, H HAS ONE OF THE FOLLOWING FORMS..
!>
!>    SFLAG=-1.E0     SFLAG=0.E0        SFLAG=1.E0     SFLAG=-2.E0
!>
!>      (SH11  SH12)    (1.E0  SH12)    (SH11  1.E0)    (1.E0  0.E0)
!>    H=(          )    (          )    (          )    (          )
!>      (SH21  SH22),   (SH21  1.E0),   (-1.E0 SH22),   (0.E0  1.E0).
!>    LOCATIONS 2-4 OF SPARAM CONTAIN SH11,SH21,SH12, AND SH22
!>    RESPECTIVELY. (VALUES OF 1.E0, -1.E0, OR 0.E0 IMPLIED BY THE
!>    VALUE OF SPARAM(1) ARE NOT STORED IN SPARAM.)
!>
!>    THE VALUES OF GAMSQ AND RGAMSQ SET IN THE DATA STATEMENT MAY BE
!>    INEXACT.  THIS IS OK AS THEY ARE ONLY USED FOR TESTING THE SIZE
!>    OF SD1 AND SD2.  ALL ACTUAL SCALING OF DATA IS DONE USING GAM.
!>
!> \endverbatim
!
!  Arguments:
!  ==========
!
!> \param[in,out] SD1
!> \verbatim
!>          SD1 is REAL
!> \endverbatim
!>
!> \param[in,out] SD2
!> \verbatim
!>          SD2 is REAL
!> \endverbatim
!>
!> \param[in,out] SX1
!> \verbatim
!>          SX1 is REAL
!> \endverbatim
!>
!> \param[in] SY1
!> \verbatim
!>          SY1 is REAL
!> \endverbatim
!>
!> \param[out] SPARAM
!> \verbatim
!>          SPARAM is REAL array, dimension (5)
!>     SPARAM(1)=SFLAG
!>     SPARAM(2)=SH11
!>     SPARAM(3)=SH21
!>     SPARAM(4)=SH12
!>     SPARAM(5)=SH22
!> \endverbatim
!
!  Authors:
!  ========
!
!> \author Univ. of Tennessee
!> \author Univ. of California Berkeley
!> \author Univ. of Colorado Denver
!> \author NAG Ltd.
!
!> \date November 2017
!
!> \ingroup single_blas_level1
!
!  =====================================================================
!
!  -- Reference BLAS level1 routine (version 3.8.0) --
!  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
!  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
!     November 2017
!
!     .. Scalar Arguments ..
!     ..
!     .. Array Arguments ..
!     ..
!
!  =====================================================================
!
!     .. Local Scalars ..
!     ..
!     .. Intrinsic Functions ..
!     ..
!     .. Data statements ..
!
!     ..
!        GO ZERO-H-D-AND-SX1..
!
!        CASE-SD1-NONNEGATIVE
!        REGULAR-CASE..
!
!
!
!            This code path if here for safety. We do not expect this
!            condition to ever hold except in edge cases with rounding
!            errors. See DOI: 10.1145/355841.355847
!
!              GO ZERO-H-D-AND-SX1..
!
!     PROCEDURE..SCALE-CHECK
! END
use M_blas, only : srotmg_=>SROTMG
implicit none
      REAL SD1,SD2,SX1,SY1
      REAL SPARAM(5)
    call SROTMG_(SD1,SD2,SX1,SY1,SPARAM)
end subroutine SROTMG

subroutine SSBMV(UPLO,N,K,ALPHA,A,LDA,X,INCX,BETA,Y,INCY)
! COMMENT --file ssbmv.3m_blas.man
!> \brief \b SSBMV
!
!  =========== DOCUMENTATION ===========
!
! Online html documentation available at
!            http://www.netlib.org/lapack/explore-html/
!
!  Definition:
!  ===========
!
!       SUBROUTINE SSBMV(UPLO,N,K,ALPHA,A,LDA,X,INCX,BETA,Y,INCY)
!
!       .. Scalar Arguments ..
!       REAL ALPHA,BETA
!       INTEGER INCX,INCY,K,LDA,N
!       CHARACTER UPLO
!       ..
!       .. Array Arguments ..
!       REAL A(LDA,*),X(*),Y(*)
!       ..
!
!
!> \par Purpose:
!  =============
!>
!> \verbatim
!>
!> SSBMV  performs the matrix-vector  operation
!>
!>    y := alpha*A*x + beta*y,
!>
!> where alpha and beta are scalars, x and y are n element vectors and
!> A is an n by n symmetric band matrix, with k super-diagonals.
!> \endverbatim
!
!  Arguments:
!  ==========
!
!> \param[in] UPLO
!> \verbatim
!>          UPLO is CHARACTER*1
!>           On entry, UPLO specifies whether the upper or lower
!>           triangular part of the band matrix A is being supplied as
!>           follows:
!>
!>              UPLO = 'U' or 'u'   The upper triangular part of A is
!>                                  being supplied.
!>
!>              UPLO = 'L' or 'l'   The lower triangular part of A is
!>                                  being supplied.
!> \endverbatim
!>
!> \param[in] N
!> \verbatim
!>          N is INTEGER
!>           On entry, N specifies the order of the matrix A.
!>           N must be at least zero.
!> \endverbatim
!>
!> \param[in] K
!> \verbatim
!>          K is INTEGER
!>           On entry, K specifies the number of super-diagonals of the
!>           matrix A. K must satisfy  0 .le. K.
!> \endverbatim
!>
!> \param[in] ALPHA
!> \verbatim
!>          ALPHA is REAL
!>           On entry, ALPHA specifies the scalar alpha.
!> \endverbatim
!>
!> \param[in] A
!> \verbatim
!>          A is REAL array, dimension ( LDA, N )
!>           Before entry with UPLO = 'U' or 'u', the leading ( k + 1 )
!>           by n part of the array A must contain the upper triangular
!>           band part of the symmetric matrix, supplied column by
!>           column, with the leading diagonal of the matrix in row
!>           ( k + 1 ) of the array, the first super-diagonal starting at
!>           position 2 in row k, and so on. The top left k by k triangle
!>           of the array A is not referenced.
!>           The following program segment will transfer the upper
!>           triangular part of a symmetric band matrix from conventional
!>           full matrix storage to band storage:
!>
!>                 DO 20, J = 1, N
!>                    M = K + 1 - J
!>                    DO 10, I = MAX( 1, J - K ), J
!>                       A( M + I, J ) = matrix( I, J )
!>              10    CONTINUE
!>              20 CONTINUE
!>
!>           Before entry with UPLO = 'L' or 'l', the leading ( k + 1 )
!>           by n part of the array A must contain the lower triangular
!>           band part of the symmetric matrix, supplied column by
!>           column, with the leading diagonal of the matrix in row 1 of
!>           the array, the first sub-diagonal starting at position 1 in
!>           row 2, and so on. The bottom right k by k triangle of the
!>           array A is not referenced.
!>           The following program segment will transfer the lower
!>           triangular part of a symmetric band matrix from conventional
!>           full matrix storage to band storage:
!>
!>                 DO 20, J = 1, N
!>                    M = 1 - J
!>                    DO 10, I = J, MIN( N, J + K )
!>                       A( M + I, J ) = matrix( I, J )
!>              10    CONTINUE
!>              20 CONTINUE
!> \endverbatim
!>
!> \param[in] LDA
!> \verbatim
!>          LDA is INTEGER
!>           On entry, LDA specifies the first dimension of A as declared
!>           in the calling (sub) program. LDA must be at least
!>           ( k + 1 ).
!> \endverbatim
!>
!> \param[in] X
!> \verbatim
!>          X is REAL array, dimension at least
!>           ( 1 + ( n - 1 )*abs( INCX ) ).
!>           Before entry, the incremented array X must contain the
!>           vector x.
!> \endverbatim
!>
!> \param[in] INCX
!> \verbatim
!>          INCX is INTEGER
!>           On entry, INCX specifies the increment for the elements of
!>           X. INCX must not be zero.
!> \endverbatim
!>
!> \param[in] BETA
!> \verbatim
!>          BETA is REAL
!>           On entry, BETA specifies the scalar beta.
!> \endverbatim
!>
!> \param[in,out] Y
!> \verbatim
!>          Y is REAL array, dimension at least
!>           ( 1 + ( n - 1 )*abs( INCY ) ).
!>           Before entry, the incremented array Y must contain the
!>           vector y. On exit, Y is overwritten by the updated vector y.
!> \endverbatim
!>
!> \param[in] INCY
!> \verbatim
!>          INCY is INTEGER
!>           On entry, INCY specifies the increment for the elements of
!>           Y. INCY must not be zero.
!> \endverbatim
!
!  Authors:
!  ========
!
!> \author Univ. of Tennessee
!> \author Univ. of California Berkeley
!> \author Univ. of Colorado Denver
!> \author NAG Ltd.
!
!> \date December 2016
!
!> \ingroup single_blas_level2
!
!> \par Further Details:
!  =====================
!>
!> \verbatim
!>
!>  Level 2 Blas routine.
!>  The vector and matrix arguments are not referenced when N = 0, or M = 0
!>
!>  -- Written on 22-October-1986.
!>     Jack Dongarra, Argonne National Lab.
!>     Jeremy Du Croz, Nag Central Office.
!>     Sven Hammarling, Nag Central Office.
!>     Richard Hanson, Sandia National Labs.
!> \endverbatim
!>
!  =====================================================================
!
!  -- Reference BLAS level2 routine (version 3.7.0) --
!  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
!  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
!     December 2016
!
!     .. Scalar Arguments ..
!     ..
!     .. Array Arguments ..
!     ..
!
!  =====================================================================
!
!     .. Parameters ..
!     ..
!     .. Local Scalars ..
!     ..
!     .. External Functions ..
!     ..
!     .. External Subroutines ..
!     ..
!     .. Intrinsic Functions ..
!     ..
!
!     Test the input parameters.
!
!
!     Quick return if possible.
!
!
!     Set up the start points in  X  and  Y.
!
!
!     Start the operations. In this version the elements of the array A
!     are accessed sequentially with one pass through A.
!
!     First form  y := beta*y.
!
!
!        Form  y  when upper triangle of A is stored.
!
!
!        Form  y  when lower triangle of A is stored.
!
!
!
!     End of SSBMV .
!
! END
use M_blas, only : ssbmv_=>SSBMV
implicit none
      REAL ALPHA,BETA
      INTEGER INCX,INCY,K,LDA,N
      CHARACTER UPLO
      REAL A(LDA,*),X(*),Y(*)
    call SSBMV_(UPLO,N,K,ALPHA,A,LDA,X,INCX,BETA,Y,INCY)
end subroutine SSBMV

subroutine SSCAL(N,SA,SX,INCX)
! COMMENT --file sscal.3m_blas.man
!> \brief \b SSCAL
!
!  =========== DOCUMENTATION ===========
!
! Online html documentation available at
!            http://www.netlib.org/lapack/explore-html/
!
!  Definition:
!  ===========
!
!       SUBROUTINE SSCAL(N,SA,SX,INCX)
!
!       .. Scalar Arguments ..
!       REAL SA
!       INTEGER INCX,N
!       ..
!       .. Array Arguments ..
!       REAL SX(*)
!       ..
!
!
!> \par Purpose:
!  =============
!>
!> \verbatim
!>
!>    SSCAL scales a vector by a constant.
!>    uses unrolled loops for increment equal to 1.
!> \endverbatim
!
!  Arguments:
!  ==========
!
!> \param[in] N
!> \verbatim
!>          N is INTEGER
!>         number of elements in input vector(s)
!> \endverbatim
!>
!> \param[in] SA
!> \verbatim
!>          SA is REAL
!>           On entry, SA specifies the scalar alpha.
!> \endverbatim
!>
!> \param[in,out] SX
!> \verbatim
!>          SX is REAL array, dimension ( 1 + ( N - 1 )*abs( INCX ) )
!> \endverbatim
!>
!> \param[in] INCX
!> \verbatim
!>          INCX is INTEGER
!>         storage spacing between elements of SX
!> \endverbatim
!
!  Authors:
!  ========
!
!> \author Univ. of Tennessee
!> \author Univ. of California Berkeley
!> \author Univ. of Colorado Denver
!> \author NAG Ltd.
!
!> \date November 2017
!
!> \ingroup single_blas_level1
!
!> \par Further Details:
!  =====================
!>
!> \verbatim
!>
!>     jack dongarra, linpack, 3/11/78.
!>     modified 3/93 to return if incx .le. 0.
!>     modified 12/3/93, array(1) declarations changed to array(*)
!> \endverbatim
!>
!  =====================================================================
!
!  -- Reference BLAS level1 routine (version 3.8.0) --
!  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
!  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
!     November 2017
!
!     .. Scalar Arguments ..
!     ..
!     .. Array Arguments ..
!     ..
!
!  =====================================================================
!
!     .. Local Scalars ..
!     ..
!     .. Intrinsic Functions ..
!     ..
!
!        code for increment equal to 1
!
!
!        clean-up loop
!
!
!        code for increment not equal to 1
!
! END
use M_blas, only : sscal_=>SSCAL
implicit none
      REAL SA
      INTEGER INCX,N
      REAL SX(*)
    call SSCAL_(N,SA,SX,INCX)
end subroutine SSCAL

subroutine SSPMV(UPLO,N,ALPHA,AP,X,INCX,BETA,Y,INCY)
! COMMENT --file sspmv.3m_blas.man
!> \brief \b SSPMV
!
!  =========== DOCUMENTATION ===========
!
! Online html documentation available at
!            http://www.netlib.org/lapack/explore-html/
!
!  Definition:
!  ===========
!
!       SUBROUTINE SSPMV(UPLO,N,ALPHA,AP,X,INCX,BETA,Y,INCY)
!
!       .. Scalar Arguments ..
!       REAL ALPHA,BETA
!       INTEGER INCX,INCY,N
!       CHARACTER UPLO
!       ..
!       .. Array Arguments ..
!       REAL AP(*),X(*),Y(*)
!       ..
!
!
!> \par Purpose:
!  =============
!>
!> \verbatim
!>
!> SSPMV  performs the matrix-vector operation
!>
!>    y := alpha*A*x + beta*y,
!>
!> where alpha and beta are scalars, x and y are n element vectors and
!> A is an n by n symmetric matrix, supplied in packed form.
!> \endverbatim
!
!  Arguments:
!  ==========
!
!> \param[in] UPLO
!> \verbatim
!>          UPLO is CHARACTER*1
!>           On entry, UPLO specifies whether the upper or lower
!>           triangular part of the matrix A is supplied in the packed
!>           array AP as follows:
!>
!>              UPLO = 'U' or 'u'   The upper triangular part of A is
!>                                  supplied in AP.
!>
!>              UPLO = 'L' or 'l'   The lower triangular part of A is
!>                                  supplied in AP.
!> \endverbatim
!>
!> \param[in] N
!> \verbatim
!>          N is INTEGER
!>           On entry, N specifies the order of the matrix A.
!>           N must be at least zero.
!> \endverbatim
!>
!> \param[in] ALPHA
!> \verbatim
!>          ALPHA is REAL
!>           On entry, ALPHA specifies the scalar alpha.
!> \endverbatim
!>
!> \param[in] AP
!> \verbatim
!>          AP is REAL array, dimension at least
!>           ( ( n*( n + 1 ) )/2 ).
!>           Before entry with UPLO = 'U' or 'u', the array AP must
!>           contain the upper triangular part of the symmetric matrix
!>           packed sequentially, column by column, so that AP( 1 )
!>           contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 )
!>           and a( 2, 2 ) respectively, and so on.
!>           Before entry with UPLO = 'L' or 'l', the array AP must
!>           contain the lower triangular part of the symmetric matrix
!>           packed sequentially, column by column, so that AP( 1 )
!>           contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 )
!>           and a( 3, 1 ) respectively, and so on.
!> \endverbatim
!>
!> \param[in] X
!> \verbatim
!>          X is REAL array, dimension at least
!>           ( 1 + ( n - 1 )*abs( INCX ) ).
!>           Before entry, the incremented array X must contain the n
!>           element vector x.
!> \endverbatim
!>
!> \param[in] INCX
!> \verbatim
!>          INCX is INTEGER
!>           On entry, INCX specifies the increment for the elements of
!>           X. INCX must not be zero.
!> \endverbatim
!>
!> \param[in] BETA
!> \verbatim
!>          BETA is REAL
!>           On entry, BETA specifies the scalar beta. When BETA is
!>           supplied as zero then Y need not be set on input.
!> \endverbatim
!>
!> \param[in,out] Y
!> \verbatim
!>          Y is REAL array, dimension at least
!>           ( 1 + ( n - 1 )*abs( INCY ) ).
!>           Before entry, the incremented array Y must contain the n
!>           element vector y. On exit, Y is overwritten by the updated
!>           vector y.
!> \endverbatim
!>
!> \param[in] INCY
!> \verbatim
!>          INCY is INTEGER
!>           On entry, INCY specifies the increment for the elements of
!>           Y. INCY must not be zero.
!> \endverbatim
!
!  Authors:
!  ========
!
!> \author Univ. of Tennessee
!> \author Univ. of California Berkeley
!> \author Univ. of Colorado Denver
!> \author NAG Ltd.
!
!> \date December 2016
!
!> \ingroup single_blas_level2
!
!> \par Further Details:
!  =====================
!>
!> \verbatim
!>
!>  Level 2 Blas routine.
!>  The vector and matrix arguments are not referenced when N = 0, or M = 0
!>
!>  -- Written on 22-October-1986.
!>     Jack Dongarra, Argonne National Lab.
!>     Jeremy Du Croz, Nag Central Office.
!>     Sven Hammarling, Nag Central Office.
!>     Richard Hanson, Sandia National Labs.
!> \endverbatim
!>
!  =====================================================================
!
!  -- Reference BLAS level2 routine (version 3.7.0) --
!  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
!  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
!     December 2016
!
!     .. Scalar Arguments ..
!     ..
!     .. Array Arguments ..
!     ..
!
!  =====================================================================
!
!     .. Parameters ..
!     ..
!     .. Local Scalars ..
!     ..
!     .. External Functions ..
!     ..
!     .. External Subroutines ..
!     ..
!
!     Test the input parameters.
!
!
!     Quick return if possible.
!
!
!     Set up the start points in  X  and  Y.
!
!
!     Start the operations. In this version the elements of the array AP
!     are accessed sequentially with one pass through AP.
!
!     First form  y := beta*y.
!
!
!        Form  y  when AP contains the upper triangle.
!
!
!        Form  y  when AP contains the lower triangle.
!
!
!
!     End of SSPMV .
!
! END
use M_blas, only : sspmv_=>SSPMV
implicit none
      REAL ALPHA,BETA
      INTEGER INCX,INCY,N
      CHARACTER UPLO
      REAL AP(*),X(*),Y(*)
    call SSPMV_(UPLO,N,ALPHA,AP,X,INCX,BETA,Y,INCY)
end subroutine SSPMV

subroutine SSPR2(UPLO,N,ALPHA,X,INCX,Y,INCY,AP)
! COMMENT --file sspr2.3m_blas.man
!> \brief \b SSPR2
!
!  =========== DOCUMENTATION ===========
!
! Online html documentation available at
!            http://www.netlib.org/lapack/explore-html/
!
!  Definition:
!  ===========
!
!       SUBROUTINE SSPR2(UPLO,N,ALPHA,X,INCX,Y,INCY,AP)
!
!       .. Scalar Arguments ..
!       REAL ALPHA
!       INTEGER INCX,INCY,N
!       CHARACTER UPLO
!       ..
!       .. Array Arguments ..
!       REAL AP(*),X(*),Y(*)
!       ..
!
!
!> \par Purpose:
!  =============
!>
!> \verbatim
!>
!> SSPR2  performs the symmetric rank 2 operation
!>
!>    A := alpha*x*y**T + alpha*y*x**T + A,
!>
!> where alpha is a scalar, x and y are n element vectors and A is an
!> n by n symmetric matrix, supplied in packed form.
!> \endverbatim
!
!  Arguments:
!  ==========
!
!> \param[in] UPLO
!> \verbatim
!>          UPLO is CHARACTER*1
!>           On entry, UPLO specifies whether the upper or lower
!>           triangular part of the matrix A is supplied in the packed
!>           array AP as follows:
!>
!>              UPLO = 'U' or 'u'   The upper triangular part of A is
!>                                  supplied in AP.
!>
!>              UPLO = 'L' or 'l'   The lower triangular part of A is
!>                                  supplied in AP.
!> \endverbatim
!>
!> \param[in] N
!> \verbatim
!>          N is INTEGER
!>           On entry, N specifies the order of the matrix A.
!>           N must be at least zero.
!> \endverbatim
!>
!> \param[in] ALPHA
!> \verbatim
!>          ALPHA is REAL
!>           On entry, ALPHA specifies the scalar alpha.
!> \endverbatim
!>
!> \param[in] X
!> \verbatim
!>          X is REAL array, dimension at least
!>           ( 1 + ( n - 1 )*abs( INCX ) ).
!>           Before entry, the incremented array X must contain the n
!>           element vector x.
!> \endverbatim
!>
!> \param[in] INCX
!> \verbatim
!>          INCX is INTEGER
!>           On entry, INCX specifies the increment for the elements of
!>           X. INCX must not be zero.
!> \endverbatim
!>
!> \param[in] Y
!> \verbatim
!>          Y is REAL array, dimension at least
!>           ( 1 + ( n - 1 )*abs( INCY ) ).
!>           Before entry, the incremented array Y must contain the n
!>           element vector y.
!> \endverbatim
!>
!> \param[in] INCY
!> \verbatim
!>          INCY is INTEGER
!>           On entry, INCY specifies the increment for the elements of
!>           Y. INCY must not be zero.
!> \endverbatim
!>
!> \param[in,out] AP
!> \verbatim
!>          AP is REAL array, dimension at least
!>           ( ( n*( n + 1 ) )/2 ).
!>           Before entry with  UPLO = 'U' or 'u', the array AP must
!>           contain the upper triangular part of the symmetric matrix
!>           packed sequentially, column by column, so that AP( 1 )
!>           contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 )
!>           and a( 2, 2 ) respectively, and so on. On exit, the array
!>           AP is overwritten by the upper triangular part of the
!>           updated matrix.
!>           Before entry with UPLO = 'L' or 'l', the array AP must
!>           contain the lower triangular part of the symmetric matrix
!>           packed sequentially, column by column, so that AP( 1 )
!>           contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 )
!>           and a( 3, 1 ) respectively, and so on. On exit, the array
!>           AP is overwritten by the lower triangular part of the
!>           updated matrix.
!> \endverbatim
!
!  Authors:
!  ========
!
!> \author Univ. of Tennessee
!> \author Univ. of California Berkeley
!> \author Univ. of Colorado Denver
!> \author NAG Ltd.
!
!> \date December 2016
!
!> \ingroup single_blas_level2
!
!> \par Further Details:
!  =====================
!>
!> \verbatim
!>
!>  Level 2 Blas routine.
!>
!>  -- Written on 22-October-1986.
!>     Jack Dongarra, Argonne National Lab.
!>     Jeremy Du Croz, Nag Central Office.
!>     Sven Hammarling, Nag Central Office.
!>     Richard Hanson, Sandia National Labs.
!> \endverbatim
!>
!  =====================================================================
!
!  -- Reference BLAS level2 routine (version 3.7.0) --
!  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
!  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
!     December 2016
!
!     .. Scalar Arguments ..
!     ..
!     .. Array Arguments ..
!     ..
!
!  =====================================================================
!
!     .. Parameters ..
!     ..
!     .. Local Scalars ..
!     ..
!     .. External Functions ..
!     ..
!     .. External Subroutines ..
!     ..
!
!     Test the input parameters.
!
!
!     Quick return if possible.
!
!
!     Set up the start points in X and Y if the increments are not both
!     unity.
!
!
!     Start the operations. In this version the elements of the array AP
!     are accessed sequentially with one pass through AP.
!
!
!        Form  A  when upper triangle is stored in AP.
!
!
!        Form  A  when lower triangle is stored in AP.
!
!
!
!     End of SSPR2 .
!
! END
use M_blas, only : sspr2_=>SSPR2
implicit none
      REAL ALPHA
      INTEGER INCX,INCY,N
      CHARACTER UPLO
      REAL AP(*),X(*),Y(*)
    call SSPR2_(UPLO,N,ALPHA,X,INCX,Y,INCY,AP)
end subroutine SSPR2

subroutine SSPR(UPLO,N,ALPHA,X,INCX,AP)
! COMMENT --file sspr.3m_blas.man
!> \brief \b SSPR
!
!  =========== DOCUMENTATION ===========
!
! Online html documentation available at
!            http://www.netlib.org/lapack/explore-html/
!
!  Definition:
!  ===========
!
!       SUBROUTINE SSPR(UPLO,N,ALPHA,X,INCX,AP)
!
!       .. Scalar Arguments ..
!       REAL ALPHA
!       INTEGER INCX,N
!       CHARACTER UPLO
!       ..
!       .. Array Arguments ..
!       REAL AP(*),X(*)
!       ..
!
!
!> \par Purpose:
!  =============
!>
!> \verbatim
!>
!> SSPR    performs the symmetric rank 1 operation
!>
!>    A := alpha*x*x**T + A,
!>
!> where alpha is a real scalar, x is an n element vector and A is an
!> n by n symmetric matrix, supplied in packed form.
!> \endverbatim
!
!  Arguments:
!  ==========
!
!> \param[in] UPLO
!> \verbatim
!>          UPLO is CHARACTER*1
!>           On entry, UPLO specifies whether the upper or lower
!>           triangular part of the matrix A is supplied in the packed
!>           array AP as follows:
!>
!>              UPLO = 'U' or 'u'   The upper triangular part of A is
!>                                  supplied in AP.
!>
!>              UPLO = 'L' or 'l'   The lower triangular part of A is
!>                                  supplied in AP.
!> \endverbatim
!>
!> \param[in] N
!> \verbatim
!>          N is INTEGER
!>           On entry, N specifies the order of the matrix A.
!>           N must be at least zero.
!> \endverbatim
!>
!> \param[in] ALPHA
!> \verbatim
!>          ALPHA is REAL
!>           On entry, ALPHA specifies the scalar alpha.
!> \endverbatim
!>
!> \param[in] X
!> \verbatim
!>          X is REAL array, dimension at least
!>           ( 1 + ( n - 1 )*abs( INCX ) ).
!>           Before entry, the incremented array X must contain the n
!>           element vector x.
!> \endverbatim
!>
!> \param[in] INCX
!> \verbatim
!>          INCX is INTEGER
!>           On entry, INCX specifies the increment for the elements of
!>           X. INCX must not be zero.
!> \endverbatim
!>
!> \param[in,out] AP
!> \verbatim
!>          AP is REAL array, dimension at least
!>           ( ( n*( n + 1 ) )/2 ).
!>           Before entry with  UPLO = 'U' or 'u', the array AP must
!>           contain the upper triangular part of the symmetric matrix
!>           packed sequentially, column by column, so that AP( 1 )
!>           contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 )
!>           and a( 2, 2 ) respectively, and so on. On exit, the array
!>           AP is overwritten by the upper triangular part of the
!>           updated matrix.
!>           Before entry with UPLO = 'L' or 'l', the array AP must
!>           contain the lower triangular part of the symmetric matrix
!>           packed sequentially, column by column, so that AP( 1 )
!>           contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 )
!>           and a( 3, 1 ) respectively, and so on. On exit, the array
!>           AP is overwritten by the lower triangular part of the
!>           updated matrix.
!> \endverbatim
!
!  Authors:
!  ========
!
!> \author Univ. of Tennessee
!> \author Univ. of California Berkeley
!> \author Univ. of Colorado Denver
!> \author NAG Ltd.
!
!> \date December 2016
!
!> \ingroup single_blas_level2
!
!> \par Further Details:
!  =====================
!>
!> \verbatim
!>
!>  Level 2 Blas routine.
!>
!>  -- Written on 22-October-1986.
!>     Jack Dongarra, Argonne National Lab.
!>     Jeremy Du Croz, Nag Central Office.
!>     Sven Hammarling, Nag Central Office.
!>     Richard Hanson, Sandia National Labs.
!> \endverbatim
!>
!  =====================================================================
!
!  -- Reference BLAS level2 routine (version 3.7.0) --
!  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
!  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
!     December 2016
!
!     .. Scalar Arguments ..
!     ..
!     .. Array Arguments ..
!     ..
!
!  =====================================================================
!
!     .. Parameters ..
!     ..
!     .. Local Scalars ..
!     ..
!     .. External Functions ..
!     ..
!     .. External Subroutines ..
!     ..
!
!     Test the input parameters.
!
!
!     Quick return if possible.
!
!
!     Set the start point in X if the increment is not unity.
!
!
!     Start the operations. In this version the elements of the array AP
!     are accessed sequentially with one pass through AP.
!
!
!        Form  A  when upper triangle is stored in AP.
!
!
!        Form  A  when lower triangle is stored in AP.
!
!
!
!     End of SSPR  .
!
! END
use M_blas, only : sspr_=>SSPR
implicit none
      REAL ALPHA
      INTEGER INCX,N
      CHARACTER UPLO
      REAL AP(*),X(*)
    call SSPR_(UPLO,N,ALPHA,X,INCX,AP)
end subroutine SSPR

subroutine SSWAP(N,SX,INCX,SY,INCY)
! COMMENT --file sswap.3m_blas.man
!> \brief \b SSWAP
!
!  =========== DOCUMENTATION ===========
!
! Online html documentation available at
!            http://www.netlib.org/lapack/explore-html/
!
!  Definition:
!  ===========
!
!       SUBROUTINE SSWAP(N,SX,INCX,SY,INCY)
!
!       .. Scalar Arguments ..
!       INTEGER INCX,INCY,N
!       ..
!       .. Array Arguments ..
!       REAL SX(*),SY(*)
!       ..
!
!
!> \par Purpose:
!  =============
!>
!> \verbatim
!>
!>    SSWAP interchanges two vectors.
!>    uses unrolled loops for increments equal to 1.
!> \endverbatim
!
!  Arguments:
!  ==========
!
!> \param[in] N
!> \verbatim
!>          N is INTEGER
!>         number of elements in input vector(s)
!> \endverbatim
!>
!> \param[in,out] SX
!> \verbatim
!>          SX is REAL array, dimension ( 1 + ( N - 1 )*abs( INCX ) )
!> \endverbatim
!>
!> \param[in] INCX
!> \verbatim
!>          INCX is INTEGER
!>         storage spacing between elements of SX
!> \endverbatim
!>
!> \param[in,out] SY
!> \verbatim
!>          SY is REAL array, dimension ( 1 + ( N - 1 )*abs( INCY ) )
!> \endverbatim
!>
!> \param[in] INCY
!> \verbatim
!>          INCY is INTEGER
!>         storage spacing between elements of SY
!> \endverbatim
!
!  Authors:
!  ========
!
!> \author Univ. of Tennessee
!> \author Univ. of California Berkeley
!> \author Univ. of Colorado Denver
!> \author NAG Ltd.
!
!> \date November 2017
!
!> \ingroup single_blas_level1
!
!> \par Further Details:
!  =====================
!>
!> \verbatim
!>
!>     jack dongarra, linpack, 3/11/78.
!>     modified 12/3/93, array(1) declarations changed to array(*)
!> \endverbatim
!>
!  =====================================================================
!
!  -- Reference BLAS level1 routine (version 3.8.0) --
!  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
!  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
!     November 2017
!
!     .. Scalar Arguments ..
!     ..
!     .. Array Arguments ..
!     ..
!
!  =====================================================================
!
!     .. Local Scalars ..
!     ..
!     .. Intrinsic Functions ..
!     ..
!
!       code for both increments equal to 1
!
!
!       clean-up loop
!
!
!       code for unequal increments or equal increments not equal
!         to 1
!
! END
use M_blas, only : sswap_=>SSWAP
implicit none
      INTEGER INCX,INCY,N
      REAL SX(*),SY(*)
    call SSWAP_(N,SX,INCX,SY,INCY)
end subroutine SSWAP

subroutine SSYMM(SIDE,UPLO,M,N,ALPHA,A,LDA,B,LDB,BETA,C,LDC)
! COMMENT --file ssymm.3m_blas.man
!> \brief \b SSYMM
!
!  =========== DOCUMENTATION ===========
!
! Online html documentation available at
!            http://www.netlib.org/lapack/explore-html/
!
!  Definition:
!  ===========
!
!       SUBROUTINE SSYMM(SIDE,UPLO,M,N,ALPHA,A,LDA,B,LDB,BETA,C,LDC)
!
!       .. Scalar Arguments ..
!       REAL ALPHA,BETA
!       INTEGER LDA,LDB,LDC,M,N
!       CHARACTER SIDE,UPLO
!       ..
!       .. Array Arguments ..
!       REAL A(LDA,*),B(LDB,*),C(LDC,*)
!       ..
!
!
!> \par Purpose:
!  =============
!>
!> \verbatim
!>
!> SSYMM  performs one of the matrix-matrix operations
!>
!>    C := alpha*A*B + beta*C,
!>
!> or
!>
!>    C := alpha*B*A + beta*C,
!>
!> where alpha and beta are scalars,  A is a symmetric matrix and  B and
!> C are  m by n matrices.
!> \endverbatim
!
!  Arguments:
!  ==========
!
!> \param[in] SIDE
!> \verbatim
!>          SIDE is CHARACTER*1
!>           On entry,  SIDE  specifies whether  the  symmetric matrix  A
!>           appears on the  left or right  in the  operation as follows:
!>
!>              SIDE = 'L' or 'l'   C := alpha*A*B + beta*C,
!>
!>              SIDE = 'R' or 'r'   C := alpha*B*A + beta*C,
!> \endverbatim
!>
!> \param[in] UPLO
!> \verbatim
!>          UPLO is CHARACTER*1
!>           On  entry,   UPLO  specifies  whether  the  upper  or  lower
!>           triangular  part  of  the  symmetric  matrix   A  is  to  be
!>           referenced as follows:
!>
!>              UPLO = 'U' or 'u'   Only the upper triangular part of the
!>                                  symmetric matrix is to be referenced.
!>
!>              UPLO = 'L' or 'l'   Only the lower triangular part of the
!>                                  symmetric matrix is to be referenced.
!> \endverbatim
!>
!> \param[in] M
!> \verbatim
!>          M is INTEGER
!>           On entry,  M  specifies the number of rows of the matrix  C.
!>           M  must be at least zero.
!> \endverbatim
!>
!> \param[in] N
!> \verbatim
!>          N is INTEGER
!>           On entry, N specifies the number of columns of the matrix C.
!>           N  must be at least zero.
!> \endverbatim
!>
!> \param[in] ALPHA
!> \verbatim
!>          ALPHA is REAL
!>           On entry, ALPHA specifies the scalar alpha.
!> \endverbatim
!>
!> \param[in] A
!> \verbatim
!>          A is REAL array, dimension ( LDA, ka ), where ka is
!>           m  when  SIDE = 'L' or 'l'  and is  n otherwise.
!>           Before entry  with  SIDE = 'L' or 'l',  the  m by m  part of
!>           the array  A  must contain the  symmetric matrix,  such that
!>           when  UPLO = 'U' or 'u', the leading m by m upper triangular
!>           part of the array  A  must contain the upper triangular part
!>           of the  symmetric matrix and the  strictly  lower triangular
!>           part of  A  is not referenced,  and when  UPLO = 'L' or 'l',
!>           the leading  m by m  lower triangular part  of the  array  A
!>           must  contain  the  lower triangular part  of the  symmetric
!>           matrix and the  strictly upper triangular part of  A  is not
!>           referenced.
!>           Before entry  with  SIDE = 'R' or 'r',  the  n by n  part of
!>           the array  A  must contain the  symmetric matrix,  such that
!>           when  UPLO = 'U' or 'u', the leading n by n upper triangular
!>           part of the array  A  must contain the upper triangular part
!>           of the  symmetric matrix and the  strictly  lower triangular
!>           part of  A  is not referenced,  and when  UPLO = 'L' or 'l',
!>           the leading  n by n  lower triangular part  of the  array  A
!>           must  contain  the  lower triangular part  of the  symmetric
!>           matrix and the  strictly upper triangular part of  A  is not
!>           referenced.
!> \endverbatim
!>
!> \param[in] LDA
!> \verbatim
!>          LDA is INTEGER
!>           On entry, LDA specifies the first dimension of A as declared
!>           in the calling (sub) program.  When  SIDE = 'L' or 'l'  then
!>           LDA must be at least  max( 1, m ), otherwise  LDA must be at
!>           least  max( 1, n ).
!> \endverbatim
!>
!> \param[in] B
!> \verbatim
!>          B is REAL array, dimension ( LDB, N )
!>           Before entry, the leading  m by n part of the array  B  must
!>           contain the matrix B.
!> \endverbatim
!>
!> \param[in] LDB
!> \verbatim
!>          LDB is INTEGER
!>           On entry, LDB specifies the first dimension of B as declared
!>           in  the  calling  (sub)  program.   LDB  must  be  at  least
!>           max( 1, m ).
!> \endverbatim
!>
!> \param[in] BETA
!> \verbatim
!>          BETA is REAL
!>           On entry,  BETA  specifies the scalar  beta.  When  BETA  is
!>           supplied as zero then C need not be set on input.
!> \endverbatim
!>
!> \param[in,out] C
!> \verbatim
!>          C is REAL array, dimension ( LDC, N )
!>           Before entry, the leading  m by n  part of the array  C must
!>           contain the matrix  C,  except when  beta  is zero, in which
!>           case C need not be set on entry.
!>           On exit, the array  C  is overwritten by the  m by n updated
!>           matrix.
!> \endverbatim
!>
!> \param[in] LDC
!> \verbatim
!>          LDC is INTEGER
!>           On entry, LDC specifies the first dimension of C as declared
!>           in  the  calling  (sub)  program.   LDC  must  be  at  least
!>           max( 1, m ).
!> \endverbatim
!
!  Authors:
!  ========
!
!> \author Univ. of Tennessee
!> \author Univ. of California Berkeley
!> \author Univ. of Colorado Denver
!> \author NAG Ltd.
!
!> \date December 2016
!
!> \ingroup single_blas_level3
!
!> \par Further Details:
!  =====================
!>
!> \verbatim
!>
!>  Level 3 Blas routine.
!>
!>  -- Written on 8-February-1989.
!>     Jack Dongarra, Argonne National Laboratory.
!>     Iain Duff, AERE Harwell.
!>     Jeremy Du Croz, Numerical Algorithms Group Ltd.
!>     Sven Hammarling, Numerical Algorithms Group Ltd.
!> \endverbatim
!>
!  =====================================================================
!
!  -- Reference BLAS level3 routine (version 3.7.0) --
!  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
!  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
!     December 2016
!
!     .. Scalar Arguments ..
!     ..
!     .. Array Arguments ..
!     ..
!
!  =====================================================================
!
!     .. External Functions ..
!     ..
!     .. External Subroutines ..
!     ..
!     .. Intrinsic Functions ..
!     ..
!     .. Local Scalars ..
!     ..
!     .. Parameters ..
!     ..
!
!     Set NROWA as the number of rows of A.
!
!
!     Test the input parameters.
!
!
!     Quick return if possible.
!
!
!     And when  alpha.eq.zero.
!
!
!     Start the operations.
!
!
!        Form  C := alpha*A*B + beta*C.
!
!
!        Form  C := alpha*B*A + beta*C.
!
!
!
!     End of SSYMM .
!
! END
use M_blas, only : ssymm_=>SSYMM
implicit none
      REAL ALPHA,BETA
      INTEGER LDA,LDB,LDC,M,N
      CHARACTER SIDE,UPLO
      REAL A(LDA,*),B(LDB,*),C(LDC,*)
    call SSYMM_(SIDE,UPLO,M,N,ALPHA,A,LDA,B,LDB,BETA,C,LDC)
end subroutine SSYMM

subroutine SSYMV(UPLO,N,ALPHA,A,LDA,X,INCX,BETA,Y,INCY)
! COMMENT --file ssymv.3m_blas.man
!> \brief \b SSYMV
!
!  =========== DOCUMENTATION ===========
!
! Online html documentation available at
!            http://www.netlib.org/lapack/explore-html/
!
!  Definition:
!  ===========
!
!       SUBROUTINE SSYMV(UPLO,N,ALPHA,A,LDA,X,INCX,BETA,Y,INCY)
!
!       .. Scalar Arguments ..
!       REAL ALPHA,BETA
!       INTEGER INCX,INCY,LDA,N
!       CHARACTER UPLO
!       ..
!       .. Array Arguments ..
!       REAL A(LDA,*),X(*),Y(*)
!       ..
!
!
!> \par Purpose:
!  =============
!>
!> \verbatim
!>
!> SSYMV  performs the matrix-vector  operation
!>
!>    y := alpha*A*x + beta*y,
!>
!> where alpha and beta are scalars, x and y are n element vectors and
!> A is an n by n symmetric matrix.
!> \endverbatim
!
!  Arguments:
!  ==========
!
!> \param[in] UPLO
!> \verbatim
!>          UPLO is CHARACTER*1
!>           On entry, UPLO specifies whether the upper or lower
!>           triangular part of the array A is to be referenced as
!>           follows:
!>
!>              UPLO = 'U' or 'u'   Only the upper triangular part of A
!>                                  is to be referenced.
!>
!>              UPLO = 'L' or 'l'   Only the lower triangular part of A
!>                                  is to be referenced.
!> \endverbatim
!>
!> \param[in] N
!> \verbatim
!>          N is INTEGER
!>           On entry, N specifies the order of the matrix A.
!>           N must be at least zero.
!> \endverbatim
!>
!> \param[in] ALPHA
!> \verbatim
!>          ALPHA is REAL
!>           On entry, ALPHA specifies the scalar alpha.
!> \endverbatim
!>
!> \param[in] A
!> \verbatim
!>          A is REAL array, dimension ( LDA, N )
!>           Before entry with  UPLO = 'U' or 'u', the leading n by n
!>           upper triangular part of the array A must contain the upper
!>           triangular part of the symmetric matrix and the strictly
!>           lower triangular part of A is not referenced.
!>           Before entry with UPLO = 'L' or 'l', the leading n by n
!>           lower triangular part of the array A must contain the lower
!>           triangular part of the symmetric matrix and the strictly
!>           upper triangular part of A is not referenced.
!> \endverbatim
!>
!> \param[in] LDA
!> \verbatim
!>          LDA is INTEGER
!>           On entry, LDA specifies the first dimension of A as declared
!>           in the calling (sub) program. LDA must be at least
!>           max( 1, n ).
!> \endverbatim
!>
!> \param[in] X
!> \verbatim
!>          X is REAL array, dimension at least
!>           ( 1 + ( n - 1 )*abs( INCX ) ).
!>           Before entry, the incremented array X must contain the n
!>           element vector x.
!> \endverbatim
!>
!> \param[in] INCX
!> \verbatim
!>          INCX is INTEGER
!>           On entry, INCX specifies the increment for the elements of
!>           X. INCX must not be zero.
!> \endverbatim
!>
!> \param[in] BETA
!> \verbatim
!>          BETA is REAL
!>           On entry, BETA specifies the scalar beta. When BETA is
!>           supplied as zero then Y need not be set on input.
!> \endverbatim
!>
!> \param[in,out] Y
!> \verbatim
!>          Y is REAL array, dimension at least
!>           ( 1 + ( n - 1 )*abs( INCY ) ).
!>           Before entry, the incremented array Y must contain the n
!>           element vector y. On exit, Y is overwritten by the updated
!>           vector y.
!> \endverbatim
!>
!> \param[in] INCY
!> \verbatim
!>          INCY is INTEGER
!>           On entry, INCY specifies the increment for the elements of
!>           Y. INCY must not be zero.
!> \endverbatim
!
!  Authors:
!  ========
!
!> \author Univ. of Tennessee
!> \author Univ. of California Berkeley
!> \author Univ. of Colorado Denver
!> \author NAG Ltd.
!
!> \date December 2016
!
!> \ingroup single_blas_level2
!
!> \par Further Details:
!  =====================
!>
!> \verbatim
!>
!>  Level 2 Blas routine.
!>  The vector and matrix arguments are not referenced when N = 0, or M = 0
!>
!>  -- Written on 22-October-1986.
!>     Jack Dongarra, Argonne National Lab.
!>     Jeremy Du Croz, Nag Central Office.
!>     Sven Hammarling, Nag Central Office.
!>     Richard Hanson, Sandia National Labs.
!> \endverbatim
!>
!  =====================================================================
!
!  -- Reference BLAS level2 routine (version 3.7.0) --
!  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
!  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
!     December 2016
!
!     .. Scalar Arguments ..
!     ..
!     .. Array Arguments ..
!     ..
!
!  =====================================================================
!
!     .. Parameters ..
!     ..
!     .. Local Scalars ..
!     ..
!     .. External Functions ..
!     ..
!     .. External Subroutines ..
!     ..
!     .. Intrinsic Functions ..
!     ..
!
!     Test the input parameters.
!
!
!     Quick return if possible.
!
!
!     Set up the start points in  X  and  Y.
!
!
!     Start the operations. In this version the elements of A are
!     accessed sequentially with one pass through the triangular part
!     of A.
!
!     First form  y := beta*y.
!
!
!        Form  y  when A is stored in upper triangle.
!
!
!        Form  y  when A is stored in lower triangle.
!
!
!
!     End of SSYMV .
!
! END
use M_blas, only : ssymv_=>SSYMV
implicit none
      REAL ALPHA,BETA
      INTEGER INCX,INCY,LDA,N
      CHARACTER UPLO
      REAL A(LDA,*),X(*),Y(*)
    call SSYMV_(UPLO,N,ALPHA,A,LDA,X,INCX,BETA,Y,INCY)
end subroutine SSYMV

subroutine SSYR2(UPLO,N,ALPHA,X,INCX,Y,INCY,A,LDA)
! COMMENT --file ssyr2.3m_blas.man
!> \brief \b SSYR2
!
!  =========== DOCUMENTATION ===========
!
! Online html documentation available at
!            http://www.netlib.org/lapack/explore-html/
!
!  Definition:
!  ===========
!
!       SUBROUTINE SSYR2(UPLO,N,ALPHA,X,INCX,Y,INCY,A,LDA)
!
!       .. Scalar Arguments ..
!       REAL ALPHA
!       INTEGER INCX,INCY,LDA,N
!       CHARACTER UPLO
!       ..
!       .. Array Arguments ..
!       REAL A(LDA,*),X(*),Y(*)
!       ..
!
!
!> \par Purpose:
!  =============
!>
!> \verbatim
!>
!> SSYR2  performs the symmetric rank 2 operation
!>
!>    A := alpha*x*y**T + alpha*y*x**T + A,
!>
!> where alpha is a scalar, x and y are n element vectors and A is an n
!> by n symmetric matrix.
!> \endverbatim
!
!  Arguments:
!  ==========
!
!> \param[in] UPLO
!> \verbatim
!>          UPLO is CHARACTER*1
!>           On entry, UPLO specifies whether the upper or lower
!>           triangular part of the array A is to be referenced as
!>           follows:
!>
!>              UPLO = 'U' or 'u'   Only the upper triangular part of A
!>                                  is to be referenced.
!>
!>              UPLO = 'L' or 'l'   Only the lower triangular part of A
!>                                  is to be referenced.
!> \endverbatim
!>
!> \param[in] N
!> \verbatim
!>          N is INTEGER
!>           On entry, N specifies the order of the matrix A.
!>           N must be at least zero.
!> \endverbatim
!>
!> \param[in] ALPHA
!> \verbatim
!>          ALPHA is REAL
!>           On entry, ALPHA specifies the scalar alpha.
!> \endverbatim
!>
!> \param[in] X
!> \verbatim
!>          X is REAL array, dimension at least
!>           ( 1 + ( n - 1 )*abs( INCX ) ).
!>           Before entry, the incremented array X must contain the n
!>           element vector x.
!> \endverbatim
!>
!> \param[in] INCX
!> \verbatim
!>          INCX is INTEGER
!>           On entry, INCX specifies the increment for the elements of
!>           X. INCX must not be zero.
!> \endverbatim
!>
!> \param[in] Y
!> \verbatim
!>          Y is REAL array, dimension at least
!>           ( 1 + ( n - 1 )*abs( INCY ) ).
!>           Before entry, the incremented array Y must contain the n
!>           element vector y.
!> \endverbatim
!>
!> \param[in] INCY
!> \verbatim
!>          INCY is INTEGER
!>           On entry, INCY specifies the increment for the elements of
!>           Y. INCY must not be zero.
!> \endverbatim
!>
!> \param[in,out] A
!> \verbatim
!>          A is REAL array, dimension ( LDA, N )
!>           Before entry with  UPLO = 'U' or 'u', the leading n by n
!>           upper triangular part of the array A must contain the upper
!>           triangular part of the symmetric matrix and the strictly
!>           lower triangular part of A is not referenced. On exit, the
!>           upper triangular part of the array A is overwritten by the
!>           upper triangular part of the updated matrix.
!>           Before entry with UPLO = 'L' or 'l', the leading n by n
!>           lower triangular part of the array A must contain the lower
!>           triangular part of the symmetric matrix and the strictly
!>           upper triangular part of A is not referenced. On exit, the
!>           lower triangular part of the array A is overwritten by the
!>           lower triangular part of the updated matrix.
!> \endverbatim
!>
!> \param[in] LDA
!> \verbatim
!>          LDA is INTEGER
!>           On entry, LDA specifies the first dimension of A as declared
!>           in the calling (sub) program. LDA must be at least
!>           max( 1, n ).
!> \endverbatim
!
!  Authors:
!  ========
!
!> \author Univ. of Tennessee
!> \author Univ. of California Berkeley
!> \author Univ. of Colorado Denver
!> \author NAG Ltd.
!
!> \date December 2016
!
!> \ingroup single_blas_level2
!
!> \par Further Details:
!  =====================
!>
!> \verbatim
!>
!>  Level 2 Blas routine.
!>
!>  -- Written on 22-October-1986.
!>     Jack Dongarra, Argonne National Lab.
!>     Jeremy Du Croz, Nag Central Office.
!>     Sven Hammarling, Nag Central Office.
!>     Richard Hanson, Sandia National Labs.
!> \endverbatim
!>
!  =====================================================================
!
!  -- Reference BLAS level2 routine (version 3.7.0) --
!  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
!  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
!     December 2016
!
!     .. Scalar Arguments ..
!     ..
!     .. Array Arguments ..
!     ..
!
!  =====================================================================
!
!     .. Parameters ..
!     ..
!     .. Local Scalars ..
!     ..
!     .. External Functions ..
!     ..
!     .. External Subroutines ..
!     ..
!     .. Intrinsic Functions ..
!     ..
!
!     Test the input parameters.
!
!
!     Quick return if possible.
!
!
!     Set up the start points in X and Y if the increments are not both
!     unity.
!
!
!     Start the operations. In this version the elements of A are
!     accessed sequentially with one pass through the triangular part
!     of A.
!
!
!        Form  A  when A is stored in the upper triangle.
!
!
!        Form  A  when A is stored in the lower triangle.
!
!
!
!     End of SSYR2 .
!
! END
use M_blas, only : ssyr2_=>SSYR2
implicit none
      REAL ALPHA
      INTEGER INCX,INCY,LDA,N
      CHARACTER UPLO
      REAL A(LDA,*),X(*),Y(*)
    call SSYR2_(UPLO,N,ALPHA,X,INCX,Y,INCY,A,LDA)
end subroutine SSYR2

subroutine SSYR2K(UPLO,TRANS,N,K,ALPHA,A,LDA,B,LDB,BETA,C,LDC)
! COMMENT --file ssyr2k.3m_blas.man
!> \brief \b SSYR2K
!
!  =========== DOCUMENTATION ===========
!
! Online html documentation available at
!            http://www.netlib.org/lapack/explore-html/
!
!  Definition:
!  ===========
!
!       SUBROUTINE SSYR2K(UPLO,TRANS,N,K,ALPHA,A,LDA,B,LDB,BETA,C,LDC)
!
!       .. Scalar Arguments ..
!       REAL ALPHA,BETA
!       INTEGER K,LDA,LDB,LDC,N
!       CHARACTER TRANS,UPLO
!       ..
!       .. Array Arguments ..
!       REAL A(LDA,*),B(LDB,*),C(LDC,*)
!       ..
!
!
!> \par Purpose:
!  =============
!>
!> \verbatim
!>
!> SSYR2K  performs one of the symmetric rank 2k operations
!>
!>    C := alpha*A*B**T + alpha*B*A**T + beta*C,
!>
!> or
!>
!>    C := alpha*A**T*B + alpha*B**T*A + beta*C,
!>
!> where  alpha and beta  are scalars, C is an  n by n  symmetric matrix
!> and  A and B  are  n by k  matrices  in the  first  case  and  k by n
!> matrices in the second case.
!> \endverbatim
!
!  Arguments:
!  ==========
!
!> \param[in] UPLO
!> \verbatim
!>          UPLO is CHARACTER*1
!>           On  entry,   UPLO  specifies  whether  the  upper  or  lower
!>           triangular  part  of the  array  C  is to be  referenced  as
!>           follows:
!>
!>              UPLO = 'U' or 'u'   Only the  upper triangular part of  C
!>                                  is to be referenced.
!>
!>              UPLO = 'L' or 'l'   Only the  lower triangular part of  C
!>                                  is to be referenced.
!> \endverbatim
!>
!> \param[in] TRANS
!> \verbatim
!>          TRANS is CHARACTER*1
!>           On entry,  TRANS  specifies the operation to be performed as
!>           follows:
!>
!>              TRANS = 'N' or 'n'   C := alpha*A*B**T + alpha*B*A**T +
!>                                        beta*C.
!>
!>              TRANS = 'T' or 't'   C := alpha*A**T*B + alpha*B**T*A +
!>                                        beta*C.
!>
!>              TRANS = 'C' or 'c'   C := alpha*A**T*B + alpha*B**T*A +
!>                                        beta*C.
!> \endverbatim
!>
!> \param[in] N
!> \verbatim
!>          N is INTEGER
!>           On entry,  N specifies the order of the matrix C.  N must be
!>           at least zero.
!> \endverbatim
!>
!> \param[in] K
!> \verbatim
!>          K is INTEGER
!>           On entry with  TRANS = 'N' or 'n',  K  specifies  the number
!>           of  columns  of the  matrices  A and B,  and on  entry  with
!>           TRANS = 'T' or 't' or 'C' or 'c',  K  specifies  the  number
!>           of rows of the matrices  A and B.  K must be at least  zero.
!> \endverbatim
!>
!> \param[in] ALPHA
!> \verbatim
!>          ALPHA is REAL
!>           On entry, ALPHA specifies the scalar alpha.
!> \endverbatim
!>
!> \param[in] A
!> \verbatim
!>          A is REAL array, dimension ( LDA, ka ), where ka is
!>           k  when  TRANS = 'N' or 'n',  and is  n  otherwise.
!>           Before entry with  TRANS = 'N' or 'n',  the  leading  n by k
!>           part of the array  A  must contain the matrix  A,  otherwise
!>           the leading  k by n  part of the array  A  must contain  the
!>           matrix A.
!> \endverbatim
!>
!> \param[in] LDA
!> \verbatim
!>          LDA is INTEGER
!>           On entry, LDA specifies the first dimension of A as declared
!>           in  the  calling  (sub)  program.   When  TRANS = 'N' or 'n'
!>           then  LDA must be at least  max( 1, n ), otherwise  LDA must
!>           be at least  max( 1, k ).
!> \endverbatim
!>
!> \param[in] B
!> \verbatim
!>          B is REAL array, dimension ( LDB, kb ), where kb is
!>           k  when  TRANS = 'N' or 'n',  and is  n  otherwise.
!>           Before entry with  TRANS = 'N' or 'n',  the  leading  n by k
!>           part of the array  B  must contain the matrix  B,  otherwise
!>           the leading  k by n  part of the array  B  must contain  the
!>           matrix B.
!> \endverbatim
!>
!> \param[in] LDB
!> \verbatim
!>          LDB is INTEGER
!>           On entry, LDB specifies the first dimension of B as declared
!>           in  the  calling  (sub)  program.   When  TRANS = 'N' or 'n'
!>           then  LDB must be at least  max( 1, n ), otherwise  LDB must
!>           be at least  max( 1, k ).
!> \endverbatim
!>
!> \param[in] BETA
!> \verbatim
!>          BETA is REAL
!>           On entry, BETA specifies the scalar beta.
!> \endverbatim
!>
!> \param[in,out] C
!> \verbatim
!>          C is REAL array, dimension ( LDC, N )
!>           Before entry  with  UPLO = 'U' or 'u',  the leading  n by n
!>           upper triangular part of the array C must contain the upper
!>           triangular part  of the  symmetric matrix  and the strictly
!>           lower triangular part of C is not referenced.  On exit, the
!>           upper triangular part of the array  C is overwritten by the
!>           upper triangular part of the updated matrix.
!>           Before entry  with  UPLO = 'L' or 'l',  the leading  n by n
!>           lower triangular part of the array C must contain the lower
!>           triangular part  of the  symmetric matrix  and the strictly
!>           upper triangular part of C is not referenced.  On exit, the
!>           lower triangular part of the array  C is overwritten by the
!>           lower triangular part of the updated matrix.
!> \endverbatim
!>
!> \param[in] LDC
!> \verbatim
!>          LDC is INTEGER
!>           On entry, LDC specifies the first dimension of C as declared
!>           in  the  calling  (sub)  program.   LDC  must  be  at  least
!>           max( 1, n ).
!> \endverbatim
!
!  Authors:
!  ========
!
!> \author Univ. of Tennessee
!> \author Univ. of California Berkeley
!> \author Univ. of Colorado Denver
!> \author NAG Ltd.
!
!> \date December 2016
!
!> \ingroup single_blas_level3
!
!> \par Further Details:
!  =====================
!>
!> \verbatim
!>
!>  Level 3 Blas routine.
!>
!>
!>  -- Written on 8-February-1989.
!>     Jack Dongarra, Argonne National Laboratory.
!>     Iain Duff, AERE Harwell.
!>     Jeremy Du Croz, Numerical Algorithms Group Ltd.
!>     Sven Hammarling, Numerical Algorithms Group Ltd.
!> \endverbatim
!>
!  =====================================================================
!
!  -- Reference BLAS level3 routine (version 3.7.0) --
!  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
!  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
!     December 2016
!
!     .. Scalar Arguments ..
!     ..
!     .. Array Arguments ..
!     ..
!
!  =====================================================================
!
!     .. External Functions ..
!     ..
!     .. External Subroutines ..
!     ..
!     .. Intrinsic Functions ..
!     ..
!     .. Local Scalars ..
!     ..
!     .. Parameters ..
!     ..
!
!     Test the input parameters.
!
!
!
!     Quick return if possible.
!
!
!     And when  alpha.eq.zero.
!
!
!     Start the operations.
!
!
!        Form  C := alpha*A*B**T + alpha*B*A**T + C.
!
!
!        Form  C := alpha*A**T*B + alpha*B**T*A + C.
!
!
!
!     End of SSYR2K.
!
! END
use M_blas, only : ssyr2k_=>SSYR2K
implicit none
      REAL ALPHA,BETA
      INTEGER K,LDA,LDB,LDC,N
      CHARACTER TRANS,UPLO
      REAL A(LDA,*),B(LDB,*),C(LDC,*)
    call SSYR2K_(UPLO,TRANS,N,K,ALPHA,A,LDA,B,LDB,BETA,C,LDC)
end subroutine SSYR2K

subroutine SSYR(UPLO,N,ALPHA,X,INCX,A,LDA)
! COMMENT --file ssyr.3m_blas.man
!> \brief \b SSYR
!
!  =========== DOCUMENTATION ===========
!
! Online html documentation available at
!            http://www.netlib.org/lapack/explore-html/
!
!  Definition:
!  ===========
!
!       SUBROUTINE SSYR(UPLO,N,ALPHA,X,INCX,A,LDA)
!
!       .. Scalar Arguments ..
!       REAL ALPHA
!       INTEGER INCX,LDA,N
!       CHARACTER UPLO
!       ..
!       .. Array Arguments ..
!       REAL A(LDA,*),X(*)
!       ..
!
!
!> \par Purpose:
!  =============
!>
!> \verbatim
!>
!> SSYR   performs the symmetric rank 1 operation
!>
!>    A := alpha*x*x**T + A,
!>
!> where alpha is a real scalar, x is an n element vector and A is an
!> n by n symmetric matrix.
!> \endverbatim
!
!  Arguments:
!  ==========
!
!> \param[in] UPLO
!> \verbatim
!>          UPLO is CHARACTER*1
!>           On entry, UPLO specifies whether the upper or lower
!>           triangular part of the array A is to be referenced as
!>           follows:
!>
!>              UPLO = 'U' or 'u'   Only the upper triangular part of A
!>                                  is to be referenced.
!>
!>              UPLO = 'L' or 'l'   Only the lower triangular part of A
!>                                  is to be referenced.
!> \endverbatim
!>
!> \param[in] N
!> \verbatim
!>          N is INTEGER
!>           On entry, N specifies the order of the matrix A.
!>           N must be at least zero.
!> \endverbatim
!>
!> \param[in] ALPHA
!> \verbatim
!>          ALPHA is REAL
!>           On entry, ALPHA specifies the scalar alpha.
!> \endverbatim
!>
!> \param[in] X
!> \verbatim
!>          X is REAL array, dimension at least
!>           ( 1 + ( n - 1 )*abs( INCX ) ).
!>           Before entry, the incremented array X must contain the n
!>           element vector x.
!> \endverbatim
!>
!> \param[in] INCX
!> \verbatim
!>          INCX is INTEGER
!>           On entry, INCX specifies the increment for the elements of
!>           X. INCX must not be zero.
!> \endverbatim
!>
!> \param[in,out] A
!> \verbatim
!>          A is REAL array, dimension ( LDA, N )
!>           Before entry with  UPLO = 'U' or 'u', the leading n by n
!>           upper triangular part of the array A must contain the upper
!>           triangular part of the symmetric matrix and the strictly
!>           lower triangular part of A is not referenced. On exit, the
!>           upper triangular part of the array A is overwritten by the
!>           upper triangular part of the updated matrix.
!>           Before entry with UPLO = 'L' or 'l', the leading n by n
!>           lower triangular part of the array A must contain the lower
!>           triangular part of the symmetric matrix and the strictly
!>           upper triangular part of A is not referenced. On exit, the
!>           lower triangular part of the array A is overwritten by the
!>           lower triangular part of the updated matrix.
!> \endverbatim
!>
!> \param[in] LDA
!> \verbatim
!>          LDA is INTEGER
!>           On entry, LDA specifies the first dimension of A as declared
!>           in the calling (sub) program. LDA must be at least
!>           max( 1, n ).
!> \endverbatim
!
!  Authors:
!  ========
!
!> \author Univ. of Tennessee
!> \author Univ. of California Berkeley
!> \author Univ. of Colorado Denver
!> \author NAG Ltd.
!
!> \date December 2016
!
!> \ingroup single_blas_level2
!
!> \par Further Details:
!  =====================
!>
!> \verbatim
!>
!>  Level 2 Blas routine.
!>
!>  -- Written on 22-October-1986.
!>     Jack Dongarra, Argonne National Lab.
!>     Jeremy Du Croz, Nag Central Office.
!>     Sven Hammarling, Nag Central Office.
!>     Richard Hanson, Sandia National Labs.
!> \endverbatim
!>
!  =====================================================================
!
!  -- Reference BLAS level2 routine (version 3.7.0) --
!  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
!  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
!     December 2016
!
!     .. Scalar Arguments ..
!     ..
!     .. Array Arguments ..
!     ..
!
!  =====================================================================
!
!     .. Parameters ..
!     ..
!     .. Local Scalars ..
!     ..
!     .. External Functions ..
!     ..
!     .. External Subroutines ..
!     ..
!     .. Intrinsic Functions ..
!     ..
!
!     Test the input parameters.
!
!
!     Quick return if possible.
!
!
!     Set the start point in X if the increment is not unity.
!
!
!     Start the operations. In this version the elements of A are
!     accessed sequentially with one pass through the triangular part
!     of A.
!
!
!        Form  A  when A is stored in upper triangle.
!
!
!        Form  A  when A is stored in lower triangle.
!
!
!
!     End of SSYR  .
!
! END
use M_blas, only : ssyr_=>SSYR
implicit none
      REAL ALPHA
      INTEGER INCX,LDA,N
      CHARACTER UPLO
      REAL A(LDA,*),X(*)
    call SSYR_(UPLO,N,ALPHA,X,INCX,A,LDA)
end subroutine SSYR

subroutine SSYRK(UPLO,TRANS,N,K,ALPHA,A,LDA,BETA,C,LDC)
! COMMENT --file ssyrk.3m_blas.man
!> \brief \b SSYRK
!
!  =========== DOCUMENTATION ===========
!
! Online html documentation available at
!            http://www.netlib.org/lapack/explore-html/
!
!  Definition:
!  ===========
!
!       SUBROUTINE SSYRK(UPLO,TRANS,N,K,ALPHA,A,LDA,BETA,C,LDC)
!
!       .. Scalar Arguments ..
!       REAL ALPHA,BETA
!       INTEGER K,LDA,LDC,N
!       CHARACTER TRANS,UPLO
!       ..
!       .. Array Arguments ..
!       REAL A(LDA,*),C(LDC,*)
!       ..
!
!
!> \par Purpose:
!  =============
!>
!> \verbatim
!>
!> SSYRK  performs one of the symmetric rank k operations
!>
!>    C := alpha*A*A**T + beta*C,
!>
!> or
!>
!>    C := alpha*A**T*A + beta*C,
!>
!> where  alpha and beta  are scalars, C is an  n by n  symmetric matrix
!> and  A  is an  n by k  matrix in the first case and a  k by n  matrix
!> in the second case.
!> \endverbatim
!
!  Arguments:
!  ==========
!
!> \param[in] UPLO
!> \verbatim
!>          UPLO is CHARACTER*1
!>           On  entry,   UPLO  specifies  whether  the  upper  or  lower
!>           triangular  part  of the  array  C  is to be  referenced  as
!>           follows:
!>
!>              UPLO = 'U' or 'u'   Only the  upper triangular part of  C
!>                                  is to be referenced.
!>
!>              UPLO = 'L' or 'l'   Only the  lower triangular part of  C
!>                                  is to be referenced.
!> \endverbatim
!>
!> \param[in] TRANS
!> \verbatim
!>          TRANS is CHARACTER*1
!>           On entry,  TRANS  specifies the operation to be performed as
!>           follows:
!>
!>              TRANS = 'N' or 'n'   C := alpha*A*A**T + beta*C.
!>
!>              TRANS = 'T' or 't'   C := alpha*A**T*A + beta*C.
!>
!>              TRANS = 'C' or 'c'   C := alpha*A**T*A + beta*C.
!> \endverbatim
!>
!> \param[in] N
!> \verbatim
!>          N is INTEGER
!>           On entry,  N specifies the order of the matrix C.  N must be
!>           at least zero.
!> \endverbatim
!>
!> \param[in] K
!> \verbatim
!>          K is INTEGER
!>           On entry with  TRANS = 'N' or 'n',  K  specifies  the number
!>           of  columns   of  the   matrix   A,   and  on   entry   with
!>           TRANS = 'T' or 't' or 'C' or 'c',  K  specifies  the  number
!>           of rows of the matrix  A.  K must be at least zero.
!> \endverbatim
!>
!> \param[in] ALPHA
!> \verbatim
!>          ALPHA is REAL
!>           On entry, ALPHA specifies the scalar alpha.
!> \endverbatim
!>
!> \param[in] A
!> \verbatim
!>          A is REAL array, dimension ( LDA, ka ), where ka is
!>           k  when  TRANS = 'N' or 'n',  and is  n  otherwise.
!>           Before entry with  TRANS = 'N' or 'n',  the  leading  n by k
!>           part of the array  A  must contain the matrix  A,  otherwise
!>           the leading  k by n  part of the array  A  must contain  the
!>           matrix A.
!> \endverbatim
!>
!> \param[in] LDA
!> \verbatim
!>          LDA is INTEGER
!>           On entry, LDA specifies the first dimension of A as declared
!>           in  the  calling  (sub)  program.   When  TRANS = 'N' or 'n'
!>           then  LDA must be at least  max( 1, n ), otherwise  LDA must
!>           be at least  max( 1, k ).
!> \endverbatim
!>
!> \param[in] BETA
!> \verbatim
!>          BETA is REAL
!>           On entry, BETA specifies the scalar beta.
!> \endverbatim
!>
!> \param[in,out] C
!> \verbatim
!>          C is REAL array, dimension ( LDC, N )
!>           Before entry  with  UPLO = 'U' or 'u',  the leading  n by n
!>           upper triangular part of the array C must contain the upper
!>           triangular part  of the  symmetric matrix  and the strictly
!>           lower triangular part of C is not referenced.  On exit, the
!>           upper triangular part of the array  C is overwritten by the
!>           upper triangular part of the updated matrix.
!>           Before entry  with  UPLO = 'L' or 'l',  the leading  n by n
!>           lower triangular part of the array C must contain the lower
!>           triangular part  of the  symmetric matrix  and the strictly
!>           upper triangular part of C is not referenced.  On exit, the
!>           lower triangular part of the array  C is overwritten by the
!>           lower triangular part of the updated matrix.
!> \endverbatim
!>
!> \param[in] LDC
!> \verbatim
!>          LDC is INTEGER
!>           On entry, LDC specifies the first dimension of C as declared
!>           in  the  calling  (sub)  program.   LDC  must  be  at  least
!>           max( 1, n ).
!> \endverbatim
!
!  Authors:
!  ========
!
!> \author Univ. of Tennessee
!> \author Univ. of California Berkeley
!> \author Univ. of Colorado Denver
!> \author NAG Ltd.
!
!> \date December 2016
!
!> \ingroup single_blas_level3
!
!> \par Further Details:
!  =====================
!>
!> \verbatim
!>
!>  Level 3 Blas routine.
!>
!>  -- Written on 8-February-1989.
!>     Jack Dongarra, Argonne National Laboratory.
!>     Iain Duff, AERE Harwell.
!>     Jeremy Du Croz, Numerical Algorithms Group Ltd.
!>     Sven Hammarling, Numerical Algorithms Group Ltd.
!> \endverbatim
!>
!  =====================================================================
!
!  -- Reference BLAS level3 routine (version 3.7.0) --
!  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
!  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
!     December 2016
!
!     .. Scalar Arguments ..
!     ..
!     .. Array Arguments ..
!     ..
!
!  =====================================================================
!
!     .. External Functions ..
!     ..
!     .. External Subroutines ..
!     ..
!     .. Intrinsic Functions ..
!     ..
!     .. Local Scalars ..
!     ..
!     .. Parameters ..
!     ..
!
!     Test the input parameters.
!
!
!
!     Quick return if possible.
!
!
!     And when  alpha.eq.zero.
!
!
!     Start the operations.
!
!
!        Form  C := alpha*A*A**T + beta*C.
!
!
!        Form  C := alpha*A**T*A + beta*C.
!
!
!
!     End of SSYRK .
!
! END
use M_blas, only : ssyrk_=>SSYRK
implicit none
      REAL ALPHA,BETA
      INTEGER K,LDA,LDC,N
      CHARACTER TRANS,UPLO
      REAL A(LDA,*),C(LDC,*)
    call SSYRK_(UPLO,TRANS,N,K,ALPHA,A,LDA,BETA,C,LDC)
end subroutine SSYRK

subroutine STBMV(UPLO,TRANS,DIAG,N,K,A,LDA,X,INCX)
! COMMENT --file stbmv.3m_blas.man
!> \brief \b STBMV
!
!  =========== DOCUMENTATION ===========
!
! Online html documentation available at
!            http://www.netlib.org/lapack/explore-html/
!
!  Definition:
!  ===========
!
!       SUBROUTINE STBMV(UPLO,TRANS,DIAG,N,K,A,LDA,X,INCX)
!
!       .. Scalar Arguments ..
!       INTEGER INCX,K,LDA,N
!       CHARACTER DIAG,TRANS,UPLO
!       ..
!       .. Array Arguments ..
!       REAL A(LDA,*),X(*)
!       ..
!
!
!> \par Purpose:
!  =============
!>
!> \verbatim
!>
!> STBMV  performs one of the matrix-vector operations
!>
!>    x := A*x,   or   x := A**T*x,
!>
!> where x is an n element vector and  A is an n by n unit, or non-unit,
!> upper or lower triangular band matrix, with ( k + 1 ) diagonals.
!> \endverbatim
!
!  Arguments:
!  ==========
!
!> \param[in] UPLO
!> \verbatim
!>          UPLO is CHARACTER*1
!>           On entry, UPLO specifies whether the matrix is an upper or
!>           lower triangular matrix as follows:
!>
!>              UPLO = 'U' or 'u'   A is an upper triangular matrix.
!>
!>              UPLO = 'L' or 'l'   A is a lower triangular matrix.
!> \endverbatim
!>
!> \param[in] TRANS
!> \verbatim
!>          TRANS is CHARACTER*1
!>           On entry, TRANS specifies the operation to be performed as
!>           follows:
!>
!>              TRANS = 'N' or 'n'   x := A*x.
!>
!>              TRANS = 'T' or 't'   x := A**T*x.
!>
!>              TRANS = 'C' or 'c'   x := A**T*x.
!> \endverbatim
!>
!> \param[in] DIAG
!> \verbatim
!>          DIAG is CHARACTER*1
!>           On entry, DIAG specifies whether or not A is unit
!>           triangular as follows:
!>
!>              DIAG = 'U' or 'u'   A is assumed to be unit triangular.
!>
!>              DIAG = 'N' or 'n'   A is not assumed to be unit
!>                                  triangular.
!> \endverbatim
!>
!> \param[in] N
!> \verbatim
!>          N is INTEGER
!>           On entry, N specifies the order of the matrix A.
!>           N must be at least zero.
!> \endverbatim
!>
!> \param[in] K
!> \verbatim
!>          K is INTEGER
!>           On entry with UPLO = 'U' or 'u', K specifies the number of
!>           super-diagonals of the matrix A.
!>           On entry with UPLO = 'L' or 'l', K specifies the number of
!>           sub-diagonals of the matrix A.
!>           K must satisfy  0 .le. K.
!> \endverbatim
!>
!> \param[in] A
!> \verbatim
!>          A is REAL array, dimension ( LDA, N )
!>           Before entry with UPLO = 'U' or 'u', the leading ( k + 1 )
!>           by n part of the array A must contain the upper triangular
!>           band part of the matrix of coefficients, supplied column by
!>           column, with the leading diagonal of the matrix in row
!>           ( k + 1 ) of the array, the first super-diagonal starting at
!>           position 2 in row k, and so on. The top left k by k triangle
!>           of the array A is not referenced.
!>           The following program segment will transfer an upper
!>           triangular band matrix from conventional full matrix storage
!>           to band storage:
!>
!>                 DO 20, J = 1, N
!>                    M = K + 1 - J
!>                    DO 10, I = MAX( 1, J - K ), J
!>                       A( M + I, J ) = matrix( I, J )
!>              10    CONTINUE
!>              20 CONTINUE
!>
!>           Before entry with UPLO = 'L' or 'l', the leading ( k + 1 )
!>           by n part of the array A must contain the lower triangular
!>           band part of the matrix of coefficients, supplied column by
!>           column, with the leading diagonal of the matrix in row 1 of
!>           the array, the first sub-diagonal starting at position 1 in
!>           row 2, and so on. The bottom right k by k triangle of the
!>           array A is not referenced.
!>           The following program segment will transfer a lower
!>           triangular band matrix from conventional full matrix storage
!>           to band storage:
!>
!>                 DO 20, J = 1, N
!>                    M = 1 - J
!>                    DO 10, I = J, MIN( N, J + K )
!>                       A( M + I, J ) = matrix( I, J )
!>              10    CONTINUE
!>              20 CONTINUE
!>
!>           Note that when DIAG = 'U' or 'u' the elements of the array A
!>           corresponding to the diagonal elements of the matrix are not
!>           referenced, but are assumed to be unity.
!> \endverbatim
!>
!> \param[in] LDA
!> \verbatim
!>          LDA is INTEGER
!>           On entry, LDA specifies the first dimension of A as declared
!>           in the calling (sub) program. LDA must be at least
!>           ( k + 1 ).
!> \endverbatim
!>
!> \param[in,out] X
!> \verbatim
!>          X is REAL array, dimension at least
!>           ( 1 + ( n - 1 )*abs( INCX ) ).
!>           Before entry, the incremented array X must contain the n
!>           element vector x. On exit, X is overwritten with the
!>           transformed vector x.
!> \endverbatim
!>
!> \param[in] INCX
!> \verbatim
!>          INCX is INTEGER
!>           On entry, INCX specifies the increment for the elements of
!>           X. INCX must not be zero.
!> \endverbatim
!
!  Authors:
!  ========
!
!> \author Univ. of Tennessee
!> \author Univ. of California Berkeley
!> \author Univ. of Colorado Denver
!> \author NAG Ltd.
!
!> \date December 2016
!
!> \ingroup single_blas_level2
!
!> \par Further Details:
!  =====================
!>
!> \verbatim
!>
!>  Level 2 Blas routine.
!>  The vector and matrix arguments are not referenced when N = 0, or M = 0
!>
!>  -- Written on 22-October-1986.
!>     Jack Dongarra, Argonne National Lab.
!>     Jeremy Du Croz, Nag Central Office.
!>     Sven Hammarling, Nag Central Office.
!>     Richard Hanson, Sandia National Labs.
!> \endverbatim
!>
!  =====================================================================
!
!  -- Reference BLAS level2 routine (version 3.7.0) --
!  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
!  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
!     December 2016
!
!     .. Scalar Arguments ..
!     ..
!     .. Array Arguments ..
!     ..
!
!  =====================================================================
!
!     .. Parameters ..
!     ..
!     .. Local Scalars ..
!     ..
!     .. External Functions ..
!     ..
!     .. External Subroutines ..
!     ..
!     .. Intrinsic Functions ..
!     ..
!
!     Test the input parameters.
!
!
!     Quick return if possible.
!
!
!
!     Set up the start point in X if the increment is not unity. This
!     will be  ( N - 1 )*INCX   too small for descending loops.
!
!
!     Start the operations. In this version the elements of A are
!     accessed sequentially with one pass through A.
!
!
!         Form  x := A*x.
!
!
!        Form  x := A**T*x.
!
!
!
!     End of STBMV .
!
! END
use M_blas, only : stbmv_=>STBMV
implicit none
      INTEGER INCX,K,LDA,N
      CHARACTER DIAG,TRANS,UPLO
      REAL A(LDA,*),X(*)
    call STBMV_(UPLO,TRANS,DIAG,N,K,A,LDA,X,INCX)
end subroutine STBMV

subroutine STBSV(UPLO,TRANS,DIAG,N,K,A,LDA,X,INCX)
! COMMENT --file stbsv.3m_blas.man
!> \brief \b STBSV
!
!  =========== DOCUMENTATION ===========
!
! Online html documentation available at
!            http://www.netlib.org/lapack/explore-html/
!
!  Definition:
!  ===========
!
!       SUBROUTINE STBSV(UPLO,TRANS,DIAG,N,K,A,LDA,X,INCX)
!
!       .. Scalar Arguments ..
!       INTEGER INCX,K,LDA,N
!       CHARACTER DIAG,TRANS,UPLO
!       ..
!       .. Array Arguments ..
!       REAL A(LDA,*),X(*)
!       ..
!
!
!> \par Purpose:
!  =============
!>
!> \verbatim
!>
!> STBSV  solves one of the systems of equations
!>
!>    A*x = b,   or   A**T*x = b,
!>
!> where b and x are n element vectors and A is an n by n unit, or
!> non-unit, upper or lower triangular band matrix, with ( k + 1 )
!> diagonals.
!>
!> No test for singularity or near-singularity is included in this
!> routine. Such tests must be performed before calling this routine.
!> \endverbatim
!
!  Arguments:
!  ==========
!
!> \param[in] UPLO
!> \verbatim
!>          UPLO is CHARACTER*1
!>           On entry, UPLO specifies whether the matrix is an upper or
!>           lower triangular matrix as follows:
!>
!>              UPLO = 'U' or 'u'   A is an upper triangular matrix.
!>
!>              UPLO = 'L' or 'l'   A is a lower triangular matrix.
!> \endverbatim
!>
!> \param[in] TRANS
!> \verbatim
!>          TRANS is CHARACTER*1
!>           On entry, TRANS specifies the equations to be solved as
!>           follows:
!>
!>              TRANS = 'N' or 'n'   A*x = b.
!>
!>              TRANS = 'T' or 't'   A**T*x = b.
!>
!>              TRANS = 'C' or 'c'   A**T*x = b.
!> \endverbatim
!>
!> \param[in] DIAG
!> \verbatim
!>          DIAG is CHARACTER*1
!>           On entry, DIAG specifies whether or not A is unit
!>           triangular as follows:
!>
!>              DIAG = 'U' or 'u'   A is assumed to be unit triangular.
!>
!>              DIAG = 'N' or 'n'   A is not assumed to be unit
!>                                  triangular.
!> \endverbatim
!>
!> \param[in] N
!> \verbatim
!>          N is INTEGER
!>           On entry, N specifies the order of the matrix A.
!>           N must be at least zero.
!> \endverbatim
!>
!> \param[in] K
!> \verbatim
!>          K is INTEGER
!>           On entry with UPLO = 'U' or 'u', K specifies the number of
!>           super-diagonals of the matrix A.
!>           On entry with UPLO = 'L' or 'l', K specifies the number of
!>           sub-diagonals of the matrix A.
!>           K must satisfy  0 .le. K.
!> \endverbatim
!>
!> \param[in] A
!> \verbatim
!>          A is REAL array, dimension ( LDA, N )
!>           Before entry with UPLO = 'U' or 'u', the leading ( k + 1 )
!>           by n part of the array A must contain the upper triangular
!>           band part of the matrix of coefficients, supplied column by
!>           column, with the leading diagonal of the matrix in row
!>           ( k + 1 ) of the array, the first super-diagonal starting at
!>           position 2 in row k, and so on. The top left k by k triangle
!>           of the array A is not referenced.
!>           The following program segment will transfer an upper
!>           triangular band matrix from conventional full matrix storage
!>           to band storage:
!>
!>                 DO 20, J = 1, N
!>                    M = K + 1 - J
!>                    DO 10, I = MAX( 1, J - K ), J
!>                       A( M + I, J ) = matrix( I, J )
!>              10    CONTINUE
!>              20 CONTINUE
!>
!>           Before entry with UPLO = 'L' or 'l', the leading ( k + 1 )
!>           by n part of the array A must contain the lower triangular
!>           band part of the matrix of coefficients, supplied column by
!>           column, with the leading diagonal of the matrix in row 1 of
!>           the array, the first sub-diagonal starting at position 1 in
!>           row 2, and so on. The bottom right k by k triangle of the
!>           array A is not referenced.
!>           The following program segment will transfer a lower
!>           triangular band matrix from conventional full matrix storage
!>           to band storage:
!>
!>                 DO 20, J = 1, N
!>                    M = 1 - J
!>                    DO 10, I = J, MIN( N, J + K )
!>                       A( M + I, J ) = matrix( I, J )
!>              10    CONTINUE
!>              20 CONTINUE
!>
!>           Note that when DIAG = 'U' or 'u' the elements of the array A
!>           corresponding to the diagonal elements of the matrix are not
!>           referenced, but are assumed to be unity.
!> \endverbatim
!>
!> \param[in] LDA
!> \verbatim
!>          LDA is INTEGER
!>           On entry, LDA specifies the first dimension of A as declared
!>           in the calling (sub) program. LDA must be at least
!>           ( k + 1 ).
!> \endverbatim
!>
!> \param[in,out] X
!> \verbatim
!>          X is REAL array, dimension at least
!>           ( 1 + ( n - 1 )*abs( INCX ) ).
!>           Before entry, the incremented array X must contain the n
!>           element right-hand side vector b. On exit, X is overwritten
!>           with the solution vector x.
!> \endverbatim
!>
!> \param[in] INCX
!> \verbatim
!>          INCX is INTEGER
!>           On entry, INCX specifies the increment for the elements of
!>           X. INCX must not be zero.
!> \endverbatim
!
!  Authors:
!  ========
!
!> \author Univ. of Tennessee
!> \author Univ. of California Berkeley
!> \author Univ. of Colorado Denver
!> \author NAG Ltd.
!
!> \date December 2016
!
!> \ingroup single_blas_level2
!
!> \par Further Details:
!  =====================
!>
!> \verbatim
!>
!>  Level 2 Blas routine.
!>
!>  -- Written on 22-October-1986.
!>     Jack Dongarra, Argonne National Lab.
!>     Jeremy Du Croz, Nag Central Office.
!>     Sven Hammarling, Nag Central Office.
!>     Richard Hanson, Sandia National Labs.
!> \endverbatim
!>
!  =====================================================================
!
!  -- Reference BLAS level2 routine (version 3.7.0) --
!  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
!  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
!     December 2016
!
!     .. Scalar Arguments ..
!     ..
!     .. Array Arguments ..
!     ..
!
!  =====================================================================
!
!     .. Parameters ..
!     ..
!     .. Local Scalars ..
!     ..
!     .. External Functions ..
!     ..
!     .. External Subroutines ..
!     ..
!     .. Intrinsic Functions ..
!     ..
!
!     Test the input parameters.
!
!
!     Quick return if possible.
!
!
!
!     Set up the start point in X if the increment is not unity. This
!     will be  ( N - 1 )*INCX  too small for descending loops.
!
!
!     Start the operations. In this version the elements of A are
!     accessed by sequentially with one pass through A.
!
!
!        Form  x := inv( A )*x.
!
!
!        Form  x := inv( A**T)*x.
!
!
!
!     End of STBSV .
!
! END
use M_blas, only : stbsv_=>STBSV
implicit none
      INTEGER INCX,K,LDA,N
      CHARACTER DIAG,TRANS,UPLO
      REAL A(LDA,*),X(*)
    call STBSV_(UPLO,TRANS,DIAG,N,K,A,LDA,X,INCX)
end subroutine STBSV

subroutine STPMV(UPLO,TRANS,DIAG,N,AP,X,INCX)
! COMMENT --file stpmv.3m_blas.man
!> \brief \b STPMV
!
!  =========== DOCUMENTATION ===========
!
! Online html documentation available at
!            http://www.netlib.org/lapack/explore-html/
!
!  Definition:
!  ===========
!
!       SUBROUTINE STPMV(UPLO,TRANS,DIAG,N,AP,X,INCX)
!
!       .. Scalar Arguments ..
!       INTEGER INCX,N
!       CHARACTER DIAG,TRANS,UPLO
!       ..
!       .. Array Arguments ..
!       REAL AP(*),X(*)
!       ..
!
!
!> \par Purpose:
!  =============
!>
!> \verbatim
!>
!> STPMV  performs one of the matrix-vector operations
!>
!>    x := A*x,   or   x := A**T*x,
!>
!> where x is an n element vector and  A is an n by n unit, or non-unit,
!> upper or lower triangular matrix, supplied in packed form.
!> \endverbatim
!
!  Arguments:
!  ==========
!
!> \param[in] UPLO
!> \verbatim
!>          UPLO is CHARACTER*1
!>           On entry, UPLO specifies whether the matrix is an upper or
!>           lower triangular matrix as follows:
!>
!>              UPLO = 'U' or 'u'   A is an upper triangular matrix.
!>
!>              UPLO = 'L' or 'l'   A is a lower triangular matrix.
!> \endverbatim
!>
!> \param[in] TRANS
!> \verbatim
!>          TRANS is CHARACTER*1
!>           On entry, TRANS specifies the operation to be performed as
!>           follows:
!>
!>              TRANS = 'N' or 'n'   x := A*x.
!>
!>              TRANS = 'T' or 't'   x := A**T*x.
!>
!>              TRANS = 'C' or 'c'   x := A**T*x.
!> \endverbatim
!>
!> \param[in] DIAG
!> \verbatim
!>          DIAG is CHARACTER*1
!>           On entry, DIAG specifies whether or not A is unit
!>           triangular as follows:
!>
!>              DIAG = 'U' or 'u'   A is assumed to be unit triangular.
!>
!>              DIAG = 'N' or 'n'   A is not assumed to be unit
!>                                  triangular.
!> \endverbatim
!>
!> \param[in] N
!> \verbatim
!>          N is INTEGER
!>           On entry, N specifies the order of the matrix A.
!>           N must be at least zero.
!> \endverbatim
!>
!> \param[in] AP
!> \verbatim
!>          AP is REAL array, dimension at least
!>           ( ( n*( n + 1 ) )/2 ).
!>           Before entry with  UPLO = 'U' or 'u', the array AP must
!>           contain the upper triangular matrix packed sequentially,
!>           column by column, so that AP( 1 ) contains a( 1, 1 ),
!>           AP( 2 ) and AP( 3 ) contain a( 1, 2 ) and a( 2, 2 )
!>           respectively, and so on.
!>           Before entry with UPLO = 'L' or 'l', the array AP must
!>           contain the lower triangular matrix packed sequentially,
!>           column by column, so that AP( 1 ) contains a( 1, 1 ),
!>           AP( 2 ) and AP( 3 ) contain a( 2, 1 ) and a( 3, 1 )
!>           respectively, and so on.
!>           Note that when  DIAG = 'U' or 'u', the diagonal elements of
!>           A are not referenced, but are assumed to be unity.
!> \endverbatim
!>
!> \param[in,out] X
!> \verbatim
!>          X is REAL array, dimension at least
!>           ( 1 + ( n - 1 )*abs( INCX ) ).
!>           Before entry, the incremented array X must contain the n
!>           element vector x. On exit, X is overwritten with the
!>           transformed vector x.
!> \endverbatim
!>
!> \param[in] INCX
!> \verbatim
!>          INCX is INTEGER
!>           On entry, INCX specifies the increment for the elements of
!>           X. INCX must not be zero.
!> \endverbatim
!
!  Authors:
!  ========
!
!> \author Univ. of Tennessee
!> \author Univ. of California Berkeley
!> \author Univ. of Colorado Denver
!> \author NAG Ltd.
!
!> \date December 2016
!
!> \ingroup single_blas_level2
!
!> \par Further Details:
!  =====================
!>
!> \verbatim
!>
!>  Level 2 Blas routine.
!>  The vector and matrix arguments are not referenced when N = 0, or M = 0
!>
!>  -- Written on 22-October-1986.
!>     Jack Dongarra, Argonne National Lab.
!>     Jeremy Du Croz, Nag Central Office.
!>     Sven Hammarling, Nag Central Office.
!>     Richard Hanson, Sandia National Labs.
!> \endverbatim
!>
!  =====================================================================
!
!  -- Reference BLAS level2 routine (version 3.7.0) --
!  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
!  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
!     December 2016
!
!     .. Scalar Arguments ..
!     ..
!     .. Array Arguments ..
!     ..
!
!  =====================================================================
!
!     .. Parameters ..
!     ..
!     .. Local Scalars ..
!     ..
!     .. External Functions ..
!     ..
!     .. External Subroutines ..
!     ..
!
!     Test the input parameters.
!
!
!     Quick return if possible.
!
!
!
!     Set up the start point in X if the increment is not unity. This
!     will be  ( N - 1 )*INCX  too small for descending loops.
!
!
!     Start the operations. In this version the elements of AP are
!     accessed sequentially with one pass through AP.
!
!
!        Form  x:= A*x.
!
!
!        Form  x := A**T*x.
!
!
!
!     End of STPMV .
!
! END
use M_blas, only : stpmv_=>STPMV
implicit none
      INTEGER INCX,N
      CHARACTER DIAG,TRANS,UPLO
      REAL AP(*),X(*)
    call STPMV_(UPLO,TRANS,DIAG,N,AP,X,INCX)
end subroutine STPMV

subroutine STPSV(UPLO,TRANS,DIAG,N,AP,X,INCX)
! COMMENT --file stpsv.3m_blas.man
!> \brief \b STPSV
!
!  =========== DOCUMENTATION ===========
!
! Online html documentation available at
!            http://www.netlib.org/lapack/explore-html/
!
!  Definition:
!  ===========
!
!       SUBROUTINE STPSV(UPLO,TRANS,DIAG,N,AP,X,INCX)
!
!       .. Scalar Arguments ..
!       INTEGER INCX,N
!       CHARACTER DIAG,TRANS,UPLO
!       ..
!       .. Array Arguments ..
!       REAL AP(*),X(*)
!       ..
!
!
!> \par Purpose:
!  =============
!>
!> \verbatim
!>
!> STPSV  solves one of the systems of equations
!>
!>    A*x = b,   or   A**T*x = b,
!>
!> where b and x are n element vectors and A is an n by n unit, or
!> non-unit, upper or lower triangular matrix, supplied in packed form.
!>
!> No test for singularity or near-singularity is included in this
!> routine. Such tests must be performed before calling this routine.
!> \endverbatim
!
!  Arguments:
!  ==========
!
!> \param[in] UPLO
!> \verbatim
!>          UPLO is CHARACTER*1
!>           On entry, UPLO specifies whether the matrix is an upper or
!>           lower triangular matrix as follows:
!>
!>              UPLO = 'U' or 'u'   A is an upper triangular matrix.
!>
!>              UPLO = 'L' or 'l'   A is a lower triangular matrix.
!> \endverbatim
!>
!> \param[in] TRANS
!> \verbatim
!>          TRANS is CHARACTER*1
!>           On entry, TRANS specifies the equations to be solved as
!>           follows:
!>
!>              TRANS = 'N' or 'n'   A*x = b.
!>
!>              TRANS = 'T' or 't'   A**T*x = b.
!>
!>              TRANS = 'C' or 'c'   A**T*x = b.
!> \endverbatim
!>
!> \param[in] DIAG
!> \verbatim
!>          DIAG is CHARACTER*1
!>           On entry, DIAG specifies whether or not A is unit
!>           triangular as follows:
!>
!>              DIAG = 'U' or 'u'   A is assumed to be unit triangular.
!>
!>              DIAG = 'N' or 'n'   A is not assumed to be unit
!>                                  triangular.
!> \endverbatim
!>
!> \param[in] N
!> \verbatim
!>          N is INTEGER
!>           On entry, N specifies the order of the matrix A.
!>           N must be at least zero.
!> \endverbatim
!>
!> \param[in] AP
!> \verbatim
!>          AP is REAL array, dimension at least
!>           ( ( n*( n + 1 ) )/2 ).
!>           Before entry with  UPLO = 'U' or 'u', the array AP must
!>           contain the upper triangular matrix packed sequentially,
!>           column by column, so that AP( 1 ) contains a( 1, 1 ),
!>           AP( 2 ) and AP( 3 ) contain a( 1, 2 ) and a( 2, 2 )
!>           respectively, and so on.
!>           Before entry with UPLO = 'L' or 'l', the array AP must
!>           contain the lower triangular matrix packed sequentially,
!>           column by column, so that AP( 1 ) contains a( 1, 1 ),
!>           AP( 2 ) and AP( 3 ) contain a( 2, 1 ) and a( 3, 1 )
!>           respectively, and so on.
!>           Note that when  DIAG = 'U' or 'u', the diagonal elements of
!>           A are not referenced, but are assumed to be unity.
!> \endverbatim
!>
!> \param[in,out] X
!> \verbatim
!>          X is REAL array, dimension at least
!>           ( 1 + ( n - 1 )*abs( INCX ) ).
!>           Before entry, the incremented array X must contain the n
!>           element right-hand side vector b. On exit, X is overwritten
!>           with the solution vector x.
!> \endverbatim
!>
!> \param[in] INCX
!> \verbatim
!>          INCX is INTEGER
!>           On entry, INCX specifies the increment for the elements of
!>           X. INCX must not be zero.
!> \endverbatim
!
!  Authors:
!  ========
!
!> \author Univ. of Tennessee
!> \author Univ. of California Berkeley
!> \author Univ. of Colorado Denver
!> \author NAG Ltd.
!
!> \date December 2016
!
!> \ingroup single_blas_level2
!
!> \par Further Details:
!  =====================
!>
!> \verbatim
!>
!>  Level 2 Blas routine.
!>
!>  -- Written on 22-October-1986.
!>     Jack Dongarra, Argonne National Lab.
!>     Jeremy Du Croz, Nag Central Office.
!>     Sven Hammarling, Nag Central Office.
!>     Richard Hanson, Sandia National Labs.
!> \endverbatim
!>
!  =====================================================================
!
!  -- Reference BLAS level2 routine (version 3.7.0) --
!  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
!  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
!     December 2016
!
!     .. Scalar Arguments ..
!     ..
!     .. Array Arguments ..
!     ..
!
!  =====================================================================
!
!     .. Parameters ..
!     ..
!     .. Local Scalars ..
!     ..
!     .. External Functions ..
!     ..
!     .. External Subroutines ..
!     ..
!
!     Test the input parameters.
!
!
!     Quick return if possible.
!
!
!
!     Set up the start point in X if the increment is not unity. This
!     will be  ( N - 1 )*INCX  too small for descending loops.
!
!
!     Start the operations. In this version the elements of AP are
!     accessed sequentially with one pass through AP.
!
!
!        Form  x := inv( A )*x.
!
!
!        Form  x := inv( A**T )*x.
!
!
!
!     End of STPSV .
!
! END
use M_blas, only : stpsv_=>STPSV
implicit none
      INTEGER INCX,N
      CHARACTER DIAG,TRANS,UPLO
      REAL AP(*),X(*)
    call STPSV_(UPLO,TRANS,DIAG,N,AP,X,INCX)
end subroutine STPSV

subroutine STRMM(SIDE,UPLO,TRANSA,DIAG,M,N,ALPHA,A,LDA,B,LDB)
! COMMENT --file strmm.3m_blas.man
!> \brief \b STRMM
!
!  =========== DOCUMENTATION ===========
!
! Online html documentation available at
!            http://www.netlib.org/lapack/explore-html/
!
!  Definition:
!  ===========
!
!       SUBROUTINE STRMM(SIDE,UPLO,TRANSA,DIAG,M,N,ALPHA,A,LDA,B,LDB)
!
!       .. Scalar Arguments ..
!       REAL ALPHA
!       INTEGER LDA,LDB,M,N
!       CHARACTER DIAG,SIDE,TRANSA,UPLO
!       ..
!       .. Array Arguments ..
!       REAL A(LDA,*),B(LDB,*)
!       ..
!
!
!> \par Purpose:
!  =============
!>
!> \verbatim
!>
!> STRMM  performs one of the matrix-matrix operations
!>
!>    B := alpha*op( A )*B,   or   B := alpha*B*op( A ),
!>
!> where  alpha  is a scalar,  B  is an m by n matrix,  A  is a unit, or
!> non-unit,  upper or lower triangular matrix  and  op( A )  is one  of
!>
!>    op( A ) = A   or   op( A ) = A**T.
!> \endverbatim
!
!  Arguments:
!  ==========
!
!> \param[in] SIDE
!> \verbatim
!>          SIDE is CHARACTER*1
!>           On entry,  SIDE specifies whether  op( A ) multiplies B from
!>           the left or right as follows:
!>
!>              SIDE = 'L' or 'l'   B := alpha*op( A )*B.
!>
!>              SIDE = 'R' or 'r'   B := alpha*B*op( A ).
!> \endverbatim
!>
!> \param[in] UPLO
!> \verbatim
!>          UPLO is CHARACTER*1
!>           On entry, UPLO specifies whether the matrix A is an upper or
!>           lower triangular matrix as follows:
!>
!>              UPLO = 'U' or 'u'   A is an upper triangular matrix.
!>
!>              UPLO = 'L' or 'l'   A is a lower triangular matrix.
!> \endverbatim
!>
!> \param[in] TRANSA
!> \verbatim
!>          TRANSA is CHARACTER*1
!>           On entry, TRANSA specifies the form of op( A ) to be used in
!>           the matrix multiplication as follows:
!>
!>              TRANSA = 'N' or 'n'   op( A ) = A.
!>
!>              TRANSA = 'T' or 't'   op( A ) = A**T.
!>
!>              TRANSA = 'C' or 'c'   op( A ) = A**T.
!> \endverbatim
!>
!> \param[in] DIAG
!> \verbatim
!>          DIAG is CHARACTER*1
!>           On entry, DIAG specifies whether or not A is unit triangular
!>           as follows:
!>
!>              DIAG = 'U' or 'u'   A is assumed to be unit triangular.
!>
!>              DIAG = 'N' or 'n'   A is not assumed to be unit
!>                                  triangular.
!> \endverbatim
!>
!> \param[in] M
!> \verbatim
!>          M is INTEGER
!>           On entry, M specifies the number of rows of B. M must be at
!>           least zero.
!> \endverbatim
!>
!> \param[in] N
!> \verbatim
!>          N is INTEGER
!>           On entry, N specifies the number of columns of B.  N must be
!>           at least zero.
!> \endverbatim
!>
!> \param[in] ALPHA
!> \verbatim
!>          ALPHA is REAL
!>           On entry,  ALPHA specifies the scalar  alpha. When  alpha is
!>           zero then  A is not referenced and  B need not be set before
!>           entry.
!> \endverbatim
!>
!> \param[in] A
!> \verbatim
!>          A is REAL array, dimension ( LDA, k ), where k is m
!>           when  SIDE = 'L' or 'l'  and is  n  when  SIDE = 'R' or 'r'.
!>           Before entry  with  UPLO = 'U' or 'u',  the  leading  k by k
!>           upper triangular part of the array  A must contain the upper
!>           triangular matrix  and the strictly lower triangular part of
!>           A is not referenced.
!>           Before entry  with  UPLO = 'L' or 'l',  the  leading  k by k
!>           lower triangular part of the array  A must contain the lower
!>           triangular matrix  and the strictly upper triangular part of
!>           A is not referenced.
!>           Note that when  DIAG = 'U' or 'u',  the diagonal elements of
!>           A  are not referenced either,  but are assumed to be  unity.
!> \endverbatim
!>
!> \param[in] LDA
!> \verbatim
!>          LDA is INTEGER
!>           On entry, LDA specifies the first dimension of A as declared
!>           in the calling (sub) program.  When  SIDE = 'L' or 'l'  then
!>           LDA  must be at least  max( 1, m ),  when  SIDE = 'R' or 'r'
!>           then LDA must be at least max( 1, n ).
!> \endverbatim
!>
!> \param[in,out] B
!> \verbatim
!>          B is REAL array, dimension ( LDB, N )
!>           Before entry,  the leading  m by n part of the array  B must
!>           contain the matrix  B,  and  on exit  is overwritten  by the
!>           transformed matrix.
!> \endverbatim
!>
!> \param[in] LDB
!> \verbatim
!>          LDB is INTEGER
!>           On entry, LDB specifies the first dimension of B as declared
!>           in  the  calling  (sub)  program.   LDB  must  be  at  least
!>           max( 1, m ).
!> \endverbatim
!
!  Authors:
!  ========
!
!> \author Univ. of Tennessee
!> \author Univ. of California Berkeley
!> \author Univ. of Colorado Denver
!> \author NAG Ltd.
!
!> \date December 2016
!
!> \ingroup single_blas_level3
!
!> \par Further Details:
!  =====================
!>
!> \verbatim
!>
!>  Level 3 Blas routine.
!>
!>  -- Written on 8-February-1989.
!>     Jack Dongarra, Argonne National Laboratory.
!>     Iain Duff, AERE Harwell.
!>     Jeremy Du Croz, Numerical Algorithms Group Ltd.
!>     Sven Hammarling, Numerical Algorithms Group Ltd.
!> \endverbatim
!>
!  =====================================================================
!
!  -- Reference BLAS level3 routine (version 3.7.0) --
!  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
!  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
!     December 2016
!
!     .. Scalar Arguments ..
!     ..
!     .. Array Arguments ..
!     ..
!
!  =====================================================================
!
!     .. External Functions ..
!     ..
!     .. External Subroutines ..
!     ..
!     .. Intrinsic Functions ..
!     ..
!     .. Local Scalars ..
!     ..
!     .. Parameters ..
!     ..
!
!     Test the input parameters.
!
!
!
!     Quick return if possible.
!
!
!     And when  alpha.eq.zero.
!
!
!     Start the operations.
!
!
!           Form  B := alpha*A*B.
!
!
!           Form  B := alpha*A**T*B.
!
!
!           Form  B := alpha*B*A.
!
!
!           Form  B := alpha*B*A**T.
!
!
!
!     End of STRMM .
!
! END
use M_blas, only : strmm_=>STRMM
implicit none
      REAL ALPHA
      INTEGER LDA,LDB,M,N
      CHARACTER DIAG,SIDE,TRANSA,UPLO
      REAL A(LDA,*),B(LDB,*)
    call STRMM_(SIDE,UPLO,TRANSA,DIAG,M,N,ALPHA,A,LDA,B,LDB)
end subroutine STRMM

subroutine STRMV(UPLO,TRANS,DIAG,N,A,LDA,X,INCX)
! COMMENT --file strmv.3m_blas.man
!> \brief \b STRMV
!
!  =========== DOCUMENTATION ===========
!
! Online html documentation available at
!            http://www.netlib.org/lapack/explore-html/
!
!  Definition:
!  ===========
!
!       SUBROUTINE STRMV(UPLO,TRANS,DIAG,N,A,LDA,X,INCX)
!
!       .. Scalar Arguments ..
!       INTEGER INCX,LDA,N
!       CHARACTER DIAG,TRANS,UPLO
!       ..
!       .. Array Arguments ..
!       REAL A(LDA,*),X(*)
!       ..
!
!
!> \par Purpose:
!  =============
!>
!> \verbatim
!>
!> STRMV  performs one of the matrix-vector operations
!>
!>    x := A*x,   or   x := A**T*x,
!>
!> where x is an n element vector and  A is an n by n unit, or non-unit,
!> upper or lower triangular matrix.
!> \endverbatim
!
!  Arguments:
!  ==========
!
!> \param[in] UPLO
!> \verbatim
!>          UPLO is CHARACTER*1
!>           On entry, UPLO specifies whether the matrix is an upper or
!>           lower triangular matrix as follows:
!>
!>              UPLO = 'U' or 'u'   A is an upper triangular matrix.
!>
!>              UPLO = 'L' or 'l'   A is a lower triangular matrix.
!> \endverbatim
!>
!> \param[in] TRANS
!> \verbatim
!>          TRANS is CHARACTER*1
!>           On entry, TRANS specifies the operation to be performed as
!>           follows:
!>
!>              TRANS = 'N' or 'n'   x := A*x.
!>
!>              TRANS = 'T' or 't'   x := A**T*x.
!>
!>              TRANS = 'C' or 'c'   x := A**T*x.
!> \endverbatim
!>
!> \param[in] DIAG
!> \verbatim
!>          DIAG is CHARACTER*1
!>           On entry, DIAG specifies whether or not A is unit
!>           triangular as follows:
!>
!>              DIAG = 'U' or 'u'   A is assumed to be unit triangular.
!>
!>              DIAG = 'N' or 'n'   A is not assumed to be unit
!>                                  triangular.
!> \endverbatim
!>
!> \param[in] N
!> \verbatim
!>          N is INTEGER
!>           On entry, N specifies the order of the matrix A.
!>           N must be at least zero.
!> \endverbatim
!>
!> \param[in] A
!> \verbatim
!>          A is REAL array, dimension ( LDA, N )
!>           Before entry with  UPLO = 'U' or 'u', the leading n by n
!>           upper triangular part of the array A must contain the upper
!>           triangular matrix and the strictly lower triangular part of
!>           A is not referenced.
!>           Before entry with UPLO = 'L' or 'l', the leading n by n
!>           lower triangular part of the array A must contain the lower
!>           triangular matrix and the strictly upper triangular part of
!>           A is not referenced.
!>           Note that when  DIAG = 'U' or 'u', the diagonal elements of
!>           A are not referenced either, but are assumed to be unity.
!> \endverbatim
!>
!> \param[in] LDA
!> \verbatim
!>          LDA is INTEGER
!>           On entry, LDA specifies the first dimension of A as declared
!>           in the calling (sub) program. LDA must be at least
!>           max( 1, n ).
!> \endverbatim
!>
!> \param[in,out] X
!> \verbatim
!>          X is REAL array, dimension at least
!>           ( 1 + ( n - 1 )*abs( INCX ) ).
!>           Before entry, the incremented array X must contain the n
!>           element vector x. On exit, X is overwritten with the
!>           transformed vector x.
!> \endverbatim
!>
!> \param[in] INCX
!> \verbatim
!>          INCX is INTEGER
!>           On entry, INCX specifies the increment for the elements of
!>           X. INCX must not be zero.
!> \endverbatim
!
!  Authors:
!  ========
!
!> \author Univ. of Tennessee
!> \author Univ. of California Berkeley
!> \author Univ. of Colorado Denver
!> \author NAG Ltd.
!
!> \date December 2016
!
!> \ingroup single_blas_level2
!
!> \par Further Details:
!  =====================
!>
!> \verbatim
!>
!>  Level 2 Blas routine.
!>  The vector and matrix arguments are not referenced when N = 0, or M = 0
!>
!>  -- Written on 22-October-1986.
!>     Jack Dongarra, Argonne National Lab.
!>     Jeremy Du Croz, Nag Central Office.
!>     Sven Hammarling, Nag Central Office.
!>     Richard Hanson, Sandia National Labs.
!> \endverbatim
!>
!  =====================================================================
!
!  -- Reference BLAS level2 routine (version 3.7.0) --
!  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
!  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
!     December 2016
!
!     .. Scalar Arguments ..
!     ..
!     .. Array Arguments ..
!     ..
!
!  =====================================================================
!
!     .. Parameters ..
!     ..
!     .. Local Scalars ..
!     ..
!     .. External Functions ..
!     ..
!     .. External Subroutines ..
!     ..
!     .. Intrinsic Functions ..
!     ..
!
!     Test the input parameters.
!
!
!     Quick return if possible.
!
!
!
!     Set up the start point in X if the increment is not unity. This
!     will be  ( N - 1 )*INCX  too small for descending loops.
!
!
!     Start the operations. In this version the elements of A are
!     accessed sequentially with one pass through A.
!
!
!        Form  x := A*x.
!
!
!        Form  x := A**T*x.
!
!
!
!     End of STRMV .
!
! END
use M_blas, only : strmv_=>STRMV
implicit none
      INTEGER INCX,LDA,N
      CHARACTER DIAG,TRANS,UPLO
      REAL A(LDA,*),X(*)
    call STRMV_(UPLO,TRANS,DIAG,N,A,LDA,X,INCX)
end subroutine STRMV

subroutine STRSM(SIDE,UPLO,TRANSA,DIAG,M,N,ALPHA,A,LDA,B,LDB)
! COMMENT --file strsm.3m_blas.man
!> \brief \b STRSM
!
!  =========== DOCUMENTATION ===========
!
! Online html documentation available at
!            http://www.netlib.org/lapack/explore-html/
!
!  Definition:
!  ===========
!
!       SUBROUTINE STRSM(SIDE,UPLO,TRANSA,DIAG,M,N,ALPHA,A,LDA,B,LDB)
!
!       .. Scalar Arguments ..
!       REAL ALPHA
!       INTEGER LDA,LDB,M,N
!       CHARACTER DIAG,SIDE,TRANSA,UPLO
!       ..
!       .. Array Arguments ..
!       REAL A(LDA,*),B(LDB,*)
!       ..
!
!
!> \par Purpose:
!  =============
!>
!> \verbatim
!>
!> STRSM  solves one of the matrix equations
!>
!>    op( A )*X = alpha*B,   or   X*op( A ) = alpha*B,
!>
!> where alpha is a scalar, X and B are m by n matrices, A is a unit, or
!> non-unit,  upper or lower triangular matrix  and  op( A )  is one  of
!>
!>    op( A ) = A   or   op( A ) = A**T.
!>
!> The matrix X is overwritten on B.
!> \endverbatim
!
!  Arguments:
!  ==========
!
!> \param[in] SIDE
!> \verbatim
!>          SIDE is CHARACTER*1
!>           On entry, SIDE specifies whether op( A ) appears on the left
!>           or right of X as follows:
!>
!>              SIDE = 'L' or 'l'   op( A )*X = alpha*B.
!>
!>              SIDE = 'R' or 'r'   X*op( A ) = alpha*B.
!> \endverbatim
!>
!> \param[in] UPLO
!> \verbatim
!>          UPLO is CHARACTER*1
!>           On entry, UPLO specifies whether the matrix A is an upper or
!>           lower triangular matrix as follows:
!>
!>              UPLO = 'U' or 'u'   A is an upper triangular matrix.
!>
!>              UPLO = 'L' or 'l'   A is a lower triangular matrix.
!> \endverbatim
!>
!> \param[in] TRANSA
!> \verbatim
!>          TRANSA is CHARACTER*1
!>           On entry, TRANSA specifies the form of op( A ) to be used in
!>           the matrix multiplication as follows:
!>
!>              TRANSA = 'N' or 'n'   op( A ) = A.
!>
!>              TRANSA = 'T' or 't'   op( A ) = A**T.
!>
!>              TRANSA = 'C' or 'c'   op( A ) = A**T.
!> \endverbatim
!>
!> \param[in] DIAG
!> \verbatim
!>          DIAG is CHARACTER*1
!>           On entry, DIAG specifies whether or not A is unit triangular
!>           as follows:
!>
!>              DIAG = 'U' or 'u'   A is assumed to be unit triangular.
!>
!>              DIAG = 'N' or 'n'   A is not assumed to be unit
!>                                  triangular.
!> \endverbatim
!>
!> \param[in] M
!> \verbatim
!>          M is INTEGER
!>           On entry, M specifies the number of rows of B. M must be at
!>           least zero.
!> \endverbatim
!>
!> \param[in] N
!> \verbatim
!>          N is INTEGER
!>           On entry, N specifies the number of columns of B.  N must be
!>           at least zero.
!> \endverbatim
!>
!> \param[in] ALPHA
!> \verbatim
!>          ALPHA is REAL
!>           On entry,  ALPHA specifies the scalar  alpha. When  alpha is
!>           zero then  A is not referenced and  B need not be set before
!>           entry.
!> \endverbatim
!>
!> \param[in] A
!> \verbatim
!>          A is REAL array, dimension ( LDA, k ),
!>           where k is m when SIDE = 'L' or 'l'
!>             and k is n when SIDE = 'R' or 'r'.
!>           Before entry  with  UPLO = 'U' or 'u',  the  leading  k by k
!>           upper triangular part of the array  A must contain the upper
!>           triangular matrix  and the strictly lower triangular part of
!>           A is not referenced.
!>           Before entry  with  UPLO = 'L' or 'l',  the  leading  k by k
!>           lower triangular part of the array  A must contain the lower
!>           triangular matrix  and the strictly upper triangular part of
!>           A is not referenced.
!>           Note that when  DIAG = 'U' or 'u',  the diagonal elements of
!>           A  are not referenced either,  but are assumed to be  unity.
!> \endverbatim
!>
!> \param[in] LDA
!> \verbatim
!>          LDA is INTEGER
!>           On entry, LDA specifies the first dimension of A as declared
!>           in the calling (sub) program.  When  SIDE = 'L' or 'l'  then
!>           LDA  must be at least  max( 1, m ),  when  SIDE = 'R' or 'r'
!>           then LDA must be at least max( 1, n ).
!> \endverbatim
!>
!> \param[in,out] B
!> \verbatim
!>          B is REAL array, dimension ( LDB, N )
!>           Before entry,  the leading  m by n part of the array  B must
!>           contain  the  right-hand  side  matrix  B,  and  on exit  is
!>           overwritten by the solution matrix  X.
!> \endverbatim
!>
!> \param[in] LDB
!> \verbatim
!>          LDB is INTEGER
!>           On entry, LDB specifies the first dimension of B as declared
!>           in  the  calling  (sub)  program.   LDB  must  be  at  least
!>           max( 1, m ).
!> \endverbatim
!
!  Authors:
!  ========
!
!> \author Univ. of Tennessee
!> \author Univ. of California Berkeley
!> \author Univ. of Colorado Denver
!> \author NAG Ltd.
!
!> \date December 2016
!
!> \ingroup single_blas_level3
!
!> \par Further Details:
!  =====================
!>
!> \verbatim
!>
!>  Level 3 Blas routine.
!>
!>
!>  -- Written on 8-February-1989.
!>     Jack Dongarra, Argonne National Laboratory.
!>     Iain Duff, AERE Harwell.
!>     Jeremy Du Croz, Numerical Algorithms Group Ltd.
!>     Sven Hammarling, Numerical Algorithms Group Ltd.
!> \endverbatim
!>
!  =====================================================================
!
!  -- Reference BLAS level3 routine (version 3.7.0) --
!  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
!  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
!     December 2016
!
!     .. Scalar Arguments ..
!     ..
!     .. Array Arguments ..
!     ..
!
!  =====================================================================
!
!     .. External Functions ..
!     ..
!     .. External Subroutines ..
!     ..
!     .. Intrinsic Functions ..
!     ..
!     .. Local Scalars ..
!     ..
!     .. Parameters ..
!     ..
!
!     Test the input parameters.
!
!
!
!     Quick return if possible.
!
!
!     And when  alpha.eq.zero.
!
!
!     Start the operations.
!
!
!           Form  B := alpha*inv( A )*B.
!
!
!           Form  B := alpha*inv( A**T )*B.
!
!
!           Form  B := alpha*B*inv( A ).
!
!
!           Form  B := alpha*B*inv( A**T ).
!
!
!
!     End of STRSM .
!
! END
use M_blas, only : strsm_=>STRSM
implicit none
      REAL ALPHA
      INTEGER LDA,LDB,M,N
      CHARACTER DIAG,SIDE,TRANSA,UPLO
      REAL A(LDA,*),B(LDB,*)
    call STRSM_(SIDE,UPLO,TRANSA,DIAG,M,N,ALPHA,A,LDA,B,LDB)
end subroutine STRSM

subroutine STRSV(UPLO,TRANS,DIAG,N,A,LDA,X,INCX)
! COMMENT --file strsv.3m_blas.man
!> \brief \b STRSV
!
!  =========== DOCUMENTATION ===========
!
! Online html documentation available at
!            http://www.netlib.org/lapack/explore-html/
!
!  Definition:
!  ===========
!
!       SUBROUTINE STRSV(UPLO,TRANS,DIAG,N,A,LDA,X,INCX)
!
!       .. Scalar Arguments ..
!       INTEGER INCX,LDA,N
!       CHARACTER DIAG,TRANS,UPLO
!       ..
!       .. Array Arguments ..
!       REAL A(LDA,*),X(*)
!       ..
!
!
!> \par Purpose:
!  =============
!>
!> \verbatim
!>
!> STRSV  solves one of the systems of equations
!>
!>    A*x = b,   or   A**T*x = b,
!>
!> where b and x are n element vectors and A is an n by n unit, or
!> non-unit, upper or lower triangular matrix.
!>
!> No test for singularity or near-singularity is included in this
!> routine. Such tests must be performed before calling this routine.
!> \endverbatim
!
!  Arguments:
!  ==========
!
!> \param[in] UPLO
!> \verbatim
!>          UPLO is CHARACTER*1
!>           On entry, UPLO specifies whether the matrix is an upper or
!>           lower triangular matrix as follows:
!>
!>              UPLO = 'U' or 'u'   A is an upper triangular matrix.
!>
!>              UPLO = 'L' or 'l'   A is a lower triangular matrix.
!> \endverbatim
!>
!> \param[in] TRANS
!> \verbatim
!>          TRANS is CHARACTER*1
!>           On entry, TRANS specifies the equations to be solved as
!>           follows:
!>
!>              TRANS = 'N' or 'n'   A*x = b.
!>
!>              TRANS = 'T' or 't'   A**T*x = b.
!>
!>              TRANS = 'C' or 'c'   A**T*x = b.
!> \endverbatim
!>
!> \param[in] DIAG
!> \verbatim
!>          DIAG is CHARACTER*1
!>           On entry, DIAG specifies whether or not A is unit
!>           triangular as follows:
!>
!>              DIAG = 'U' or 'u'   A is assumed to be unit triangular.
!>
!>              DIAG = 'N' or 'n'   A is not assumed to be unit
!>                                  triangular.
!> \endverbatim
!>
!> \param[in] N
!> \verbatim
!>          N is INTEGER
!>           On entry, N specifies the order of the matrix A.
!>           N must be at least zero.
!> \endverbatim
!>
!> \param[in] A
!> \verbatim
!>          A is REAL array, dimension ( LDA, N )
!>           Before entry with  UPLO = 'U' or 'u', the leading n by n
!>           upper triangular part of the array A must contain the upper
!>           triangular matrix and the strictly lower triangular part of
!>           A is not referenced.
!>           Before entry with UPLO = 'L' or 'l', the leading n by n
!>           lower triangular part of the array A must contain the lower
!>           triangular matrix and the strictly upper triangular part of
!>           A is not referenced.
!>           Note that when  DIAG = 'U' or 'u', the diagonal elements of
!>           A are not referenced either, but are assumed to be unity.
!> \endverbatim
!>
!> \param[in] LDA
!> \verbatim
!>          LDA is INTEGER
!>           On entry, LDA specifies the first dimension of A as declared
!>           in the calling (sub) program. LDA must be at least
!>           max( 1, n ).
!> \endverbatim
!>
!> \param[in,out] X
!> \verbatim
!>          X is REAL array, dimension at least
!>           ( 1 + ( n - 1 )*abs( INCX ) ).
!>           Before entry, the incremented array X must contain the n
!>           element right-hand side vector b. On exit, X is overwritten
!>           with the solution vector x.
!> \endverbatim
!>
!> \param[in] INCX
!> \verbatim
!>          INCX is INTEGER
!>           On entry, INCX specifies the increment for the elements of
!>           X. INCX must not be zero.
!> \endverbatim
!
!  Authors:
!  ========
!
!> \author Univ. of Tennessee
!> \author Univ. of California Berkeley
!> \author Univ. of Colorado Denver
!> \author NAG Ltd.
!
!> \date December 2016
!
!> \ingroup single_blas_level2
!
!> \par Further Details:
!  =====================
!>
!> \verbatim
!>
!>  Level 2 Blas routine.
!>
!>  -- Written on 22-October-1986.
!>     Jack Dongarra, Argonne National Lab.
!>     Jeremy Du Croz, Nag Central Office.
!>     Sven Hammarling, Nag Central Office.
!>     Richard Hanson, Sandia National Labs.
!> \endverbatim
!>
!  =====================================================================
!
!  -- Reference BLAS level2 routine (version 3.7.0) --
!  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
!  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
!     December 2016
!
!     .. Scalar Arguments ..
!     ..
!     .. Array Arguments ..
!     ..
!
!  =====================================================================
!
!     .. Parameters ..
!     ..
!     .. Local Scalars ..
!     ..
!     .. External Functions ..
!     ..
!     .. External Subroutines ..
!     ..
!     .. Intrinsic Functions ..
!     ..
!
!     Test the input parameters.
!
!
!     Quick return if possible.
!
!
!
!     Set up the start point in X if the increment is not unity. This
!     will be  ( N - 1 )*INCX  too small for descending loops.
!
!
!     Start the operations. In this version the elements of A are
!     accessed sequentially with one pass through A.
!
!
!        Form  x := inv( A )*x.
!
!
!        Form  x := inv( A**T )*x.
!
!
!
!     End of STRSV .
!
! END
use M_blas, only : strsv_=>STRSV
implicit none
      INTEGER INCX,LDA,N
      CHARACTER DIAG,TRANS,UPLO
      REAL A(LDA,*),X(*)
    call STRSV_(UPLO,TRANS,DIAG,N,A,LDA,X,INCX)
end subroutine STRSV

subroutine XERBLA_ARRAY(SRNAME_ARRAY, SRNAME_LEN, INFO)
! COMMENT --file xerbla_array.3m_blas.man
!> \brief \b XERBLA_ARRAY
!
!  =========== DOCUMENTATION ===========
!
! Online html documentation available at
!            http://www.netlib.org/lapack/explore-html/
!
!  Definition:
!  ===========
!
!       SUBROUTINE XERBLA_ARRAY(SRNAME_ARRAY, SRNAME_LEN, INFO)
!
!       .. Scalar Arguments ..
!       INTEGER SRNAME_LEN, INFO
!       ..
!       .. Array Arguments ..
!       CHARACTER(*) SRNAME_ARRAY(SRNAME_LEN)
!       ..
!
!
!> \par Purpose:
!  =============
!>
!> \verbatim
!>
!> XERBLA_ARRAY assists other languages in calling XERBLA, the LAPACK
!> and BLAS error handler.  Rather than taking a Fortran string argument
!> as the function's name, XERBLA_ARRAY takes an array of single
!> characters along with the array's length.  XERBLA_ARRAY then copies
!> up to 32 characters of that array into a Fortran string and passes
!> that to XERBLA.  If called with a non-positive SRNAME_LEN,
!> XERBLA_ARRAY will call XERBLA with a string of all blank characters.
!>
!> Say some macro or other device makes XERBLA_ARRAY available to C99
!> by a name lapack_xerbla and with a common Fortran calling convention.
!> Then a C99 program could invoke XERBLA via:
!>    {
!>      int flen = strlen(__func__);
!>      lapack_xerbla(__func__, &flen, &info);
!>    }
!>
!> Providing XERBLA_ARRAY is not necessary for intercepting LAPACK
!> errors.  XERBLA_ARRAY calls XERBLA.
!> \endverbatim
!
!  Arguments:
!  ==========
!
!> \param[in] SRNAME_ARRAY
!> \verbatim
!>          SRNAME_ARRAY is CHARACTER(*) array, dimension (SRNAME_LEN)
!>          The name of the routine which called XERBLA_ARRAY.
!> \endverbatim
!>
!> \param[in] SRNAME_LEN
!> \verbatim
!>          SRNAME_LEN is INTEGER
!>          The length of the name in SRNAME_ARRAY.
!> \endverbatim
!>
!> \param[in] INFO
!> \verbatim
!>          INFO is INTEGER
!>          The position of the invalid parameter in the parameter list
!>          of the calling routine.
!> \endverbatim
!
!  Authors:
!  ========
!
!> \author Univ. of Tennessee
!> \author Univ. of California Berkeley
!> \author Univ. of Colorado Denver
!> \author NAG Ltd.
!
!> \date December 2016
!
!> \ingroup aux_blas
!
!  =====================================================================
!
!  -- Reference BLAS level1 routine (version 3.7.0) --
!  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
!  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
!     December 2016
!
!     .. Scalar Arguments ..
!     ..
!     .. Array Arguments ..
!     ..
!
! =====================================================================
!
!     ..
!     .. Local Scalars ..
!     ..
!     .. Local Arrays ..
!     ..
!     .. Intrinsic Functions ..
!     ..
!     .. External Functions ..
!     ..
!     .. Executable Statements ..
! END
use M_blas, only : xerbla_array_=>XERBLA_ARRAY
implicit none
      INTEGER SRNAME_LEN, INFO
      CHARACTER(len=1) SRNAME_ARRAY(SRNAME_LEN)
    call XERBLA_ARRAY_(SRNAME_ARRAY, SRNAME_LEN, INFO)
end subroutine XERBLA_ARRAY

subroutine XERBLA( SRNAME, INFO )
! COMMENT --file xerbla.3m_blas.man
!> \brief \b XERBLA
!
!  =========== DOCUMENTATION ===========
!
! Online html documentation available at
!            http://www.netlib.org/lapack/explore-html/
!
!  Definition:
!  ===========
!
!       SUBROUTINE XERBLA( SRNAME, INFO )
!
!       .. Scalar Arguments ..
!       CHARACTER*(*)      SRNAME
!       INTEGER            INFO
!       ..
!
!
!> \par Purpose:
!  =============
!>
!> \verbatim
!>
!> XERBLA  is an error handler for the LAPACK routines.
!> It is called by an LAPACK routine if an input parameter has an
!> invalid value.  A message is printed and execution stops.
!>
!> Installers may consider modifying the STOP statement in order to
!> call system-specific exception-handling facilities.
!> \endverbatim
!
!  Arguments:
!  ==========
!
!> \param[in] SRNAME
!> \verbatim
!>          SRNAME is CHARACTER*(*)
!>          The name of the routine which called XERBLA.
!> \endverbatim
!>
!> \param[in] INFO
!> \verbatim
!>          INFO is INTEGER
!>          The position of the invalid parameter in the parameter list
!>          of the calling routine.
!> \endverbatim
!
!  Authors:
!  ========
!
!> \author Univ. of Tennessee
!> \author Univ. of California Berkeley
!> \author Univ. of Colorado Denver
!> \author NAG Ltd.
!
!> \date December 2016
!
!> \ingroup aux_blas
!
!  =====================================================================
!
!  -- Reference BLAS level1 routine (version 3.7.0) --
!  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
!  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
!     December 2016
!
!     .. Scalar Arguments ..
!     ..
!
! =====================================================================
!
!     .. Intrinsic Functions ..
!     ..
!     .. Executable Statements ..
!
!
!
!
!     End of XERBLA
!
! END
use M_blas, only : xerbla_=>XERBLA
implicit none
      CHARACTER(len=*),intent(in) :: SRNAME
      INTEGER,intent(in)          :: INFO
    call XERBLA_( SRNAME, INFO )
END SUBROUTINE XERBLA

subroutine ZAXPY(N,ZA,ZX,INCX,ZY,INCY)
! COMMENT --file zaxpy.3m_blas.man
!> \brief \b ZAXPY
!
!  =========== DOCUMENTATION ===========
!
! Online html documentation available at
!            http://www.netlib.org/lapack/explore-html/
!
!  Definition:
!  ===========
!
!       SUBROUTINE ZAXPY(N,ZA,ZX,INCX,ZY,INCY)
!
!       .. Scalar Arguments ..
!       COMPLEX*16 ZA
!       INTEGER INCX,INCY,N
!       ..
!       .. Array Arguments ..
!       COMPLEX*16 ZX(*),ZY(*)
!       ..
!
!
!> \par Purpose:
!  =============
!>
!> \verbatim
!>
!>    ZAXPY constant times a vector plus a vector.
!> \endverbatim
!
!  Arguments:
!  ==========
!
!> \param[in] N
!> \verbatim
!>          N is INTEGER
!>         number of elements in input vector(s)
!> \endverbatim
!>
!> \param[in] ZA
!> \verbatim
!>          ZA is COMPLEX*16
!>           On entry, ZA specifies the scalar alpha.
!> \endverbatim
!>
!> \param[in] ZX
!> \verbatim
!>          ZX is COMPLEX*16 array, dimension ( 1 + ( N - 1 )*abs( INCX ) )
!> \endverbatim
!>
!> \param[in] INCX
!> \verbatim
!>          INCX is INTEGER
!>         storage spacing between elements of ZX
!> \endverbatim
!>
!> \param[in,out] ZY
!> \verbatim
!>          ZY is COMPLEX*16 array, dimension ( 1 + ( N - 1 )*abs( INCY ) )
!> \endverbatim
!>
!> \param[in] INCY
!> \verbatim
!>          INCY is INTEGER
!>         storage spacing between elements of ZY
!> \endverbatim
!
!  Authors:
!  ========
!
!> \author Univ. of Tennessee
!> \author Univ. of California Berkeley
!> \author Univ. of Colorado Denver
!> \author NAG Ltd.
!
!> \date November 2017
!
!> \ingroup complex16_blas_level1
!
!> \par Further Details:
!  =====================
!>
!> \verbatim
!>
!>     jack dongarra, 3/11/78.
!>     modified 12/3/93, array(1) declarations changed to array(*)
!> \endverbatim
!>
!  =====================================================================
!
!  -- Reference BLAS level1 routine (version 3.8.0) --
!  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
!  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
!     November 2017
!
!     .. Scalar Arguments ..
!     ..
!     .. Array Arguments ..
!     ..
!
!  =====================================================================
!
!     .. Local Scalars ..
!     ..
!     .. External Functions ..
!     ..
!
!        code for both increments equal to 1
!
!
!        code for unequal increments or equal increments
!          not equal to 1
!
!
! END
use M_blas, only : zaxpy_=>ZAXPY
implicit none
      COMPLEX*16 ZA
      INTEGER INCX,INCY,N
      COMPLEX*16 ZX(*),ZY(*)
    call ZAXPY_(N,ZA,ZX,INCX,ZY,INCY)
end subroutine ZAXPY

subroutine ZCOPY(N,ZX,INCX,ZY,INCY)
! COMMENT --file zcopy.3m_blas.man
!> \brief \b ZCOPY
!
!  =========== DOCUMENTATION ===========
!
! Online html documentation available at
!            http://www.netlib.org/lapack/explore-html/
!
!  Definition:
!  ===========
!
!       SUBROUTINE ZCOPY(N,ZX,INCX,ZY,INCY)
!
!       .. Scalar Arguments ..
!       INTEGER INCX,INCY,N
!       ..
!       .. Array Arguments ..
!       COMPLEX*16 ZX(*),ZY(*)
!       ..
!
!
!> \par Purpose:
!  =============
!>
!> \verbatim
!>
!>    ZCOPY copies a vector, x, to a vector, y.
!> \endverbatim
!
!  Arguments:
!  ==========
!
!> \param[in] N
!> \verbatim
!>          N is INTEGER
!>         number of elements in input vector(s)
!> \endverbatim
!>
!> \param[in] ZX
!> \verbatim
!>          ZX is COMPLEX*16 array, dimension ( 1 + ( N - 1 )*abs( INCX ) )
!> \endverbatim
!>
!> \param[in] INCX
!> \verbatim
!>          INCX is INTEGER
!>         storage spacing between elements of ZX
!> \endverbatim
!>
!> \param[out] ZY
!> \verbatim
!>          ZY is COMPLEX*16 array, dimension ( 1 + ( N - 1 )*abs( INCY ) )
!> \endverbatim
!>
!> \param[in] INCY
!> \verbatim
!>          INCY is INTEGER
!>         storage spacing between elements of ZY
!> \endverbatim
!
!  Authors:
!  ========
!
!> \author Univ. of Tennessee
!> \author Univ. of California Berkeley
!> \author Univ. of Colorado Denver
!> \author NAG Ltd.
!
!> \date November 2017
!
!> \ingroup complex16_blas_level1
!
!> \par Further Details:
!  =====================
!>
!> \verbatim
!>
!>     jack dongarra, linpack, 4/11/78.
!>     modified 12/3/93, array(1) declarations changed to array(*)
!> \endverbatim
!>
!  =====================================================================
!
!  -- Reference BLAS level1 routine (version 3.8.0) --
!  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
!  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
!     November 2017
!
!     .. Scalar Arguments ..
!     ..
!     .. Array Arguments ..
!     ..
!
!  =====================================================================
!
!     .. Local Scalars ..
!     ..
!
!        code for both increments equal to 1
!
!
!        code for unequal increments or equal increments
!          not equal to 1
!
! END
use M_blas, only : zcopy_=>ZCOPY
implicit none
      INTEGER INCX,INCY,N
      COMPLEX*16 ZX(*),ZY(*)
    call ZCOPY_(N,ZX,INCX,ZY,INCY)
end subroutine ZCOPY

 COMPLEX*16 FUNCTION ZDOTC(N,ZX,INCX,ZY,INCY)
! COMMENT --file zdotc.3m_blas.man
!> \brief \b ZDOTC
!
!  =========== DOCUMENTATION ===========
!
! Online html documentation available at
!            http://www.netlib.org/lapack/explore-html/
!
!  Definition:
!  ===========
!
!       COMPLEX*16 FUNCTION ZDOTC(N,ZX,INCX,ZY,INCY)
!
!       .. Scalar Arguments ..
!       INTEGER INCX,INCY,N
!       ..
!       .. Array Arguments ..
!       COMPLEX*16 ZX(*),ZY(*)
!       ..
!
!
!> \par Purpose:
!  =============
!>
!> \verbatim
!>
!> ZDOTC forms the dot product of two complex vectors
!>      ZDOTC = X^H * Y
!>
!> \endverbatim
!
!  Arguments:
!  ==========
!
!> \param[in] N
!> \verbatim
!>          N is INTEGER
!>         number of elements in input vector(s)
!> \endverbatim
!>
!> \param[in] ZX
!> \verbatim
!>          ZX is COMPLEX*16 array, dimension ( 1 + ( N - 1 )*abs( INCX ) )
!> \endverbatim
!>
!> \param[in] INCX
!> \verbatim
!>          INCX is INTEGER
!>         storage spacing between elements of ZX
!> \endverbatim
!>
!> \param[in] ZY
!> \verbatim
!>          ZY is COMPLEX*16 array, dimension ( 1 + ( N - 1 )*abs( INCY ) )
!> \endverbatim
!>
!> \param[in] INCY
!> \verbatim
!>          INCY is INTEGER
!>         storage spacing between elements of ZY
!> \endverbatim
!
!  Authors:
!  ========
!
!> \author Univ. of Tennessee
!> \author Univ. of California Berkeley
!> \author Univ. of Colorado Denver
!> \author NAG Ltd.
!
!> \date November 2017
!
!> \ingroup complex16_blas_level1
!
!> \par Further Details:
!  =====================
!>
!> \verbatim
!>
!>     jack dongarra, 3/11/78.
!>     modified 12/3/93, array(1) declarations changed to array(*)
!> \endverbatim
!>
!  =====================================================================
!
!  -- Reference BLAS level1 routine (version 3.8.0) --
!  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
!  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
!     November 2017
!
!     .. Scalar Arguments ..
!     ..
!     .. Array Arguments ..
!     ..
!
!  =====================================================================
!
!     .. Local Scalars ..
!     ..
!     .. Intrinsic Functions ..
!     ..
!
!        code for both increments equal to 1
!
!
!        code for unequal increments or equal increments
!          not equal to 1
!
! END
use M_blas, only : zdotc_=>ZDOTC
implicit none
      INTEGER INCX,INCY,N
      COMPLEX*16 ZX(*),ZY(*)
      zdotc=ZDOTC_(N,ZX,INCX,ZY,INCY)
      END FUNCTION ZDOTC

 COMPLEX*16 FUNCTION ZDOTU(N,ZX,INCX,ZY,INCY)
! COMMENT --file zdotu.3m_blas.man
!> \brief \b ZDOTU
!
!  =========== DOCUMENTATION ===========
!
! Online html documentation available at
!            http://www.netlib.org/lapack/explore-html/
!
!  Definition:
!  ===========
!
!       COMPLEX*16 FUNCTION ZDOTU(N,ZX,INCX,ZY,INCY)
!
!       .. Scalar Arguments ..
!       INTEGER INCX,INCY,N
!       ..
!       .. Array Arguments ..
!       COMPLEX*16 ZX(*),ZY(*)
!       ..
!
!
!> \par Purpose:
!  =============
!>
!> \verbatim
!>
!> ZDOTU forms the dot product of two complex vectors
!>      ZDOTU = X^T * Y
!>
!> \endverbatim
!
!  Arguments:
!  ==========
!
!> \param[in] N
!> \verbatim
!>          N is INTEGER
!>         number of elements in input vector(s)
!> \endverbatim
!>
!> \param[in] ZX
!> \verbatim
!>          ZX is COMPLEX*16 array, dimension ( 1 + ( N - 1 )*abs( INCX ) )
!> \endverbatim
!>
!> \param[in] INCX
!> \verbatim
!>          INCX is INTEGER
!>         storage spacing between elements of ZX
!> \endverbatim
!>
!> \param[in] ZY
!> \verbatim
!>          ZY is COMPLEX*16 array, dimension ( 1 + ( N - 1 )*abs( INCY ) )
!> \endverbatim
!>
!> \param[in] INCY
!> \verbatim
!>          INCY is INTEGER
!>         storage spacing between elements of ZY
!> \endverbatim
!
!  Authors:
!  ========
!
!> \author Univ. of Tennessee
!> \author Univ. of California Berkeley
!> \author Univ. of Colorado Denver
!> \author NAG Ltd.
!
!> \date November 2017
!
!> \ingroup complex16_blas_level1
!
!> \par Further Details:
!  =====================
!>
!> \verbatim
!>
!>     jack dongarra, 3/11/78.
!>     modified 12/3/93, array(1) declarations changed to array(*)
!> \endverbatim
!>
!  =====================================================================
!
!  -- Reference BLAS level1 routine (version 3.8.0) --
!  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
!  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
!     November 2017
!
!     .. Scalar Arguments ..
!     ..
!     .. Array Arguments ..
!     ..
!
!  =====================================================================
!
!     .. Local Scalars ..
!     ..
!
!        code for both increments equal to 1
!
!
!        code for unequal increments or equal increments
!          not equal to 1
!
! END
use M_blas, only : zdotu_=>ZDOTU
implicit none
      INTEGER INCX,INCY,N
      COMPLEX*16 ZX(*),ZY(*)
      zdotu=ZDOTU_(N,ZX,INCX,ZY,INCY)
      END FUNCTION ZDOTU

subroutine ZDROT( N, ZX, INCX, ZY, INCY, C, S )
! COMMENT --file zdrot.3m_blas.man
!> \brief \b ZDROT
!
!  =========== DOCUMENTATION ===========
!
! Online html documentation available at
!            http://www.netlib.org/lapack/explore-html/
!
!  Definition:
!  ===========
!
!       SUBROUTINE ZDROT( N, ZX, INCX, ZY, INCY, C, S )
!
!       .. Scalar Arguments ..
!       INTEGER            INCX, INCY, N
!       DOUBLE PRECISION   C, S
!       ..
!       .. Array Arguments ..
!       COMPLEX*16         ZX( * ), ZY( * )
!       ..
!
!
!> \par Purpose:
!  =============
!>
!> \verbatim
!>
!> Applies a plane rotation, where the cos and sin (c and s) are real
!> and the vectors cx and cy are complex.
!> jack dongarra, linpack, 3/11/78.
!> \endverbatim
!
!  Arguments:
!  ==========
!
!> \param[in] N
!> \verbatim
!>          N is INTEGER
!>           On entry, N specifies the order of the vectors cx and cy.
!>           N must be at least zero.
!> \endverbatim
!>
!> \param[in,out] ZX
!> \verbatim
!>          ZX is COMPLEX*16 array, dimension at least
!>           ( 1 + ( N - 1 )*abs( INCX ) ).
!>           Before entry, the incremented array ZX must contain the n
!>           element vector cx. On exit, ZX is overwritten by the updated
!>           vector cx.
!> \endverbatim
!>
!> \param[in] INCX
!> \verbatim
!>          INCX is INTEGER
!>           On entry, INCX specifies the increment for the elements of
!>           ZX. INCX must not be zero.
!> \endverbatim
!>
!> \param[in,out] ZY
!> \verbatim
!>          ZY is COMPLEX*16 array, dimension at least
!>           ( 1 + ( N - 1 )*abs( INCY ) ).
!>           Before entry, the incremented array ZY must contain the n
!>           element vector cy. On exit, ZY is overwritten by the updated
!>           vector cy.
!> \endverbatim
!>
!> \param[in] INCY
!> \verbatim
!>          INCY is INTEGER
!>           On entry, INCY specifies the increment for the elements of
!>           ZY. INCY must not be zero.
!> \endverbatim
!>
!> \param[in] C
!> \verbatim
!>          C is DOUBLE PRECISION
!>           On entry, C specifies the cosine, cos.
!> \endverbatim
!>
!> \param[in] S
!> \verbatim
!>          S is DOUBLE PRECISION
!>           On entry, S specifies the sine, sin.
!> \endverbatim
!
!  Authors:
!  ========
!
!> \author Univ. of Tennessee
!> \author Univ. of California Berkeley
!> \author Univ. of Colorado Denver
!> \author NAG Ltd.
!
!> \date December 2016
!
!> \ingroup complex16_blas_level1
!
!  =====================================================================
!
!  -- Reference BLAS level1 routine (version 3.7.0) --
!  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
!  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
!     December 2016
!
!     .. Scalar Arguments ..
!     ..
!     .. Array Arguments ..
!     ..
!
! =====================================================================
!
!     .. Local Scalars ..
!     ..
!     .. Executable Statements ..
!
!
!        code for both increments equal to 1
!
!
!        code for unequal increments or equal increments not equal
!          to 1
!
! END
use M_blas, only : zdrot_=>ZDROT
implicit none
      INTEGER            INCX, INCY, N
      DOUBLE PRECISION   C, S
      COMPLEX*16         ZX( * ), ZY( * )
    call ZDROT_( N, ZX, INCX, ZY, INCY, C, S )
end subroutine ZDROT

subroutine ZDSCAL(N,DA,ZX,INCX)
! COMMENT --file zdscal.3m_blas.man
!> \brief \b ZDSCAL
!
!  =========== DOCUMENTATION ===========
!
! Online html documentation available at
!            http://www.netlib.org/lapack/explore-html/
!
!  Definition:
!  ===========
!
!       SUBROUTINE ZDSCAL(N,DA,ZX,INCX)
!
!       .. Scalar Arguments ..
!       DOUBLE PRECISION DA
!       INTEGER INCX,N
!       ..
!       .. Array Arguments ..
!       COMPLEX*16 ZX(*)
!       ..
!
!
!> \par Purpose:
!  =============
!>
!> \verbatim
!>
!>    ZDSCAL scales a vector by a constant.
!> \endverbatim
!
!  Arguments:
!  ==========
!
!> \param[in] N
!> \verbatim
!>          N is INTEGER
!>         number of elements in input vector(s)
!> \endverbatim
!>
!> \param[in] DA
!> \verbatim
!>          DA is DOUBLE PRECISION
!>           On entry, DA specifies the scalar alpha.
!> \endverbatim
!>
!> \param[in,out] ZX
!> \verbatim
!>          ZX is COMPLEX*16 array, dimension ( 1 + ( N - 1 )*abs( INCX ) )
!> \endverbatim
!>
!> \param[in] INCX
!> \verbatim
!>          INCX is INTEGER
!>         storage spacing between elements of ZX
!> \endverbatim
!
!  Authors:
!  ========
!
!> \author Univ. of Tennessee
!> \author Univ. of California Berkeley
!> \author Univ. of Colorado Denver
!> \author NAG Ltd.
!
!> \date November 2017
!
!> \ingroup complex16_blas_level1
!
!> \par Further Details:
!  =====================
!>
!> \verbatim
!>
!>     jack dongarra, 3/11/78.
!>     modified 3/93 to return if incx .le. 0.
!>     modified 12/3/93, array(1) declarations changed to array(*)
!> \endverbatim
!>
!  =====================================================================
!
!  -- Reference BLAS level1 routine (version 3.8.0) --
!  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
!  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
!     November 2017
!
!     .. Scalar Arguments ..
!     ..
!     .. Array Arguments ..
!     ..
!
!  =====================================================================
!
!     .. Local Scalars ..
!     ..
!     .. Intrinsic Functions ..
!     ..
!
!        code for increment equal to 1
!
!
!        code for increment not equal to 1
!
! END
use M_blas, only : zdscal_=>ZDSCAL
implicit none
      DOUBLE PRECISION DA
      INTEGER INCX,N
      COMPLEX*16 ZX(*)
    call ZDSCAL_(N,DA,ZX,INCX)
end subroutine ZDSCAL

subroutine ZGBMV(TRANS,M,N,KL,KU,ALPHA,A,LDA,X,INCX,BETA,Y,INCY)
! COMMENT --file zgbmv.3m_blas.man
!> \brief \b ZGBMV
!
!  =========== DOCUMENTATION ===========
!
! Online html documentation available at
!            http://www.netlib.org/lapack/explore-html/
!
!  Definition:
!  ===========
!
!       SUBROUTINE ZGBMV(TRANS,M,N,KL,KU,ALPHA,A,LDA,X,INCX,BETA,Y,INCY)
!
!       .. Scalar Arguments ..
!       COMPLEX*16 ALPHA,BETA
!       INTEGER INCX,INCY,KL,KU,LDA,M,N
!       CHARACTER TRANS
!       ..
!       .. Array Arguments ..
!       COMPLEX*16 A(LDA,*),X(*),Y(*)
!       ..
!
!
!> \par Purpose:
!  =============
!>
!> \verbatim
!>
!> ZGBMV  performs one of the matrix-vector operations
!>
!>    y := alpha*A*x + beta*y,   or   y := alpha*A**T*x + beta*y,   or
!>
!>    y := alpha*A**H*x + beta*y,
!>
!> where alpha and beta are scalars, x and y are vectors and A is an
!> m by n band matrix, with kl sub-diagonals and ku super-diagonals.
!> \endverbatim
!
!  Arguments:
!  ==========
!
!> \param[in] TRANS
!> \verbatim
!>          TRANS is CHARACTER*1
!>           On entry, TRANS specifies the operation to be performed as
!>           follows:
!>
!>              TRANS = 'N' or 'n'   y := alpha*A*x + beta*y.
!>
!>              TRANS = 'T' or 't'   y := alpha*A**T*x + beta*y.
!>
!>              TRANS = 'C' or 'c'   y := alpha*A**H*x + beta*y.
!> \endverbatim
!>
!> \param[in] M
!> \verbatim
!>          M is INTEGER
!>           On entry, M specifies the number of rows of the matrix A.
!>           M must be at least zero.
!> \endverbatim
!>
!> \param[in] N
!> \verbatim
!>          N is INTEGER
!>           On entry, N specifies the number of columns of the matrix A.
!>           N must be at least zero.
!> \endverbatim
!>
!> \param[in] KL
!> \verbatim
!>          KL is INTEGER
!>           On entry, KL specifies the number of sub-diagonals of the
!>           matrix A. KL must satisfy  0 .le. KL.
!> \endverbatim
!>
!> \param[in] KU
!> \verbatim
!>          KU is INTEGER
!>           On entry, KU specifies the number of super-diagonals of the
!>           matrix A. KU must satisfy  0 .le. KU.
!> \endverbatim
!>
!> \param[in] ALPHA
!> \verbatim
!>          ALPHA is COMPLEX*16
!>           On entry, ALPHA specifies the scalar alpha.
!> \endverbatim
!>
!> \param[in] A
!> \verbatim
!>          A is COMPLEX*16 array, dimension ( LDA, N )
!>           Before entry, the leading ( kl + ku + 1 ) by n part of the
!>           array A must contain the matrix of coefficients, supplied
!>           column by column, with the leading diagonal of the matrix in
!>           row ( ku + 1 ) of the array, the first super-diagonal
!>           starting at position 2 in row ku, the first sub-diagonal
!>           starting at position 1 in row ( ku + 2 ), and so on.
!>           Elements in the array A that do not correspond to elements
!>           in the band matrix (such as the top left ku by ku triangle)
!>           are not referenced.
!>           The following program segment will transfer a band matrix
!>           from conventional full matrix storage to band storage:
!>
!>                 DO 20, J = 1, N
!>                    K = KU + 1 - J
!>                    DO 10, I = MAX( 1, J - KU ), MIN( M, J + KL )
!>                       A( K + I, J ) = matrix( I, J )
!>              10    CONTINUE
!>              20 CONTINUE
!> \endverbatim
!>
!> \param[in] LDA
!> \verbatim
!>          LDA is INTEGER
!>           On entry, LDA specifies the first dimension of A as declared
!>           in the calling (sub) program. LDA must be at least
!>           ( kl + ku + 1 ).
!> \endverbatim
!>
!> \param[in] X
!> \verbatim
!>          X is COMPLEX*16 array, dimension at least
!>           ( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n'
!>           and at least
!>           ( 1 + ( m - 1 )*abs( INCX ) ) otherwise.
!>           Before entry, the incremented array X must contain the
!>           vector x.
!> \endverbatim
!>
!> \param[in] INCX
!> \verbatim
!>          INCX is INTEGER
!>           On entry, INCX specifies the increment for the elements of
!>           X. INCX must not be zero.
!> \endverbatim
!>
!> \param[in] BETA
!> \verbatim
!>          BETA is COMPLEX*16
!>           On entry, BETA specifies the scalar beta. When BETA is
!>           supplied as zero then Y need not be set on input.
!> \endverbatim
!>
!> \param[in,out] Y
!> \verbatim
!>          Y is COMPLEX*16 array, dimension at least
!>           ( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n'
!>           and at least
!>           ( 1 + ( n - 1 )*abs( INCY ) ) otherwise.
!>           Before entry, the incremented array Y must contain the
!>           vector y. On exit, Y is overwritten by the updated vector y.
!> \endverbatim
!>
!> \param[in] INCY
!> \verbatim
!>          INCY is INTEGER
!>           On entry, INCY specifies the increment for the elements of
!>           Y. INCY must not be zero.
!> \endverbatim
!
!  Authors:
!  ========
!
!> \author Univ. of Tennessee
!> \author Univ. of California Berkeley
!> \author Univ. of Colorado Denver
!> \author NAG Ltd.
!
!> \date December 2016
!
!> \ingroup complex16_blas_level2
!
!> \par Further Details:
!  =====================
!>
!> \verbatim
!>
!>  Level 2 Blas routine.
!>  The vector and matrix arguments are not referenced when N = 0, or M = 0
!>
!>  -- Written on 22-October-1986.
!>     Jack Dongarra, Argonne National Lab.
!>     Jeremy Du Croz, Nag Central Office.
!>     Sven Hammarling, Nag Central Office.
!>     Richard Hanson, Sandia National Labs.
!> \endverbatim
!>
!  =====================================================================
!
!  -- Reference BLAS level2 routine (version 3.7.0) --
!  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
!  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
!     December 2016
!
!     .. Scalar Arguments ..
!     ..
!     .. Array Arguments ..
!     ..
!
!  =====================================================================
!
!     .. Parameters ..
!     ..
!     .. Local Scalars ..
!     ..
!     .. External Functions ..
!     ..
!     .. External Subroutines ..
!     ..
!     .. Intrinsic Functions ..
!     ..
!
!     Test the input parameters.
!
!
!     Quick return if possible.
!
!
!
!     Set  LENX  and  LENY, the lengths of the vectors x and y, and set
!     up the start points in  X  and  Y.
!
!
!     Start the operations. In this version the elements of A are
!     accessed sequentially with one pass through the band part of A.
!
!     First form  y := beta*y.
!
!
!        Form  y := alpha*A*x + y.
!
!
!        Form  y := alpha*A**T*x + y  or  y := alpha*A**H*x + y.
!
!
!
!     End of ZGBMV .
!
! END
use M_blas, only : zgbmv_=>ZGBMV
implicit none
      COMPLEX*16 ALPHA,BETA
      INTEGER INCX,INCY,KL,KU,LDA,M,N
      CHARACTER TRANS
      COMPLEX*16 A(LDA,*),X(*),Y(*)
    call ZGBMV_(TRANS,M,N,KL,KU,ALPHA,A,LDA,X,INCX,BETA,Y,INCY)
end subroutine ZGBMV

subroutine ZGEMM(TRANSA,TRANSB,M,N,K,ALPHA,A,LDA,B,LDB,BETA,C,LDC)
! COMMENT --file zgemm.3m_blas.man
!> \brief \b ZGEMM
!
!  =========== DOCUMENTATION ===========
!
! Online html documentation available at
!            http://www.netlib.org/lapack/explore-html/
!
!  Definition:
!  ===========
!
!       SUBROUTINE ZGEMM(TRANSA,TRANSB,M,N,K,ALPHA,A,LDA,B,LDB,BETA,C,LDC)
!
!       .. Scalar Arguments ..
!       COMPLEX*16 ALPHA,BETA
!       INTEGER K,LDA,LDB,LDC,M,N
!       CHARACTER TRANSA,TRANSB
!       ..
!       .. Array Arguments ..
!       COMPLEX*16 A(LDA,*),B(LDB,*),C(LDC,*)
!       ..
!
!
!> \par Purpose:
!  =============
!>
!> \verbatim
!>
!> ZGEMM  performs one of the matrix-matrix operations
!>
!>    C := alpha*op( A )*op( B ) + beta*C,
!>
!> where  op( X ) is one of
!>
!>    op( X ) = X   or   op( X ) = X**T   or   op( X ) = X**H,
!>
!> alpha and beta are scalars, and A, B and C are matrices, with op( A )
!> an m by k matrix,  op( B )  a  k by n matrix and  C an m by n matrix.
!> \endverbatim
!
!  Arguments:
!  ==========
!
!> \param[in] TRANSA
!> \verbatim
!>          TRANSA is CHARACTER*1
!>           On entry, TRANSA specifies the form of op( A ) to be used in
!>           the matrix multiplication as follows:
!>
!>              TRANSA = 'N' or 'n',  op( A ) = A.
!>
!>              TRANSA = 'T' or 't',  op( A ) = A**T.
!>
!>              TRANSA = 'C' or 'c',  op( A ) = A**H.
!> \endverbatim
!>
!> \param[in] TRANSB
!> \verbatim
!>          TRANSB is CHARACTER*1
!>           On entry, TRANSB specifies the form of op( B ) to be used in
!>           the matrix multiplication as follows:
!>
!>              TRANSB = 'N' or 'n',  op( B ) = B.
!>
!>              TRANSB = 'T' or 't',  op( B ) = B**T.
!>
!>              TRANSB = 'C' or 'c',  op( B ) = B**H.
!> \endverbatim
!>
!> \param[in] M
!> \verbatim
!>          M is INTEGER
!>           On entry,  M  specifies  the number  of rows  of the  matrix
!>           op( A )  and of the  matrix  C.  M  must  be at least  zero.
!> \endverbatim
!>
!> \param[in] N
!> \verbatim
!>          N is INTEGER
!>           On entry,  N  specifies the number  of columns of the matrix
!>           op( B ) and the number of columns of the matrix C. N must be
!>           at least zero.
!> \endverbatim
!>
!> \param[in] K
!> \verbatim
!>          K is INTEGER
!>           On entry,  K  specifies  the number of columns of the matrix
!>           op( A ) and the number of rows of the matrix op( B ). K must
!>           be at least  zero.
!> \endverbatim
!>
!> \param[in] ALPHA
!> \verbatim
!>          ALPHA is COMPLEX*16
!>           On entry, ALPHA specifies the scalar alpha.
!> \endverbatim
!>
!> \param[in] A
!> \verbatim
!>          A is COMPLEX*16 array, dimension ( LDA, ka ), where ka is
!>           k  when  TRANSA = 'N' or 'n',  and is  m  otherwise.
!>           Before entry with  TRANSA = 'N' or 'n',  the leading  m by k
!>           part of the array  A  must contain the matrix  A,  otherwise
!>           the leading  k by m  part of the array  A  must contain  the
!>           matrix A.
!> \endverbatim
!>
!> \param[in] LDA
!> \verbatim
!>          LDA is INTEGER
!>           On entry, LDA specifies the first dimension of A as declared
!>           in the calling (sub) program. When  TRANSA = 'N' or 'n' then
!>           LDA must be at least  max( 1, m ), otherwise  LDA must be at
!>           least  max( 1, k ).
!> \endverbatim
!>
!> \param[in] B
!> \verbatim
!>          B is COMPLEX*16 array, dimension ( LDB, kb ), where kb is
!>           n  when  TRANSB = 'N' or 'n',  and is  k  otherwise.
!>           Before entry with  TRANSB = 'N' or 'n',  the leading  k by n
!>           part of the array  B  must contain the matrix  B,  otherwise
!>           the leading  n by k  part of the array  B  must contain  the
!>           matrix B.
!> \endverbatim
!>
!> \param[in] LDB
!> \verbatim
!>          LDB is INTEGER
!>           On entry, LDB specifies the first dimension of B as declared
!>           in the calling (sub) program. When  TRANSB = 'N' or 'n' then
!>           LDB must be at least  max( 1, k ), otherwise  LDB must be at
!>           least  max( 1, n ).
!> \endverbatim
!>
!> \param[in] BETA
!> \verbatim
!>          BETA is COMPLEX*16
!>           On entry,  BETA  specifies the scalar  beta.  When  BETA  is
!>           supplied as zero then C need not be set on input.
!> \endverbatim
!>
!> \param[in,out] C
!> \verbatim
!>          C is COMPLEX*16 array, dimension ( LDC, N )
!>           Before entry, the leading  m by n  part of the array  C must
!>           contain the matrix  C,  except when  beta  is zero, in which
!>           case C need not be set on entry.
!>           On exit, the array  C  is overwritten by the  m by n  matrix
!>           ( alpha*op( A )*op( B ) + beta*C ).
!> \endverbatim
!>
!> \param[in] LDC
!> \verbatim
!>          LDC is INTEGER
!>           On entry, LDC specifies the first dimension of C as declared
!>           in  the  calling  (sub)  program.   LDC  must  be  at  least
!>           max( 1, m ).
!> \endverbatim
!
!  Authors:
!  ========
!
!> \author Univ. of Tennessee
!> \author Univ. of California Berkeley
!> \author Univ. of Colorado Denver
!> \author NAG Ltd.
!
!> \date December 2016
!
!> \ingroup complex16_blas_level3
!
!> \par Further Details:
!  =====================
!>
!> \verbatim
!>
!>  Level 3 Blas routine.
!>
!>  -- Written on 8-February-1989.
!>     Jack Dongarra, Argonne National Laboratory.
!>     Iain Duff, AERE Harwell.
!>     Jeremy Du Croz, Numerical Algorithms Group Ltd.
!>     Sven Hammarling, Numerical Algorithms Group Ltd.
!> \endverbatim
!>
!  =====================================================================
!
!  -- Reference BLAS level3 routine (version 3.7.0) --
!  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
!  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
!     December 2016
!
!     .. Scalar Arguments ..
!     ..
!     .. Array Arguments ..
!     ..
!
!  =====================================================================
!
!     .. External Functions ..
!     ..
!     .. External Subroutines ..
!     ..
!     .. Intrinsic Functions ..
!     ..
!     .. Local Scalars ..
!     ..
!     .. Parameters ..
!     ..
!
!     Set  NOTA  and  NOTB  as  true if  A  and  B  respectively are not
!     conjugated or transposed, set  CONJA and CONJB  as true if  A  and
!     B  respectively are to be  transposed but  not conjugated  and set
!     NROWA and NROWB  as the number of rows  of  A  and  B  respectively.
!
!
!     Test the input parameters.
!
!
!     Quick return if possible.
!
!
!     And when  alpha.eq.zero.
!
!
!     Start the operations.
!
!
!           Form  C := alpha*A*B + beta*C.
!
!
!           Form  C := alpha*A**H*B + beta*C.
!
!
!           Form  C := alpha*A**T*B + beta*C
!
!
!           Form  C := alpha*A*B**H + beta*C.
!
!
!           Form  C := alpha*A*B**T + beta*C
!
!
!           Form  C := alpha*A**H*B**H + beta*C.
!
!
!           Form  C := alpha*A**H*B**T + beta*C
!
!
!           Form  C := alpha*A**T*B**H + beta*C
!
!
!           Form  C := alpha*A**T*B**T + beta*C
!
!
!
!     End of ZGEMM .
!
! END
use M_blas, only : zgemm_=>ZGEMM
implicit none
      COMPLEX*16 ALPHA,BETA
      INTEGER K,LDA,LDB,LDC,M,N
      CHARACTER TRANSA,TRANSB
      COMPLEX*16 A(LDA,*),B(LDB,*),C(LDC,*)
    call ZGEMM_(TRANSA,TRANSB,M,N,K,ALPHA,A,LDA,B,LDB,BETA,C,LDC)
end subroutine ZGEMM

subroutine ZGEMV(TRANS,M,N,ALPHA,A,LDA,X,INCX,BETA,Y,INCY)
! COMMENT --file zgemv.3m_blas.man
!> \brief \b ZGEMV
!
!  =========== DOCUMENTATION ===========
!
! Online html documentation available at
!            http://www.netlib.org/lapack/explore-html/
!
!  Definition:
!  ===========
!
!       SUBROUTINE ZGEMV(TRANS,M,N,ALPHA,A,LDA,X,INCX,BETA,Y,INCY)
!
!       .. Scalar Arguments ..
!       COMPLEX*16 ALPHA,BETA
!       INTEGER INCX,INCY,LDA,M,N
!       CHARACTER TRANS
!       ..
!       .. Array Arguments ..
!       COMPLEX*16 A(LDA,*),X(*),Y(*)
!       ..
!
!
!> \par Purpose:
!  =============
!>
!> \verbatim
!>
!> ZGEMV  performs one of the matrix-vector operations
!>
!>    y := alpha*A*x + beta*y,   or   y := alpha*A**T*x + beta*y,   or
!>
!>    y := alpha*A**H*x + beta*y,
!>
!> where alpha and beta are scalars, x and y are vectors and A is an
!> m by n matrix.
!> \endverbatim
!
!  Arguments:
!  ==========
!
!> \param[in] TRANS
!> \verbatim
!>          TRANS is CHARACTER*1
!>           On entry, TRANS specifies the operation to be performed as
!>           follows:
!>
!>              TRANS = 'N' or 'n'   y := alpha*A*x + beta*y.
!>
!>              TRANS = 'T' or 't'   y := alpha*A**T*x + beta*y.
!>
!>              TRANS = 'C' or 'c'   y := alpha*A**H*x + beta*y.
!> \endverbatim
!>
!> \param[in] M
!> \verbatim
!>          M is INTEGER
!>           On entry, M specifies the number of rows of the matrix A.
!>           M must be at least zero.
!> \endverbatim
!>
!> \param[in] N
!> \verbatim
!>          N is INTEGER
!>           On entry, N specifies the number of columns of the matrix A.
!>           N must be at least zero.
!> \endverbatim
!>
!> \param[in] ALPHA
!> \verbatim
!>          ALPHA is COMPLEX*16
!>           On entry, ALPHA specifies the scalar alpha.
!> \endverbatim
!>
!> \param[in] A
!> \verbatim
!>          A is COMPLEX*16 array, dimension ( LDA, N )
!>           Before entry, the leading m by n part of the array A must
!>           contain the matrix of coefficients.
!> \endverbatim
!>
!> \param[in] LDA
!> \verbatim
!>          LDA is INTEGER
!>           On entry, LDA specifies the first dimension of A as declared
!>           in the calling (sub) program. LDA must be at least
!>           max( 1, m ).
!> \endverbatim
!>
!> \param[in] X
!> \verbatim
!>          X is COMPLEX*16 array, dimension at least
!>           ( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n'
!>           and at least
!>           ( 1 + ( m - 1 )*abs( INCX ) ) otherwise.
!>           Before entry, the incremented array X must contain the
!>           vector x.
!> \endverbatim
!>
!> \param[in] INCX
!> \verbatim
!>          INCX is INTEGER
!>           On entry, INCX specifies the increment for the elements of
!>           X. INCX must not be zero.
!> \endverbatim
!>
!> \param[in] BETA
!> \verbatim
!>          BETA is COMPLEX*16
!>           On entry, BETA specifies the scalar beta. When BETA is
!>           supplied as zero then Y need not be set on input.
!> \endverbatim
!>
!> \param[in,out] Y
!> \verbatim
!>          Y is COMPLEX*16 array, dimension at least
!>           ( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n'
!>           and at least
!>           ( 1 + ( n - 1 )*abs( INCY ) ) otherwise.
!>           Before entry with BETA non-zero, the incremented array Y
!>           must contain the vector y. On exit, Y is overwritten by the
!>           updated vector y.
!> \endverbatim
!>
!> \param[in] INCY
!> \verbatim
!>          INCY is INTEGER
!>           On entry, INCY specifies the increment for the elements of
!>           Y. INCY must not be zero.
!> \endverbatim
!
!  Authors:
!  ========
!
!> \author Univ. of Tennessee
!> \author Univ. of California Berkeley
!> \author Univ. of Colorado Denver
!> \author NAG Ltd.
!
!> \date December 2016
!
!> \ingroup complex16_blas_level2
!
!> \par Further Details:
!  =====================
!>
!> \verbatim
!>
!>  Level 2 Blas routine.
!>  The vector and matrix arguments are not referenced when N = 0, or M = 0
!>
!>  -- Written on 22-October-1986.
!>     Jack Dongarra, Argonne National Lab.
!>     Jeremy Du Croz, Nag Central Office.
!>     Sven Hammarling, Nag Central Office.
!>     Richard Hanson, Sandia National Labs.
!> \endverbatim
!>
!  =====================================================================
!
!  -- Reference BLAS level2 routine (version 3.7.0) --
!  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
!  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
!     December 2016
!
!     .. Scalar Arguments ..
!     ..
!     .. Array Arguments ..
!     ..
!
!  =====================================================================
!
!     .. Parameters ..
!     ..
!     .. Local Scalars ..
!     ..
!     .. External Functions ..
!     ..
!     .. External Subroutines ..
!     ..
!     .. Intrinsic Functions ..
!     ..
!
!     Test the input parameters.
!
!
!     Quick return if possible.
!
!
!
!     Set  LENX  and  LENY, the lengths of the vectors x and y, and set
!     up the start points in  X  and  Y.
!
!
!     Start the operations. In this version the elements of A are
!     accessed sequentially with one pass through A.
!
!     First form  y := beta*y.
!
!
!        Form  y := alpha*A*x + y.
!
!
!        Form  y := alpha*A**T*x + y  or  y := alpha*A**H*x + y.
!
!
!
!     End of ZGEMV .
!
! END
use M_blas, only : zgemv_=>ZGEMV
implicit none
      COMPLEX*16 ALPHA,BETA
      INTEGER INCX,INCY,LDA,M,N
      CHARACTER TRANS
      COMPLEX*16 A(LDA,*),X(*),Y(*)
    call ZGEMV_(TRANS,M,N,ALPHA,A,LDA,X,INCX,BETA,Y,INCY)
end subroutine ZGEMV

subroutine ZGERC(M,N,ALPHA,X,INCX,Y,INCY,A,LDA)
! COMMENT --file zgerc.3m_blas.man
!> \brief \b ZGERC
!
!  =========== DOCUMENTATION ===========
!
! Online html documentation available at
!            http://www.netlib.org/lapack/explore-html/
!
!  Definition:
!  ===========
!
!       SUBROUTINE ZGERC(M,N,ALPHA,X,INCX,Y,INCY,A,LDA)
!
!       .. Scalar Arguments ..
!       COMPLEX*16 ALPHA
!       INTEGER INCX,INCY,LDA,M,N
!       ..
!       .. Array Arguments ..
!       COMPLEX*16 A(LDA,*),X(*),Y(*)
!       ..
!
!
!> \par Purpose:
!  =============
!>
!> \verbatim
!>
!> ZGERC  performs the rank 1 operation
!>
!>    A := alpha*x*y**H + A,
!>
!> where alpha is a scalar, x is an m element vector, y is an n element
!> vector and A is an m by n matrix.
!> \endverbatim
!
!  Arguments:
!  ==========
!
!> \param[in] M
!> \verbatim
!>          M is INTEGER
!>           On entry, M specifies the number of rows of the matrix A.
!>           M must be at least zero.
!> \endverbatim
!>
!> \param[in] N
!> \verbatim
!>          N is INTEGER
!>           On entry, N specifies the number of columns of the matrix A.
!>           N must be at least zero.
!> \endverbatim
!>
!> \param[in] ALPHA
!> \verbatim
!>          ALPHA is COMPLEX*16
!>           On entry, ALPHA specifies the scalar alpha.
!> \endverbatim
!>
!> \param[in] X
!> \verbatim
!>          X is COMPLEX*16 array, dimension at least
!>           ( 1 + ( m - 1 )*abs( INCX ) ).
!>           Before entry, the incremented array X must contain the m
!>           element vector x.
!> \endverbatim
!>
!> \param[in] INCX
!> \verbatim
!>          INCX is INTEGER
!>           On entry, INCX specifies the increment for the elements of
!>           X. INCX must not be zero.
!> \endverbatim
!>
!> \param[in] Y
!> \verbatim
!>          Y is COMPLEX*16 array, dimension at least
!>           ( 1 + ( n - 1 )*abs( INCY ) ).
!>           Before entry, the incremented array Y must contain the n
!>           element vector y.
!> \endverbatim
!>
!> \param[in] INCY
!> \verbatim
!>          INCY is INTEGER
!>           On entry, INCY specifies the increment for the elements of
!>           Y. INCY must not be zero.
!> \endverbatim
!>
!> \param[in,out] A
!> \verbatim
!>          A is COMPLEX*16 array, dimension ( LDA, N )
!>           Before entry, the leading m by n part of the array A must
!>           contain the matrix of coefficients. On exit, A is
!>           overwritten by the updated matrix.
!> \endverbatim
!>
!> \param[in] LDA
!> \verbatim
!>          LDA is INTEGER
!>           On entry, LDA specifies the first dimension of A as declared
!>           in the calling (sub) program. LDA must be at least
!>           max( 1, m ).
!> \endverbatim
!
!  Authors:
!  ========
!
!> \author Univ. of Tennessee
!> \author Univ. of California Berkeley
!> \author Univ. of Colorado Denver
!> \author NAG Ltd.
!
!> \date December 2016
!
!> \ingroup complex16_blas_level2
!
!> \par Further Details:
!  =====================
!>
!> \verbatim
!>
!>  Level 2 Blas routine.
!>
!>  -- Written on 22-October-1986.
!>     Jack Dongarra, Argonne National Lab.
!>     Jeremy Du Croz, Nag Central Office.
!>     Sven Hammarling, Nag Central Office.
!>     Richard Hanson, Sandia National Labs.
!> \endverbatim
!>
!  =====================================================================
!
!  -- Reference BLAS level2 routine (version 3.7.0) --
!  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
!  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
!     December 2016
!
!     .. Scalar Arguments ..
!     ..
!     .. Array Arguments ..
!     ..
!
!  =====================================================================
!
!     .. Parameters ..
!     ..
!     .. Local Scalars ..
!     ..
!     .. External Subroutines ..
!     ..
!     .. Intrinsic Functions ..
!     ..
!
!     Test the input parameters.
!
!
!     Quick return if possible.
!
!
!     Start the operations. In this version the elements of A are
!     accessed sequentially with one pass through A.
!
!
!
!     End of ZGERC .
!
! END
use M_blas, only : zgerc_=>ZGERC
implicit none
      COMPLEX*16 ALPHA
      INTEGER INCX,INCY,LDA,M,N
      COMPLEX*16 A(LDA,*),X(*),Y(*)
    call ZGERC_(M,N,ALPHA,X,INCX,Y,INCY,A,LDA)
end subroutine ZGERC

subroutine ZGERU(M,N,ALPHA,X,INCX,Y,INCY,A,LDA)
! COMMENT --file zgeru.3m_blas.man
!> \brief \b ZGERU
!
!  =========== DOCUMENTATION ===========
!
! Online html documentation available at
!            http://www.netlib.org/lapack/explore-html/
!
!  Definition:
!  ===========
!
!       SUBROUTINE ZGERU(M,N,ALPHA,X,INCX,Y,INCY,A,LDA)
!
!       .. Scalar Arguments ..
!       COMPLEX*16 ALPHA
!       INTEGER INCX,INCY,LDA,M,N
!       ..
!       .. Array Arguments ..
!       COMPLEX*16 A(LDA,*),X(*),Y(*)
!       ..
!
!
!> \par Purpose:
!  =============
!>
!> \verbatim
!>
!> ZGERU  performs the rank 1 operation
!>
!>    A := alpha*x*y**T + A,
!>
!> where alpha is a scalar, x is an m element vector, y is an n element
!> vector and A is an m by n matrix.
!> \endverbatim
!
!  Arguments:
!  ==========
!
!> \param[in] M
!> \verbatim
!>          M is INTEGER
!>           On entry, M specifies the number of rows of the matrix A.
!>           M must be at least zero.
!> \endverbatim
!>
!> \param[in] N
!> \verbatim
!>          N is INTEGER
!>           On entry, N specifies the number of columns of the matrix A.
!>           N must be at least zero.
!> \endverbatim
!>
!> \param[in] ALPHA
!> \verbatim
!>          ALPHA is COMPLEX*16
!>           On entry, ALPHA specifies the scalar alpha.
!> \endverbatim
!>
!> \param[in] X
!> \verbatim
!>          X is COMPLEX*16 array, dimension at least
!>           ( 1 + ( m - 1 )*abs( INCX ) ).
!>           Before entry, the incremented array X must contain the m
!>           element vector x.
!> \endverbatim
!>
!> \param[in] INCX
!> \verbatim
!>          INCX is INTEGER
!>           On entry, INCX specifies the increment for the elements of
!>           X. INCX must not be zero.
!> \endverbatim
!>
!> \param[in] Y
!> \verbatim
!>          Y is COMPLEX*16 array, dimension at least
!>           ( 1 + ( n - 1 )*abs( INCY ) ).
!>           Before entry, the incremented array Y must contain the n
!>           element vector y.
!> \endverbatim
!>
!> \param[in] INCY
!> \verbatim
!>          INCY is INTEGER
!>           On entry, INCY specifies the increment for the elements of
!>           Y. INCY must not be zero.
!> \endverbatim
!>
!> \param[in,out] A
!> \verbatim
!>          A is COMPLEX*16 array, dimension ( LDA, N )
!>           Before entry, the leading m by n part of the array A must
!>           contain the matrix of coefficients. On exit, A is
!>           overwritten by the updated matrix.
!> \endverbatim
!>
!> \param[in] LDA
!> \verbatim
!>          LDA is INTEGER
!>           On entry, LDA specifies the first dimension of A as declared
!>           in the calling (sub) program. LDA must be at least
!>           max( 1, m ).
!> \endverbatim
!
!  Authors:
!  ========
!
!> \author Univ. of Tennessee
!> \author Univ. of California Berkeley
!> \author Univ. of Colorado Denver
!> \author NAG Ltd.
!
!> \date December 2016
!
!> \ingroup complex16_blas_level2
!
!> \par Further Details:
!  =====================
!>
!> \verbatim
!>
!>  Level 2 Blas routine.
!>
!>  -- Written on 22-October-1986.
!>     Jack Dongarra, Argonne National Lab.
!>     Jeremy Du Croz, Nag Central Office.
!>     Sven Hammarling, Nag Central Office.
!>     Richard Hanson, Sandia National Labs.
!> \endverbatim
!>
!  =====================================================================
!
!  -- Reference BLAS level2 routine (version 3.7.0) --
!  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
!  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
!     December 2016
!
!     .. Scalar Arguments ..
!     ..
!     .. Array Arguments ..
!     ..
!
!  =====================================================================
!
!     .. Parameters ..
!     ..
!     .. Local Scalars ..
!     ..
!     .. External Subroutines ..
!     ..
!     .. Intrinsic Functions ..
!     ..
!
!     Test the input parameters.
!
!
!     Quick return if possible.
!
!
!     Start the operations. In this version the elements of A are
!     accessed sequentially with one pass through A.
!
!
!
!     End of ZGERU .
!
! END
use M_blas, only : zgeru_=>ZGERU
implicit none
      COMPLEX*16 ALPHA
      INTEGER INCX,INCY,LDA,M,N
      COMPLEX*16 A(LDA,*),X(*),Y(*)
    call ZGERU_(M,N,ALPHA,X,INCX,Y,INCY,A,LDA)
end subroutine ZGERU

subroutine ZHBMV(UPLO,N,K,ALPHA,A,LDA,X,INCX,BETA,Y,INCY)
! COMMENT --file zhbmv.3m_blas.man
!> \brief \b ZHBMV
!
!  =========== DOCUMENTATION ===========
!
! Online html documentation available at
!            http://www.netlib.org/lapack/explore-html/
!
!  Definition:
!  ===========
!
!       SUBROUTINE ZHBMV(UPLO,N,K,ALPHA,A,LDA,X,INCX,BETA,Y,INCY)
!
!       .. Scalar Arguments ..
!       COMPLEX*16 ALPHA,BETA
!       INTEGER INCX,INCY,K,LDA,N
!       CHARACTER UPLO
!       ..
!       .. Array Arguments ..
!       COMPLEX*16 A(LDA,*),X(*),Y(*)
!       ..
!
!
!> \par Purpose:
!  =============
!>
!> \verbatim
!>
!> ZHBMV  performs the matrix-vector  operation
!>
!>    y := alpha*A*x + beta*y,
!>
!> where alpha and beta are scalars, x and y are n element vectors and
!> A is an n by n hermitian band matrix, with k super-diagonals.
!> \endverbatim
!
!  Arguments:
!  ==========
!
!> \param[in] UPLO
!> \verbatim
!>          UPLO is CHARACTER*1
!>           On entry, UPLO specifies whether the upper or lower
!>           triangular part of the band matrix A is being supplied as
!>           follows:
!>
!>              UPLO = 'U' or 'u'   The upper triangular part of A is
!>                                  being supplied.
!>
!>              UPLO = 'L' or 'l'   The lower triangular part of A is
!>                                  being supplied.
!> \endverbatim
!>
!> \param[in] N
!> \verbatim
!>          N is INTEGER
!>           On entry, N specifies the order of the matrix A.
!>           N must be at least zero.
!> \endverbatim
!>
!> \param[in] K
!> \verbatim
!>          K is INTEGER
!>           On entry, K specifies the number of super-diagonals of the
!>           matrix A. K must satisfy  0 .le. K.
!> \endverbatim
!>
!> \param[in] ALPHA
!> \verbatim
!>          ALPHA is COMPLEX*16
!>           On entry, ALPHA specifies the scalar alpha.
!> \endverbatim
!>
!> \param[in] A
!> \verbatim
!>          A is COMPLEX*16 array, dimension ( LDA, N )
!>           Before entry with UPLO = 'U' or 'u', the leading ( k + 1 )
!>           by n part of the array A must contain the upper triangular
!>           band part of the hermitian matrix, supplied column by
!>           column, with the leading diagonal of the matrix in row
!>           ( k + 1 ) of the array, the first super-diagonal starting at
!>           position 2 in row k, and so on. The top left k by k triangle
!>           of the array A is not referenced.
!>           The following program segment will transfer the upper
!>           triangular part of a hermitian band matrix from conventional
!>           full matrix storage to band storage:
!>
!>                 DO 20, J = 1, N
!>                    M = K + 1 - J
!>                    DO 10, I = MAX( 1, J - K ), J
!>                       A( M + I, J ) = matrix( I, J )
!>              10    CONTINUE
!>              20 CONTINUE
!>
!>           Before entry with UPLO = 'L' or 'l', the leading ( k + 1 )
!>           by n part of the array A must contain the lower triangular
!>           band part of the hermitian matrix, supplied column by
!>           column, with the leading diagonal of the matrix in row 1 of
!>           the array, the first sub-diagonal starting at position 1 in
!>           row 2, and so on. The bottom right k by k triangle of the
!>           array A is not referenced.
!>           The following program segment will transfer the lower
!>           triangular part of a hermitian band matrix from conventional
!>           full matrix storage to band storage:
!>
!>                 DO 20, J = 1, N
!>                    M = 1 - J
!>                    DO 10, I = J, MIN( N, J + K )
!>                       A( M + I, J ) = matrix( I, J )
!>              10    CONTINUE
!>              20 CONTINUE
!>
!>           Note that the imaginary parts of the diagonal elements need
!>           not be set and are assumed to be zero.
!> \endverbatim
!>
!> \param[in] LDA
!> \verbatim
!>          LDA is INTEGER
!>           On entry, LDA specifies the first dimension of A as declared
!>           in the calling (sub) program. LDA must be at least
!>           ( k + 1 ).
!> \endverbatim
!>
!> \param[in] X
!> \verbatim
!>          X is COMPLEX*16 array, dimension at least
!>           ( 1 + ( n - 1 )*abs( INCX ) ).
!>           Before entry, the incremented array X must contain the
!>           vector x.
!> \endverbatim
!>
!> \param[in] INCX
!> \verbatim
!>          INCX is INTEGER
!>           On entry, INCX specifies the increment for the elements of
!>           X. INCX must not be zero.
!> \endverbatim
!>
!> \param[in] BETA
!> \verbatim
!>          BETA is COMPLEX*16
!>           On entry, BETA specifies the scalar beta.
!> \endverbatim
!>
!> \param[in,out] Y
!> \verbatim
!>          Y is COMPLEX*16 array, dimension at least
!>           ( 1 + ( n - 1 )*abs( INCY ) ).
!>           Before entry, the incremented array Y must contain the
!>           vector y. On exit, Y is overwritten by the updated vector y.
!> \endverbatim
!>
!> \param[in] INCY
!> \verbatim
!>          INCY is INTEGER
!>           On entry, INCY specifies the increment for the elements of
!>           Y. INCY must not be zero.
!> \endverbatim
!
!  Authors:
!  ========
!
!> \author Univ. of Tennessee
!> \author Univ. of California Berkeley
!> \author Univ. of Colorado Denver
!> \author NAG Ltd.
!
!> \date December 2016
!
!> \ingroup complex16_blas_level2
!
!> \par Further Details:
!  =====================
!>
!> \verbatim
!>
!>  Level 2 Blas routine.
!>  The vector and matrix arguments are not referenced when N = 0, or M = 0
!>
!>  -- Written on 22-October-1986.
!>     Jack Dongarra, Argonne National Lab.
!>     Jeremy Du Croz, Nag Central Office.
!>     Sven Hammarling, Nag Central Office.
!>     Richard Hanson, Sandia National Labs.
!> \endverbatim
!>
!  =====================================================================
!
!  -- Reference BLAS level2 routine (version 3.7.0) --
!  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
!  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
!     December 2016
!
!     .. Scalar Arguments ..
!     ..
!     .. Array Arguments ..
!     ..
!
!  =====================================================================
!
!     .. Parameters ..
!     ..
!     .. Local Scalars ..
!     ..
!     .. External Functions ..
!     ..
!     .. External Subroutines ..
!     ..
!     .. Intrinsic Functions ..
!     ..
!
!     Test the input parameters.
!
!
!     Quick return if possible.
!
!
!     Set up the start points in  X  and  Y.
!
!
!     Start the operations. In this version the elements of the array A
!     are accessed sequentially with one pass through A.
!
!     First form  y := beta*y.
!
!
!        Form  y  when upper triangle of A is stored.
!
!
!        Form  y  when lower triangle of A is stored.
!
!
!
!     End of ZHBMV .
!
! END
use M_blas, only : zhbmv_=>ZHBMV
implicit none
      COMPLEX*16 ALPHA,BETA
      INTEGER INCX,INCY,K,LDA,N
      CHARACTER UPLO
      COMPLEX*16 A(LDA,*),X(*),Y(*)
    call ZHBMV_(UPLO,N,K,ALPHA,A,LDA,X,INCX,BETA,Y,INCY)
end subroutine ZHBMV

subroutine ZHEMM(SIDE,UPLO,M,N,ALPHA,A,LDA,B,LDB,BETA,C,LDC)
! COMMENT --file zhemm.3m_blas.man
!> \brief \b ZHEMM
!
!  =========== DOCUMENTATION ===========
!
! Online html documentation available at
!            http://www.netlib.org/lapack/explore-html/
!
!  Definition:
!  ===========
!
!       SUBROUTINE ZHEMM(SIDE,UPLO,M,N,ALPHA,A,LDA,B,LDB,BETA,C,LDC)
!
!       .. Scalar Arguments ..
!       COMPLEX*16 ALPHA,BETA
!       INTEGER LDA,LDB,LDC,M,N
!       CHARACTER SIDE,UPLO
!       ..
!       .. Array Arguments ..
!       COMPLEX*16 A(LDA,*),B(LDB,*),C(LDC,*)
!       ..
!
!
!> \par Purpose:
!  =============
!>
!> \verbatim
!>
!> ZHEMM  performs one of the matrix-matrix operations
!>
!>    C := alpha*A*B + beta*C,
!>
!> or
!>
!>    C := alpha*B*A + beta*C,
!>
!> where alpha and beta are scalars, A is an hermitian matrix and  B and
!> C are m by n matrices.
!> \endverbatim
!
!  Arguments:
!  ==========
!
!> \param[in] SIDE
!> \verbatim
!>          SIDE is CHARACTER*1
!>           On entry,  SIDE  specifies whether  the  hermitian matrix  A
!>           appears on the  left or right  in the  operation as follows:
!>
!>              SIDE = 'L' or 'l'   C := alpha*A*B + beta*C,
!>
!>              SIDE = 'R' or 'r'   C := alpha*B*A + beta*C,
!> \endverbatim
!>
!> \param[in] UPLO
!> \verbatim
!>          UPLO is CHARACTER*1
!>           On  entry,   UPLO  specifies  whether  the  upper  or  lower
!>           triangular  part  of  the  hermitian  matrix   A  is  to  be
!>           referenced as follows:
!>
!>              UPLO = 'U' or 'u'   Only the upper triangular part of the
!>                                  hermitian matrix is to be referenced.
!>
!>              UPLO = 'L' or 'l'   Only the lower triangular part of the
!>                                  hermitian matrix is to be referenced.
!> \endverbatim
!>
!> \param[in] M
!> \verbatim
!>          M is INTEGER
!>           On entry,  M  specifies the number of rows of the matrix  C.
!>           M  must be at least zero.
!> \endverbatim
!>
!> \param[in] N
!> \verbatim
!>          N is INTEGER
!>           On entry, N specifies the number of columns of the matrix C.
!>           N  must be at least zero.
!> \endverbatim
!>
!> \param[in] ALPHA
!> \verbatim
!>          ALPHA is COMPLEX*16
!>           On entry, ALPHA specifies the scalar alpha.
!> \endverbatim
!>
!> \param[in] A
!> \verbatim
!>          A is COMPLEX*16 array, dimension ( LDA, ka ), where ka is
!>           m  when  SIDE = 'L' or 'l'  and is n  otherwise.
!>           Before entry  with  SIDE = 'L' or 'l',  the  m by m  part of
!>           the array  A  must contain the  hermitian matrix,  such that
!>           when  UPLO = 'U' or 'u', the leading m by m upper triangular
!>           part of the array  A  must contain the upper triangular part
!>           of the  hermitian matrix and the  strictly  lower triangular
!>           part of  A  is not referenced,  and when  UPLO = 'L' or 'l',
!>           the leading  m by m  lower triangular part  of the  array  A
!>           must  contain  the  lower triangular part  of the  hermitian
!>           matrix and the  strictly upper triangular part of  A  is not
!>           referenced.
!>           Before entry  with  SIDE = 'R' or 'r',  the  n by n  part of
!>           the array  A  must contain the  hermitian matrix,  such that
!>           when  UPLO = 'U' or 'u', the leading n by n upper triangular
!>           part of the array  A  must contain the upper triangular part
!>           of the  hermitian matrix and the  strictly  lower triangular
!>           part of  A  is not referenced,  and when  UPLO = 'L' or 'l',
!>           the leading  n by n  lower triangular part  of the  array  A
!>           must  contain  the  lower triangular part  of the  hermitian
!>           matrix and the  strictly upper triangular part of  A  is not
!>           referenced.
!>           Note that the imaginary parts  of the diagonal elements need
!>           not be set, they are assumed to be zero.
!> \endverbatim
!>
!> \param[in] LDA
!> \verbatim
!>          LDA is INTEGER
!>           On entry, LDA specifies the first dimension of A as declared
!>           in the  calling (sub) program. When  SIDE = 'L' or 'l'  then
!>           LDA must be at least  max( 1, m ), otherwise  LDA must be at
!>           least max( 1, n ).
!> \endverbatim
!>
!> \param[in] B
!> \verbatim
!>          B is COMPLEX*16 array, dimension ( LDB, N )
!>           Before entry, the leading  m by n part of the array  B  must
!>           contain the matrix B.
!> \endverbatim
!>
!> \param[in] LDB
!> \verbatim
!>          LDB is INTEGER
!>           On entry, LDB specifies the first dimension of B as declared
!>           in  the  calling  (sub)  program.   LDB  must  be  at  least
!>           max( 1, m ).
!> \endverbatim
!>
!> \param[in] BETA
!> \verbatim
!>          BETA is COMPLEX*16
!>           On entry,  BETA  specifies the scalar  beta.  When  BETA  is
!>           supplied as zero then C need not be set on input.
!> \endverbatim
!>
!> \param[in,out] C
!> \verbatim
!>          C is COMPLEX*16 array, dimension ( LDC, N )
!>           Before entry, the leading  m by n  part of the array  C must
!>           contain the matrix  C,  except when  beta  is zero, in which
!>           case C need not be set on entry.
!>           On exit, the array  C  is overwritten by the  m by n updated
!>           matrix.
!> \endverbatim
!>
!> \param[in] LDC
!> \verbatim
!>          LDC is INTEGER
!>           On entry, LDC specifies the first dimension of C as declared
!>           in  the  calling  (sub)  program.   LDC  must  be  at  least
!>           max( 1, m ).
!> \endverbatim
!
!  Authors:
!  ========
!
!> \author Univ. of Tennessee
!> \author Univ. of California Berkeley
!> \author Univ. of Colorado Denver
!> \author NAG Ltd.
!
!> \date December 2016
!
!> \ingroup complex16_blas_level3
!
!> \par Further Details:
!  =====================
!>
!> \verbatim
!>
!>  Level 3 Blas routine.
!>
!>  -- Written on 8-February-1989.
!>     Jack Dongarra, Argonne National Laboratory.
!>     Iain Duff, AERE Harwell.
!>     Jeremy Du Croz, Numerical Algorithms Group Ltd.
!>     Sven Hammarling, Numerical Algorithms Group Ltd.
!> \endverbatim
!>
!  =====================================================================
!
!  -- Reference BLAS level3 routine (version 3.7.0) --
!  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
!  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
!     December 2016
!
!     .. Scalar Arguments ..
!     ..
!     .. Array Arguments ..
!     ..
!
!  =====================================================================
!
!     .. External Functions ..
!     ..
!     .. External Subroutines ..
!     ..
!     .. Intrinsic Functions ..
!     ..
!     .. Local Scalars ..
!     ..
!     .. Parameters ..
!     ..
!
!     Set NROWA as the number of rows of A.
!
!
!     Test the input parameters.
!
!
!     Quick return if possible.
!
!
!     And when  alpha.eq.zero.
!
!
!     Start the operations.
!
!
!        Form  C := alpha*A*B + beta*C.
!
!
!        Form  C := alpha*B*A + beta*C.
!
!
!
!     End of ZHEMM .
!
! END
use M_blas, only : zhemm_=>ZHEMM
implicit none
      COMPLEX*16 ALPHA,BETA
      INTEGER LDA,LDB,LDC,M,N
      CHARACTER SIDE,UPLO
      COMPLEX*16 A(LDA,*),B(LDB,*),C(LDC,*)
    call ZHEMM_(SIDE,UPLO,M,N,ALPHA,A,LDA,B,LDB,BETA,C,LDC)
end subroutine ZHEMM

subroutine ZHEMV(UPLO,N,ALPHA,A,LDA,X,INCX,BETA,Y,INCY)
! COMMENT --file zhemv.3m_blas.man
!> \brief \b ZHEMV
!
!  =========== DOCUMENTATION ===========
!
! Online html documentation available at
!            http://www.netlib.org/lapack/explore-html/
!
!  Definition:
!  ===========
!
!       SUBROUTINE ZHEMV(UPLO,N,ALPHA,A,LDA,X,INCX,BETA,Y,INCY)
!
!       .. Scalar Arguments ..
!       COMPLEX*16 ALPHA,BETA
!       INTEGER INCX,INCY,LDA,N
!       CHARACTER UPLO
!       ..
!       .. Array Arguments ..
!       COMPLEX*16 A(LDA,*),X(*),Y(*)
!       ..
!
!
!> \par Purpose:
!  =============
!>
!> \verbatim
!>
!> ZHEMV  performs the matrix-vector  operation
!>
!>    y := alpha*A*x + beta*y,
!>
!> where alpha and beta are scalars, x and y are n element vectors and
!> A is an n by n hermitian matrix.
!> \endverbatim
!
!  Arguments:
!  ==========
!
!> \param[in] UPLO
!> \verbatim
!>          UPLO is CHARACTER*1
!>           On entry, UPLO specifies whether the upper or lower
!>           triangular part of the array A is to be referenced as
!>           follows:
!>
!>              UPLO = 'U' or 'u'   Only the upper triangular part of A
!>                                  is to be referenced.
!>
!>              UPLO = 'L' or 'l'   Only the lower triangular part of A
!>                                  is to be referenced.
!> \endverbatim
!>
!> \param[in] N
!> \verbatim
!>          N is INTEGER
!>           On entry, N specifies the order of the matrix A.
!>           N must be at least zero.
!> \endverbatim
!>
!> \param[in] ALPHA
!> \verbatim
!>          ALPHA is COMPLEX*16
!>           On entry, ALPHA specifies the scalar alpha.
!> \endverbatim
!>
!> \param[in] A
!> \verbatim
!>          A is COMPLEX*16 array, dimension ( LDA, N )
!>           Before entry with  UPLO = 'U' or 'u', the leading n by n
!>           upper triangular part of the array A must contain the upper
!>           triangular part of the hermitian matrix and the strictly
!>           lower triangular part of A is not referenced.
!>           Before entry with UPLO = 'L' or 'l', the leading n by n
!>           lower triangular part of the array A must contain the lower
!>           triangular part of the hermitian matrix and the strictly
!>           upper triangular part of A is not referenced.
!>           Note that the imaginary parts of the diagonal elements need
!>           not be set and are assumed to be zero.
!> \endverbatim
!>
!> \param[in] LDA
!> \verbatim
!>          LDA is INTEGER
!>           On entry, LDA specifies the first dimension of A as declared
!>           in the calling (sub) program. LDA must be at least
!>           max( 1, n ).
!> \endverbatim
!>
!> \param[in] X
!> \verbatim
!>          X is COMPLEX*16 array, dimension at least
!>           ( 1 + ( n - 1 )*abs( INCX ) ).
!>           Before entry, the incremented array X must contain the n
!>           element vector x.
!> \endverbatim
!>
!> \param[in] INCX
!> \verbatim
!>          INCX is INTEGER
!>           On entry, INCX specifies the increment for the elements of
!>           X. INCX must not be zero.
!> \endverbatim
!>
!> \param[in] BETA
!> \verbatim
!>          BETA is COMPLEX*16
!>           On entry, BETA specifies the scalar beta. When BETA is
!>           supplied as zero then Y need not be set on input.
!> \endverbatim
!>
!> \param[in,out] Y
!> \verbatim
!>          Y is COMPLEX*16 array, dimension at least
!>           ( 1 + ( n - 1 )*abs( INCY ) ).
!>           Before entry, the incremented array Y must contain the n
!>           element vector y. On exit, Y is overwritten by the updated
!>           vector y.
!> \endverbatim
!>
!> \param[in] INCY
!> \verbatim
!>          INCY is INTEGER
!>           On entry, INCY specifies the increment for the elements of
!>           Y. INCY must not be zero.
!> \endverbatim
!
!  Authors:
!  ========
!
!> \author Univ. of Tennessee
!> \author Univ. of California Berkeley
!> \author Univ. of Colorado Denver
!> \author NAG Ltd.
!
!> \date December 2016
!
!> \ingroup complex16_blas_level2
!
!> \par Further Details:
!  =====================
!>
!> \verbatim
!>
!>  Level 2 Blas routine.
!>  The vector and matrix arguments are not referenced when N = 0, or M = 0
!>
!>  -- Written on 22-October-1986.
!>     Jack Dongarra, Argonne National Lab.
!>     Jeremy Du Croz, Nag Central Office.
!>     Sven Hammarling, Nag Central Office.
!>     Richard Hanson, Sandia National Labs.
!> \endverbatim
!>
!  =====================================================================
!
!  -- Reference BLAS level2 routine (version 3.7.0) --
!  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
!  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
!     December 2016
!
!     .. Scalar Arguments ..
!     ..
!     .. Array Arguments ..
!     ..
!
!  =====================================================================
!
!     .. Parameters ..
!     ..
!     .. Local Scalars ..
!     ..
!     .. External Functions ..
!     ..
!     .. External Subroutines ..
!     ..
!     .. Intrinsic Functions ..
!     ..
!
!     Test the input parameters.
!
!
!     Quick return if possible.
!
!
!     Set up the start points in  X  and  Y.
!
!
!     Start the operations. In this version the elements of A are
!     accessed sequentially with one pass through the triangular part
!     of A.
!
!     First form  y := beta*y.
!
!
!        Form  y  when A is stored in upper triangle.
!
!
!        Form  y  when A is stored in lower triangle.
!
!
!
!     End of ZHEMV .
!
! END
use M_blas, only : zhemv_=>ZHEMV
implicit none
      COMPLEX*16 ALPHA,BETA
      INTEGER INCX,INCY,LDA,N
      CHARACTER UPLO
      COMPLEX*16 A(LDA,*),X(*),Y(*)
    call ZHEMV_(UPLO,N,ALPHA,A,LDA,X,INCX,BETA,Y,INCY)
end subroutine ZHEMV

subroutine ZHER2(UPLO,N,ALPHA,X,INCX,Y,INCY,A,LDA)
! COMMENT --file zher2.3m_blas.man
!> \brief \b ZHER2
!
!  =========== DOCUMENTATION ===========
!
! Online html documentation available at
!            http://www.netlib.org/lapack/explore-html/
!
!  Definition:
!  ===========
!
!       SUBROUTINE ZHER2(UPLO,N,ALPHA,X,INCX,Y,INCY,A,LDA)
!
!       .. Scalar Arguments ..
!       COMPLEX*16 ALPHA
!       INTEGER INCX,INCY,LDA,N
!       CHARACTER UPLO
!       ..
!       .. Array Arguments ..
!       COMPLEX*16 A(LDA,*),X(*),Y(*)
!       ..
!
!
!> \par Purpose:
!  =============
!>
!> \verbatim
!>
!> ZHER2  performs the hermitian rank 2 operation
!>
!>    A := alpha*x*y**H + conjg( alpha )*y*x**H + A,
!>
!> where alpha is a scalar, x and y are n element vectors and A is an n
!> by n hermitian matrix.
!> \endverbatim
!
!  Arguments:
!  ==========
!
!> \param[in] UPLO
!> \verbatim
!>          UPLO is CHARACTER*1
!>           On entry, UPLO specifies whether the upper or lower
!>           triangular part of the array A is to be referenced as
!>           follows:
!>
!>              UPLO = 'U' or 'u'   Only the upper triangular part of A
!>                                  is to be referenced.
!>
!>              UPLO = 'L' or 'l'   Only the lower triangular part of A
!>                                  is to be referenced.
!> \endverbatim
!>
!> \param[in] N
!> \verbatim
!>          N is INTEGER
!>           On entry, N specifies the order of the matrix A.
!>           N must be at least zero.
!> \endverbatim
!>
!> \param[in] ALPHA
!> \verbatim
!>          ALPHA is COMPLEX*16
!>           On entry, ALPHA specifies the scalar alpha.
!> \endverbatim
!>
!> \param[in] X
!> \verbatim
!>          X is COMPLEX*16 array, dimension at least
!>           ( 1 + ( n - 1 )*abs( INCX ) ).
!>           Before entry, the incremented array X must contain the n
!>           element vector x.
!> \endverbatim
!>
!> \param[in] INCX
!> \verbatim
!>          INCX is INTEGER
!>           On entry, INCX specifies the increment for the elements of
!>           X. INCX must not be zero.
!> \endverbatim
!>
!> \param[in] Y
!> \verbatim
!>          Y is COMPLEX*16 array, dimension at least
!>           ( 1 + ( n - 1 )*abs( INCY ) ).
!>           Before entry, the incremented array Y must contain the n
!>           element vector y.
!> \endverbatim
!>
!> \param[in] INCY
!> \verbatim
!>          INCY is INTEGER
!>           On entry, INCY specifies the increment for the elements of
!>           Y. INCY must not be zero.
!> \endverbatim
!>
!> \param[in,out] A
!> \verbatim
!>          A is COMPLEX*16 array, dimension ( LDA, N )
!>           Before entry with  UPLO = 'U' or 'u', the leading n by n
!>           upper triangular part of the array A must contain the upper
!>           triangular part of the hermitian matrix and the strictly
!>           lower triangular part of A is not referenced. On exit, the
!>           upper triangular part of the array A is overwritten by the
!>           upper triangular part of the updated matrix.
!>           Before entry with UPLO = 'L' or 'l', the leading n by n
!>           lower triangular part of the array A must contain the lower
!>           triangular part of the hermitian matrix and the strictly
!>           upper triangular part of A is not referenced. On exit, the
!>           lower triangular part of the array A is overwritten by the
!>           lower triangular part of the updated matrix.
!>           Note that the imaginary parts of the diagonal elements need
!>           not be set, they are assumed to be zero, and on exit they
!>           are set to zero.
!> \endverbatim
!>
!> \param[in] LDA
!> \verbatim
!>          LDA is INTEGER
!>           On entry, LDA specifies the first dimension of A as declared
!>           in the calling (sub) program. LDA must be at least
!>           max( 1, n ).
!> \endverbatim
!
!  Authors:
!  ========
!
!> \author Univ. of Tennessee
!> \author Univ. of California Berkeley
!> \author Univ. of Colorado Denver
!> \author NAG Ltd.
!
!> \date December 2016
!
!> \ingroup complex16_blas_level2
!
!> \par Further Details:
!  =====================
!>
!> \verbatim
!>
!>  Level 2 Blas routine.
!>
!>  -- Written on 22-October-1986.
!>     Jack Dongarra, Argonne National Lab.
!>     Jeremy Du Croz, Nag Central Office.
!>     Sven Hammarling, Nag Central Office.
!>     Richard Hanson, Sandia National Labs.
!> \endverbatim
!>
!  =====================================================================
!
!  -- Reference BLAS level2 routine (version 3.7.0) --
!  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
!  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
!     December 2016
!
!     .. Scalar Arguments ..
!     ..
!     .. Array Arguments ..
!     ..
!
!  =====================================================================
!
!     .. Parameters ..
!     ..
!     .. Local Scalars ..
!     ..
!     .. External Functions ..
!     ..
!     .. External Subroutines ..
!     ..
!     .. Intrinsic Functions ..
!     ..
!
!     Test the input parameters.
!
!
!     Quick return if possible.
!
!
!     Set up the start points in X and Y if the increments are not both
!     unity.
!
!
!     Start the operations. In this version the elements of A are
!     accessed sequentially with one pass through the triangular part
!     of A.
!
!
!        Form  A  when A is stored in the upper triangle.
!
!
!        Form  A  when A is stored in the lower triangle.
!
!
!
!     End of ZHER2 .
!
! END
use M_blas, only : zher2_=>ZHER2
implicit none
      COMPLEX*16 ALPHA
      INTEGER INCX,INCY,LDA,N
      CHARACTER UPLO
      COMPLEX*16 A(LDA,*),X(*),Y(*)
    call ZHER2_(UPLO,N,ALPHA,X,INCX,Y,INCY,A,LDA)
end subroutine ZHER2

subroutine ZHER2K(UPLO,TRANS,N,K,ALPHA,A,LDA,B,LDB,BETA,C,LDC)
! COMMENT --file zher2k.3m_blas.man
!> \brief \b ZHER2K
!
!  =========== DOCUMENTATION ===========
!
! Online html documentation available at
!            http://www.netlib.org/lapack/explore-html/
!
!  Definition:
!  ===========
!
!       SUBROUTINE ZHER2K(UPLO,TRANS,N,K,ALPHA,A,LDA,B,LDB,BETA,C,LDC)
!
!       .. Scalar Arguments ..
!       COMPLEX*16 ALPHA
!       DOUBLE PRECISION BETA
!       INTEGER K,LDA,LDB,LDC,N
!       CHARACTER TRANS,UPLO
!       ..
!       .. Array Arguments ..
!       COMPLEX*16 A(LDA,*),B(LDB,*),C(LDC,*)
!       ..
!
!
!> \par Purpose:
!  =============
!>
!> \verbatim
!>
!> ZHER2K  performs one of the hermitian rank 2k operations
!>
!>    C := alpha*A*B**H + conjg( alpha )*B*A**H + beta*C,
!>
!> or
!>
!>    C := alpha*A**H*B + conjg( alpha )*B**H*A + beta*C,
!>
!> where  alpha and beta  are scalars with  beta  real,  C is an  n by n
!> hermitian matrix and  A and B  are  n by k matrices in the first case
!> and  k by n  matrices in the second case.
!> \endverbatim
!
!  Arguments:
!  ==========
!
!> \param[in] UPLO
!> \verbatim
!>          UPLO is CHARACTER*1
!>           On  entry,   UPLO  specifies  whether  the  upper  or  lower
!>           triangular  part  of the  array  C  is to be  referenced  as
!>           follows:
!>
!>              UPLO = 'U' or 'u'   Only the  upper triangular part of  C
!>                                  is to be referenced.
!>
!>              UPLO = 'L' or 'l'   Only the  lower triangular part of  C
!>                                  is to be referenced.
!> \endverbatim
!>
!> \param[in] TRANS
!> \verbatim
!>          TRANS is CHARACTER*1
!>           On entry,  TRANS  specifies the operation to be performed as
!>           follows:
!>
!>              TRANS = 'N' or 'n'    C := alpha*A*B**H          +
!>                                         conjg( alpha )*B*A**H +
!>                                         beta*C.
!>
!>              TRANS = 'C' or 'c'    C := alpha*A**H*B          +
!>                                         conjg( alpha )*B**H*A +
!>                                         beta*C.
!> \endverbatim
!>
!> \param[in] N
!> \verbatim
!>          N is INTEGER
!>           On entry,  N specifies the order of the matrix C.  N must be
!>           at least zero.
!> \endverbatim
!>
!> \param[in] K
!> \verbatim
!>          K is INTEGER
!>           On entry with  TRANS = 'N' or 'n',  K  specifies  the number
!>           of  columns  of the  matrices  A and B,  and on  entry  with
!>           TRANS = 'C' or 'c',  K  specifies  the number of rows of the
!>           matrices  A and B.  K must be at least zero.
!> \endverbatim
!>
!> \param[in] ALPHA
!> \verbatim
!>          ALPHA is COMPLEX*16 .
!>           On entry, ALPHA specifies the scalar alpha.
!> \endverbatim
!>
!> \param[in] A
!> \verbatim
!>          A is COMPLEX*16 array, dimension ( LDA, ka ), where ka is
!>           k  when  TRANS = 'N' or 'n',  and is  n  otherwise.
!>           Before entry with  TRANS = 'N' or 'n',  the  leading  n by k
!>           part of the array  A  must contain the matrix  A,  otherwise
!>           the leading  k by n  part of the array  A  must contain  the
!>           matrix A.
!> \endverbatim
!>
!> \param[in] LDA
!> \verbatim
!>          LDA is INTEGER
!>           On entry, LDA specifies the first dimension of A as declared
!>           in  the  calling  (sub)  program.   When  TRANS = 'N' or 'n'
!>           then  LDA must be at least  max( 1, n ), otherwise  LDA must
!>           be at least  max( 1, k ).
!> \endverbatim
!>
!> \param[in] B
!> \verbatim
!>          B is COMPLEX*16 array, dimension ( LDB, kb ), where kb is
!>           k  when  TRANS = 'N' or 'n',  and is  n  otherwise.
!>           Before entry with  TRANS = 'N' or 'n',  the  leading  n by k
!>           part of the array  B  must contain the matrix  B,  otherwise
!>           the leading  k by n  part of the array  B  must contain  the
!>           matrix B.
!> \endverbatim
!>
!> \param[in] LDB
!> \verbatim
!>          LDB is INTEGER
!>           On entry, LDB specifies the first dimension of B as declared
!>           in  the  calling  (sub)  program.   When  TRANS = 'N' or 'n'
!>           then  LDB must be at least  max( 1, n ), otherwise  LDB must
!>           be at least  max( 1, k ).
!>           Unchanged on exit.
!> \endverbatim
!>
!> \param[in] BETA
!> \verbatim
!>          BETA is DOUBLE PRECISION .
!>           On entry, BETA specifies the scalar beta.
!> \endverbatim
!>
!> \param[in,out] C
!> \verbatim
!>          C is COMPLEX*16 array, dimension ( LDC, N )
!>           Before entry  with  UPLO = 'U' or 'u',  the leading  n by n
!>           upper triangular part of the array C must contain the upper
!>           triangular part  of the  hermitian matrix  and the strictly
!>           lower triangular part of C is not referenced.  On exit, the
!>           upper triangular part of the array  C is overwritten by the
!>           upper triangular part of the updated matrix.
!>           Before entry  with  UPLO = 'L' or 'l',  the leading  n by n
!>           lower triangular part of the array C must contain the lower
!>           triangular part  of the  hermitian matrix  and the strictly
!>           upper triangular part of C is not referenced.  On exit, the
!>           lower triangular part of the array  C is overwritten by the
!>           lower triangular part of the updated matrix.
!>           Note that the imaginary parts of the diagonal elements need
!>           not be set,  they are assumed to be zero,  and on exit they
!>           are set to zero.
!> \endverbatim
!>
!> \param[in] LDC
!> \verbatim
!>          LDC is INTEGER
!>           On entry, LDC specifies the first dimension of C as declared
!>           in  the  calling  (sub)  program.   LDC  must  be  at  least
!>           max( 1, n ).
!> \endverbatim
!
!  Authors:
!  ========
!
!> \author Univ. of Tennessee
!> \author Univ. of California Berkeley
!> \author Univ. of Colorado Denver
!> \author NAG Ltd.
!
!> \date December 2016
!
!> \ingroup complex16_blas_level3
!
!> \par Further Details:
!  =====================
!>
!> \verbatim
!>
!>  Level 3 Blas routine.
!>
!>  -- Written on 8-February-1989.
!>     Jack Dongarra, Argonne National Laboratory.
!>     Iain Duff, AERE Harwell.
!>     Jeremy Du Croz, Numerical Algorithms Group Ltd.
!>     Sven Hammarling, Numerical Algorithms Group Ltd.
!>
!>  -- Modified 8-Nov-93 to set C(J,J) to DBLE( C(J,J) ) when BETA = 1.
!>     Ed Anderson, Cray Research Inc.
!> \endverbatim
!>
!  =====================================================================
!
!  -- Reference BLAS level3 routine (version 3.7.0) --
!  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
!  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
!     December 2016
!
!     .. Scalar Arguments ..
!     ..
!     .. Array Arguments ..
!     ..
!
!  =====================================================================
!
!     .. External Functions ..
!     ..
!     .. External Subroutines ..
!     ..
!     .. Intrinsic Functions ..
!     ..
!     .. Local Scalars ..
!     ..
!     .. Parameters ..
!     ..
!
!     Test the input parameters.
!
!
!
!     Quick return if possible.
!
!
!     And when  alpha.eq.zero.
!
!
!     Start the operations.
!
!
!        Form  C := alpha*A*B**H + conjg( alpha )*B*A**H +
!                   C.
!
!
!        Form  C := alpha*A**H*B + conjg( alpha )*B**H*A +
!                   C.
!
!
!
!     End of ZHER2K.
!
! END
use M_blas, only : zher2k_=>ZHER2K
implicit none
      COMPLEX*16 ALPHA
      DOUBLE PRECISION BETA
      INTEGER K,LDA,LDB,LDC,N
      CHARACTER TRANS,UPLO
      COMPLEX*16 A(LDA,*),B(LDB,*),C(LDC,*)
    call ZHER2K_(UPLO,TRANS,N,K,ALPHA,A,LDA,B,LDB,BETA,C,LDC)
end subroutine ZHER2K

subroutine ZHER(UPLO,N,ALPHA,X,INCX,A,LDA)
! COMMENT --file zher.3m_blas.man
!> \brief \b ZHER
!
!  =========== DOCUMENTATION ===========
!
! Online html documentation available at
!            http://www.netlib.org/lapack/explore-html/
!
!  Definition:
!  ===========
!
!       SUBROUTINE ZHER(UPLO,N,ALPHA,X,INCX,A,LDA)
!
!       .. Scalar Arguments ..
!       DOUBLE PRECISION ALPHA
!       INTEGER INCX,LDA,N
!       CHARACTER UPLO
!       ..
!       .. Array Arguments ..
!       COMPLEX*16 A(LDA,*),X(*)
!       ..
!
!
!> \par Purpose:
!  =============
!>
!> \verbatim
!>
!> ZHER   performs the hermitian rank 1 operation
!>
!>    A := alpha*x*x**H + A,
!>
!> where alpha is a real scalar, x is an n element vector and A is an
!> n by n hermitian matrix.
!> \endverbatim
!
!  Arguments:
!  ==========
!
!> \param[in] UPLO
!> \verbatim
!>          UPLO is CHARACTER*1
!>           On entry, UPLO specifies whether the upper or lower
!>           triangular part of the array A is to be referenced as
!>           follows:
!>
!>              UPLO = 'U' or 'u'   Only the upper triangular part of A
!>                                  is to be referenced.
!>
!>              UPLO = 'L' or 'l'   Only the lower triangular part of A
!>                                  is to be referenced.
!> \endverbatim
!>
!> \param[in] N
!> \verbatim
!>          N is INTEGER
!>           On entry, N specifies the order of the matrix A.
!>           N must be at least zero.
!> \endverbatim
!>
!> \param[in] ALPHA
!> \verbatim
!>          ALPHA is DOUBLE PRECISION.
!>           On entry, ALPHA specifies the scalar alpha.
!> \endverbatim
!>
!> \param[in] X
!> \verbatim
!>          X is COMPLEX*16 array, dimension at least
!>           ( 1 + ( n - 1 )*abs( INCX ) ).
!>           Before entry, the incremented array X must contain the n
!>           element vector x.
!> \endverbatim
!>
!> \param[in] INCX
!> \verbatim
!>          INCX is INTEGER
!>           On entry, INCX specifies the increment for the elements of
!>           X. INCX must not be zero.
!> \endverbatim
!>
!> \param[in,out] A
!> \verbatim
!>          A is COMPLEX*16 array, dimension ( LDA, N )
!>           Before entry with  UPLO = 'U' or 'u', the leading n by n
!>           upper triangular part of the array A must contain the upper
!>           triangular part of the hermitian matrix and the strictly
!>           lower triangular part of A is not referenced. On exit, the
!>           upper triangular part of the array A is overwritten by the
!>           upper triangular part of the updated matrix.
!>           Before entry with UPLO = 'L' or 'l', the leading n by n
!>           lower triangular part of the array A must contain the lower
!>           triangular part of the hermitian matrix and the strictly
!>           upper triangular part of A is not referenced. On exit, the
!>           lower triangular part of the array A is overwritten by the
!>           lower triangular part of the updated matrix.
!>           Note that the imaginary parts of the diagonal elements need
!>           not be set, they are assumed to be zero, and on exit they
!>           are set to zero.
!> \endverbatim
!>
!> \param[in] LDA
!> \verbatim
!>          LDA is INTEGER
!>           On entry, LDA specifies the first dimension of A as declared
!>           in the calling (sub) program. LDA must be at least
!>           max( 1, n ).
!> \endverbatim
!
!  Authors:
!  ========
!
!> \author Univ. of Tennessee
!> \author Univ. of California Berkeley
!> \author Univ. of Colorado Denver
!> \author NAG Ltd.
!
!> \date December 2016
!
!> \ingroup complex16_blas_level2
!
!> \par Further Details:
!  =====================
!>
!> \verbatim
!>
!>  Level 2 Blas routine.
!>
!>  -- Written on 22-October-1986.
!>     Jack Dongarra, Argonne National Lab.
!>     Jeremy Du Croz, Nag Central Office.
!>     Sven Hammarling, Nag Central Office.
!>     Richard Hanson, Sandia National Labs.
!> \endverbatim
!>
!  =====================================================================
!
!  -- Reference BLAS level2 routine (version 3.7.0) --
!  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
!  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
!     December 2016
!
!     .. Scalar Arguments ..
!     ..
!     .. Array Arguments ..
!     ..
!
!  =====================================================================
!
!     .. Parameters ..
!     ..
!     .. Local Scalars ..
!     ..
!     .. External Functions ..
!     ..
!     .. External Subroutines ..
!     ..
!     .. Intrinsic Functions ..
!     ..
!
!     Test the input parameters.
!
!
!     Quick return if possible.
!
!
!     Set the start point in X if the increment is not unity.
!
!
!     Start the operations. In this version the elements of A are
!     accessed sequentially with one pass through the triangular part
!     of A.
!
!
!        Form  A  when A is stored in upper triangle.
!
!
!        Form  A  when A is stored in lower triangle.
!
!
!
!     End of ZHER  .
!
! END
use M_blas, only : zher_=>ZHER
implicit none
      DOUBLE PRECISION ALPHA
      INTEGER INCX,LDA,N
      CHARACTER UPLO
      COMPLEX*16 A(LDA,*),X(*)
    call ZHER_(UPLO,N,ALPHA,X,INCX,A,LDA)
end subroutine ZHER

subroutine ZHERK(UPLO,TRANS,N,K,ALPHA,A,LDA,BETA,C,LDC)
! COMMENT --file zherk.3m_blas.man
!> \brief \b ZHERK
!
!  =========== DOCUMENTATION ===========
!
! Online html documentation available at
!            http://www.netlib.org/lapack/explore-html/
!
!  Definition:
!  ===========
!
!       SUBROUTINE ZHERK(UPLO,TRANS,N,K,ALPHA,A,LDA,BETA,C,LDC)
!
!       .. Scalar Arguments ..
!       DOUBLE PRECISION ALPHA,BETA
!       INTEGER K,LDA,LDC,N
!       CHARACTER TRANS,UPLO
!       ..
!       .. Array Arguments ..
!       COMPLEX*16 A(LDA,*),C(LDC,*)
!       ..
!
!
!> \par Purpose:
!  =============
!>
!> \verbatim
!>
!> ZHERK  performs one of the hermitian rank k operations
!>
!>    C := alpha*A*A**H + beta*C,
!>
!> or
!>
!>    C := alpha*A**H*A + beta*C,
!>
!> where  alpha and beta  are  real scalars,  C is an  n by n  hermitian
!> matrix and  A  is an  n by k  matrix in the  first case and a  k by n
!> matrix in the second case.
!> \endverbatim
!
!  Arguments:
!  ==========
!
!> \param[in] UPLO
!> \verbatim
!>          UPLO is CHARACTER*1
!>           On  entry,   UPLO  specifies  whether  the  upper  or  lower
!>           triangular  part  of the  array  C  is to be  referenced  as
!>           follows:
!>
!>              UPLO = 'U' or 'u'   Only the  upper triangular part of  C
!>                                  is to be referenced.
!>
!>              UPLO = 'L' or 'l'   Only the  lower triangular part of  C
!>                                  is to be referenced.
!> \endverbatim
!>
!> \param[in] TRANS
!> \verbatim
!>          TRANS is CHARACTER*1
!>           On entry,  TRANS  specifies the operation to be performed as
!>           follows:
!>
!>              TRANS = 'N' or 'n'   C := alpha*A*A**H + beta*C.
!>
!>              TRANS = 'C' or 'c'   C := alpha*A**H*A + beta*C.
!> \endverbatim
!>
!> \param[in] N
!> \verbatim
!>          N is INTEGER
!>           On entry,  N specifies the order of the matrix C.  N must be
!>           at least zero.
!> \endverbatim
!>
!> \param[in] K
!> \verbatim
!>          K is INTEGER
!>           On entry with  TRANS = 'N' or 'n',  K  specifies  the number
!>           of  columns   of  the   matrix   A,   and  on   entry   with
!>           TRANS = 'C' or 'c',  K  specifies  the number of rows of the
!>           matrix A.  K must be at least zero.
!> \endverbatim
!>
!> \param[in] ALPHA
!> \verbatim
!>          ALPHA is DOUBLE PRECISION .
!>           On entry, ALPHA specifies the scalar alpha.
!> \endverbatim
!>
!> \param[in] A
!> \verbatim
!>          A is COMPLEX*16 array, dimension ( LDA, ka ), where ka is
!>           k  when  TRANS = 'N' or 'n',  and is  n  otherwise.
!>           Before entry with  TRANS = 'N' or 'n',  the  leading  n by k
!>           part of the array  A  must contain the matrix  A,  otherwise
!>           the leading  k by n  part of the array  A  must contain  the
!>           matrix A.
!> \endverbatim
!>
!> \param[in] LDA
!> \verbatim
!>          LDA is INTEGER
!>           On entry, LDA specifies the first dimension of A as declared
!>           in  the  calling  (sub)  program.   When  TRANS = 'N' or 'n'
!>           then  LDA must be at least  max( 1, n ), otherwise  LDA must
!>           be at least  max( 1, k ).
!> \endverbatim
!>
!> \param[in] BETA
!> \verbatim
!>          BETA is DOUBLE PRECISION.
!>           On entry, BETA specifies the scalar beta.
!> \endverbatim
!>
!> \param[in,out] C
!> \verbatim
!>          C is COMPLEX*16 array, dimension ( LDC, N )
!>           Before entry  with  UPLO = 'U' or 'u',  the leading  n by n
!>           upper triangular part of the array C must contain the upper
!>           triangular part  of the  hermitian matrix  and the strictly
!>           lower triangular part of C is not referenced.  On exit, the
!>           upper triangular part of the array  C is overwritten by the
!>           upper triangular part of the updated matrix.
!>           Before entry  with  UPLO = 'L' or 'l',  the leading  n by n
!>           lower triangular part of the array C must contain the lower
!>           triangular part  of the  hermitian matrix  and the strictly
!>           upper triangular part of C is not referenced.  On exit, the
!>           lower triangular part of the array  C is overwritten by the
!>           lower triangular part of the updated matrix.
!>           Note that the imaginary parts of the diagonal elements need
!>           not be set,  they are assumed to be zero,  and on exit they
!>           are set to zero.
!> \endverbatim
!>
!> \param[in] LDC
!> \verbatim
!>          LDC is INTEGER
!>           On entry, LDC specifies the first dimension of C as declared
!>           in  the  calling  (sub)  program.   LDC  must  be  at  least
!>           max( 1, n ).
!> \endverbatim
!
!  Authors:
!  ========
!
!> \author Univ. of Tennessee
!> \author Univ. of California Berkeley
!> \author Univ. of Colorado Denver
!> \author NAG Ltd.
!
!> \date December 2016
!
!> \ingroup complex16_blas_level3
!
!> \par Further Details:
!  =====================
!>
!> \verbatim
!>
!>  Level 3 Blas routine.
!>
!>  -- Written on 8-February-1989.
!>     Jack Dongarra, Argonne National Laboratory.
!>     Iain Duff, AERE Harwell.
!>     Jeremy Du Croz, Numerical Algorithms Group Ltd.
!>     Sven Hammarling, Numerical Algorithms Group Ltd.
!>
!>  -- Modified 8-Nov-93 to set C(J,J) to DBLE( C(J,J) ) when BETA = 1.
!>     Ed Anderson, Cray Research Inc.
!> \endverbatim
!>
!  =====================================================================
!
!  -- Reference BLAS level3 routine (version 3.7.0) --
!  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
!  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
!     December 2016
!
!     .. Scalar Arguments ..
!     ..
!     .. Array Arguments ..
!     ..
!
!  =====================================================================
!
!     .. External Functions ..
!     ..
!     .. External Subroutines ..
!     ..
!     .. Intrinsic Functions ..
!     ..
!     .. Local Scalars ..
!     ..
!     .. Parameters ..
!     ..
!
!     Test the input parameters.
!
!
!
!     Quick return if possible.
!
!
!     And when  alpha.eq.zero.
!
!
!     Start the operations.
!
!
!        Form  C := alpha*A*A**H + beta*C.
!
!
!        Form  C := alpha*A**H*A + beta*C.
!
!
!
!     End of ZHERK .
!
! END
use M_blas, only : zherk_=>ZHERK
implicit none
      DOUBLE PRECISION ALPHA,BETA
      INTEGER K,LDA,LDC,N
      CHARACTER TRANS,UPLO
      COMPLEX*16 A(LDA,*),C(LDC,*)
    call ZHERK_(UPLO,TRANS,N,K,ALPHA,A,LDA,BETA,C,LDC)
end subroutine ZHERK

subroutine ZHPMV(UPLO,N,ALPHA,AP,X,INCX,BETA,Y,INCY)
! COMMENT --file zhpmv.3m_blas.man
!> \brief \b ZHPMV
!
!  =========== DOCUMENTATION ===========
!
! Online html documentation available at
!            http://www.netlib.org/lapack/explore-html/
!
!  Definition:
!  ===========
!
!       SUBROUTINE ZHPMV(UPLO,N,ALPHA,AP,X,INCX,BETA,Y,INCY)
!
!       .. Scalar Arguments ..
!       COMPLEX*16 ALPHA,BETA
!       INTEGER INCX,INCY,N
!       CHARACTER UPLO
!       ..
!       .. Array Arguments ..
!       COMPLEX*16 AP(*),X(*),Y(*)
!       ..
!
!
!> \par Purpose:
!  =============
!>
!> \verbatim
!>
!> ZHPMV  performs the matrix-vector operation
!>
!>    y := alpha*A*x + beta*y,
!>
!> where alpha and beta are scalars, x and y are n element vectors and
!> A is an n by n hermitian matrix, supplied in packed form.
!> \endverbatim
!
!  Arguments:
!  ==========
!
!> \param[in] UPLO
!> \verbatim
!>          UPLO is CHARACTER*1
!>           On entry, UPLO specifies whether the upper or lower
!>           triangular part of the matrix A is supplied in the packed
!>           array AP as follows:
!>
!>              UPLO = 'U' or 'u'   The upper triangular part of A is
!>                                  supplied in AP.
!>
!>              UPLO = 'L' or 'l'   The lower triangular part of A is
!>                                  supplied in AP.
!> \endverbatim
!>
!> \param[in] N
!> \verbatim
!>          N is INTEGER
!>           On entry, N specifies the order of the matrix A.
!>           N must be at least zero.
!> \endverbatim
!>
!> \param[in] ALPHA
!> \verbatim
!>          ALPHA is COMPLEX*16
!>           On entry, ALPHA specifies the scalar alpha.
!> \endverbatim
!>
!> \param[in] AP
!> \verbatim
!>          AP is COMPLEX*16 array, dimension at least
!>           ( ( n*( n + 1 ) )/2 ).
!>           Before entry with UPLO = 'U' or 'u', the array AP must
!>           contain the upper triangular part of the hermitian matrix
!>           packed sequentially, column by column, so that AP( 1 )
!>           contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 )
!>           and a( 2, 2 ) respectively, and so on.
!>           Before entry with UPLO = 'L' or 'l', the array AP must
!>           contain the lower triangular part of the hermitian matrix
!>           packed sequentially, column by column, so that AP( 1 )
!>           contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 )
!>           and a( 3, 1 ) respectively, and so on.
!>           Note that the imaginary parts of the diagonal elements need
!>           not be set and are assumed to be zero.
!> \endverbatim
!>
!> \param[in] X
!> \verbatim
!>          X is COMPLEX*16 array, dimension at least
!>           ( 1 + ( n - 1 )*abs( INCX ) ).
!>           Before entry, the incremented array X must contain the n
!>           element vector x.
!> \endverbatim
!>
!> \param[in] INCX
!> \verbatim
!>          INCX is INTEGER
!>           On entry, INCX specifies the increment for the elements of
!>           X. INCX must not be zero.
!> \endverbatim
!>
!> \param[in] BETA
!> \verbatim
!>          BETA is COMPLEX*16
!>           On entry, BETA specifies the scalar beta. When BETA is
!>           supplied as zero then Y need not be set on input.
!> \endverbatim
!>
!> \param[in,out] Y
!> \verbatim
!>          Y is COMPLEX*16 array, dimension at least
!>           ( 1 + ( n - 1 )*abs( INCY ) ).
!>           Before entry, the incremented array Y must contain the n
!>           element vector y. On exit, Y is overwritten by the updated
!>           vector y.
!> \endverbatim
!>
!> \param[in] INCY
!> \verbatim
!>          INCY is INTEGER
!>           On entry, INCY specifies the increment for the elements of
!>           Y. INCY must not be zero.
!> \endverbatim
!
!  Authors:
!  ========
!
!> \author Univ. of Tennessee
!> \author Univ. of California Berkeley
!> \author Univ. of Colorado Denver
!> \author NAG Ltd.
!
!> \date December 2016
!
!> \ingroup complex16_blas_level2
!
!> \par Further Details:
!  =====================
!>
!> \verbatim
!>
!>  Level 2 Blas routine.
!>  The vector and matrix arguments are not referenced when N = 0, or M = 0
!>
!>  -- Written on 22-October-1986.
!>     Jack Dongarra, Argonne National Lab.
!>     Jeremy Du Croz, Nag Central Office.
!>     Sven Hammarling, Nag Central Office.
!>     Richard Hanson, Sandia National Labs.
!> \endverbatim
!>
!  =====================================================================
!
!  -- Reference BLAS level2 routine (version 3.7.0) --
!  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
!  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
!     December 2016
!
!     .. Scalar Arguments ..
!     ..
!     .. Array Arguments ..
!     ..
!
!  =====================================================================
!
!     .. Parameters ..
!     ..
!     .. Local Scalars ..
!     ..
!     .. External Functions ..
!     ..
!     .. External Subroutines ..
!     ..
!     .. Intrinsic Functions ..
!     ..
!
!     Test the input parameters.
!
!
!     Quick return if possible.
!
!
!     Set up the start points in  X  and  Y.
!
!
!     Start the operations. In this version the elements of the array AP
!     are accessed sequentially with one pass through AP.
!
!     First form  y := beta*y.
!
!
!        Form  y  when AP contains the upper triangle.
!
!
!        Form  y  when AP contains the lower triangle.
!
!
!
!     End of ZHPMV .
!
! END
use M_blas, only : zhpmv_=>ZHPMV
implicit none
      COMPLEX*16 ALPHA,BETA
      INTEGER INCX,INCY,N
      CHARACTER UPLO
      COMPLEX*16 AP(*),X(*),Y(*)
    call ZHPMV_(UPLO,N,ALPHA,AP,X,INCX,BETA,Y,INCY)
end subroutine ZHPMV

subroutine ZHPR2(UPLO,N,ALPHA,X,INCX,Y,INCY,AP)
! COMMENT --file zhpr2.3m_blas.man
!> \brief \b ZHPR2
!
!  =========== DOCUMENTATION ===========
!
! Online html documentation available at
!            http://www.netlib.org/lapack/explore-html/
!
!  Definition:
!  ===========
!
!       SUBROUTINE ZHPR2(UPLO,N,ALPHA,X,INCX,Y,INCY,AP)
!
!       .. Scalar Arguments ..
!       COMPLEX*16 ALPHA
!       INTEGER INCX,INCY,N
!       CHARACTER UPLO
!       ..
!       .. Array Arguments ..
!       COMPLEX*16 AP(*),X(*),Y(*)
!       ..
!
!
!> \par Purpose:
!  =============
!>
!> \verbatim
!>
!> ZHPR2  performs the hermitian rank 2 operation
!>
!>    A := alpha*x*y**H + conjg( alpha )*y*x**H + A,
!>
!> where alpha is a scalar, x and y are n element vectors and A is an
!> n by n hermitian matrix, supplied in packed form.
!> \endverbatim
!
!  Arguments:
!  ==========
!
!> \param[in] UPLO
!> \verbatim
!>          UPLO is CHARACTER*1
!>           On entry, UPLO specifies whether the upper or lower
!>           triangular part of the matrix A is supplied in the packed
!>           array AP as follows:
!>
!>              UPLO = 'U' or 'u'   The upper triangular part of A is
!>                                  supplied in AP.
!>
!>              UPLO = 'L' or 'l'   The lower triangular part of A is
!>                                  supplied in AP.
!> \endverbatim
!>
!> \param[in] N
!> \verbatim
!>          N is INTEGER
!>           On entry, N specifies the order of the matrix A.
!>           N must be at least zero.
!> \endverbatim
!>
!> \param[in] ALPHA
!> \verbatim
!>          ALPHA is COMPLEX*16
!>           On entry, ALPHA specifies the scalar alpha.
!> \endverbatim
!>
!> \param[in] X
!> \verbatim
!>          X is COMPLEX*16 array, dimension at least
!>           ( 1 + ( n - 1 )*abs( INCX ) ).
!>           Before entry, the incremented array X must contain the n
!>           element vector x.
!> \endverbatim
!>
!> \param[in] INCX
!> \verbatim
!>          INCX is INTEGER
!>           On entry, INCX specifies the increment for the elements of
!>           X. INCX must not be zero.
!> \endverbatim
!>
!> \param[in] Y
!> \verbatim
!>          Y is COMPLEX*16 array, dimension at least
!>           ( 1 + ( n - 1 )*abs( INCY ) ).
!>           Before entry, the incremented array Y must contain the n
!>           element vector y.
!> \endverbatim
!>
!> \param[in] INCY
!> \verbatim
!>          INCY is INTEGER
!>           On entry, INCY specifies the increment for the elements of
!>           Y. INCY must not be zero.
!> \endverbatim
!>
!> \param[in,out] AP
!> \verbatim
!>          AP is COMPLEX*16 array, dimension at least
!>           ( ( n*( n + 1 ) )/2 ).
!>           Before entry with  UPLO = 'U' or 'u', the array AP must
!>           contain the upper triangular part of the hermitian matrix
!>           packed sequentially, column by column, so that AP( 1 )
!>           contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 )
!>           and a( 2, 2 ) respectively, and so on. On exit, the array
!>           AP is overwritten by the upper triangular part of the
!>           updated matrix.
!>           Before entry with UPLO = 'L' or 'l', the array AP must
!>           contain the lower triangular part of the hermitian matrix
!>           packed sequentially, column by column, so that AP( 1 )
!>           contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 )
!>           and a( 3, 1 ) respectively, and so on. On exit, the array
!>           AP is overwritten by the lower triangular part of the
!>           updated matrix.
!>           Note that the imaginary parts of the diagonal elements need
!>           not be set, they are assumed to be zero, and on exit they
!>           are set to zero.
!> \endverbatim
!
!  Authors:
!  ========
!
!> \author Univ. of Tennessee
!> \author Univ. of California Berkeley
!> \author Univ. of Colorado Denver
!> \author NAG Ltd.
!
!> \date December 2016
!
!> \ingroup complex16_blas_level2
!
!> \par Further Details:
!  =====================
!>
!> \verbatim
!>
!>  Level 2 Blas routine.
!>
!>  -- Written on 22-October-1986.
!>     Jack Dongarra, Argonne National Lab.
!>     Jeremy Du Croz, Nag Central Office.
!>     Sven Hammarling, Nag Central Office.
!>     Richard Hanson, Sandia National Labs.
!> \endverbatim
!>
!  =====================================================================
!
!  -- Reference BLAS level2 routine (version 3.7.0) --
!  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
!  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
!     December 2016
!
!     .. Scalar Arguments ..
!     ..
!     .. Array Arguments ..
!     ..
!
!  =====================================================================
!
!     .. Parameters ..
!     ..
!     .. Local Scalars ..
!     ..
!     .. External Functions ..
!     ..
!     .. External Subroutines ..
!     ..
!     .. Intrinsic Functions ..
!     ..
!
!     Test the input parameters.
!
!
!     Quick return if possible.
!
!
!     Set up the start points in X and Y if the increments are not both
!     unity.
!
!
!     Start the operations. In this version the elements of the array AP
!     are accessed sequentially with one pass through AP.
!
!
!        Form  A  when upper triangle is stored in AP.
!
!
!        Form  A  when lower triangle is stored in AP.
!
!
!
!     End of ZHPR2 .
!
! END
use M_blas, only : zhpr2_=>ZHPR2
implicit none
      COMPLEX*16 ALPHA
      INTEGER INCX,INCY,N
      CHARACTER UPLO
      COMPLEX*16 AP(*),X(*),Y(*)
    call ZHPR2_(UPLO,N,ALPHA,X,INCX,Y,INCY,AP)
end subroutine ZHPR2

subroutine ZHPR(UPLO,N,ALPHA,X,INCX,AP)
! COMMENT --file zhpr.3m_blas.man
!> \brief \b ZHPR
!
!  =========== DOCUMENTATION ===========
!
! Online html documentation available at
!            http://www.netlib.org/lapack/explore-html/
!
!  Definition:
!  ===========
!
!       SUBROUTINE ZHPR(UPLO,N,ALPHA,X,INCX,AP)
!
!       .. Scalar Arguments ..
!       DOUBLE PRECISION ALPHA
!       INTEGER INCX,N
!       CHARACTER UPLO
!       ..
!       .. Array Arguments ..
!       COMPLEX*16 AP(*),X(*)
!       ..
!
!
!> \par Purpose:
!  =============
!>
!> \verbatim
!>
!> ZHPR    performs the hermitian rank 1 operation
!>
!>    A := alpha*x*x**H + A,
!>
!> where alpha is a real scalar, x is an n element vector and A is an
!> n by n hermitian matrix, supplied in packed form.
!> \endverbatim
!
!  Arguments:
!  ==========
!
!> \param[in] UPLO
!> \verbatim
!>          UPLO is CHARACTER*1
!>           On entry, UPLO specifies whether the upper or lower
!>           triangular part of the matrix A is supplied in the packed
!>           array AP as follows:
!>
!>              UPLO = 'U' or 'u'   The upper triangular part of A is
!>                                  supplied in AP.
!>
!>              UPLO = 'L' or 'l'   The lower triangular part of A is
!>                                  supplied in AP.
!> \endverbatim
!>
!> \param[in] N
!> \verbatim
!>          N is INTEGER
!>           On entry, N specifies the order of the matrix A.
!>           N must be at least zero.
!> \endverbatim
!>
!> \param[in] ALPHA
!> \verbatim
!>          ALPHA is DOUBLE PRECISION.
!>           On entry, ALPHA specifies the scalar alpha.
!> \endverbatim
!>
!> \param[in] X
!> \verbatim
!>          X is COMPLEX*16 array, dimension at least
!>           ( 1 + ( n - 1 )*abs( INCX ) ).
!>           Before entry, the incremented array X must contain the n
!>           element vector x.
!> \endverbatim
!>
!> \param[in] INCX
!> \verbatim
!>          INCX is INTEGER
!>           On entry, INCX specifies the increment for the elements of
!>           X. INCX must not be zero.
!> \endverbatim
!>
!> \param[in,out] AP
!> \verbatim
!>          AP is COMPLEX*16 array, dimension at least
!>           ( ( n*( n + 1 ) )/2 ).
!>           Before entry with  UPLO = 'U' or 'u', the array AP must
!>           contain the upper triangular part of the hermitian matrix
!>           packed sequentially, column by column, so that AP( 1 )
!>           contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 )
!>           and a( 2, 2 ) respectively, and so on. On exit, the array
!>           AP is overwritten by the upper triangular part of the
!>           updated matrix.
!>           Before entry with UPLO = 'L' or 'l', the array AP must
!>           contain the lower triangular part of the hermitian matrix
!>           packed sequentially, column by column, so that AP( 1 )
!>           contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 )
!>           and a( 3, 1 ) respectively, and so on. On exit, the array
!>           AP is overwritten by the lower triangular part of the
!>           updated matrix.
!>           Note that the imaginary parts of the diagonal elements need
!>           not be set, they are assumed to be zero, and on exit they
!>           are set to zero.
!> \endverbatim
!
!  Authors:
!  ========
!
!> \author Univ. of Tennessee
!> \author Univ. of California Berkeley
!> \author Univ. of Colorado Denver
!> \author NAG Ltd.
!
!> \date December 2016
!
!> \ingroup complex16_blas_level2
!
!> \par Further Details:
!  =====================
!>
!> \verbatim
!>
!>  Level 2 Blas routine.
!>
!>  -- Written on 22-October-1986.
!>     Jack Dongarra, Argonne National Lab.
!>     Jeremy Du Croz, Nag Central Office.
!>     Sven Hammarling, Nag Central Office.
!>     Richard Hanson, Sandia National Labs.
!> \endverbatim
!>
!  =====================================================================
!
!  -- Reference BLAS level2 routine (version 3.7.0) --
!  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
!  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
!     December 2016
!
!     .. Scalar Arguments ..
!     ..
!     .. Array Arguments ..
!     ..
!
!  =====================================================================
!
!     .. Parameters ..
!     ..
!     .. Local Scalars ..
!     ..
!     .. External Functions ..
!     ..
!     .. External Subroutines ..
!     ..
!     .. Intrinsic Functions ..
!     ..
!
!     Test the input parameters.
!
!
!     Quick return if possible.
!
!
!     Set the start point in X if the increment is not unity.
!
!
!     Start the operations. In this version the elements of the array AP
!     are accessed sequentially with one pass through AP.
!
!
!        Form  A  when upper triangle is stored in AP.
!
!
!        Form  A  when lower triangle is stored in AP.
!
!
!
!     End of ZHPR  .
!
! END
use M_blas, only : zhpr_=>ZHPR
implicit none
      DOUBLE PRECISION ALPHA
      INTEGER INCX,N
      CHARACTER UPLO
      COMPLEX*16 AP(*),X(*)
    call ZHPR_(UPLO,N,ALPHA,X,INCX,AP)
end subroutine ZHPR

subroutine ZROTG(CA,CB,C,S)
! COMMENT --file zrotg.3m_blas.man
!> \brief \b ZROTG
!
!  =========== DOCUMENTATION ===========
!
! Online html documentation available at
!            http://www.netlib.org/lapack/explore-html/
!
!  Definition:
!  ===========
!
!       SUBROUTINE ZROTG(CA,CB,C,S)
!
!       .. Scalar Arguments ..
!       COMPLEX*16 CA,CB,S
!       DOUBLE PRECISION C
!       ..
!
!
!> \par Purpose:
!  =============
!>
!> \verbatim
!>
!>    ZROTG determines a double complex Givens rotation.
!> \endverbatim
!
!  Arguments:
!  ==========
!
!> \param[in,out] CA
!> \verbatim
!>          CA is COMPLEX*16
!> \endverbatim
!>
!> \param[in] CB
!> \verbatim
!>          CB is COMPLEX*16
!> \endverbatim
!>
!> \param[out] C
!> \verbatim
!>          C is DOUBLE PRECISION
!> \endverbatim
!>
!> \param[out] S
!> \verbatim
!>          S is COMPLEX*16
!> \endverbatim
!
!  Authors:
!  ========
!
!> \author Univ. of Tennessee
!> \author Univ. of California Berkeley
!> \author Univ. of Colorado Denver
!> \author NAG Ltd.
!
!> \date November 2017
!
!> \ingroup complex16_blas_level1
!
!  =====================================================================
!
!  -- Reference BLAS level1 routine (version 3.8.0) --
!  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
!  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
!     November 2017
!
!     .. Scalar Arguments ..
!     ..
!
!  =====================================================================
!
!     .. Local Scalars ..
!     ..
!     .. Intrinsic Functions ..
!     ..
! END
use M_blas, only : zrotg_=>ZROTG
implicit none
      COMPLEX*16 CA,CB,S
      DOUBLE PRECISION C
    call ZROTG_(CA,CB,C,S)
end subroutine ZROTG

subroutine ZSCAL(N,ZA,ZX,INCX)
! COMMENT --file zscal.3m_blas.man
!> \brief \b ZSCAL
!
!  =========== DOCUMENTATION ===========
!
! Online html documentation available at
!            http://www.netlib.org/lapack/explore-html/
!
!  Definition:
!  ===========
!
!       SUBROUTINE ZSCAL(N,ZA,ZX,INCX)
!
!       .. Scalar Arguments ..
!       COMPLEX*16 ZA
!       INTEGER INCX,N
!       ..
!       .. Array Arguments ..
!       COMPLEX*16 ZX(*)
!       ..
!
!
!> \par Purpose:
!  =============
!>
!> \verbatim
!>
!>    ZSCAL scales a vector by a constant.
!> \endverbatim
!
!  Arguments:
!  ==========
!
!> \param[in] N
!> \verbatim
!>          N is INTEGER
!>         number of elements in input vector(s)
!> \endverbatim
!>
!> \param[in] ZA
!> \verbatim
!>          ZA is COMPLEX*16
!>           On entry, ZA specifies the scalar alpha.
!> \endverbatim
!>
!> \param[in,out] ZX
!> \verbatim
!>          ZX is COMPLEX*16 array, dimension ( 1 + ( N - 1 )*abs( INCX ) )
!> \endverbatim
!>
!> \param[in] INCX
!> \verbatim
!>          INCX is INTEGER
!>         storage spacing between elements of ZX
!> \endverbatim
!
!  Authors:
!  ========
!
!> \author Univ. of Tennessee
!> \author Univ. of California Berkeley
!> \author Univ. of Colorado Denver
!> \author NAG Ltd.
!
!> \date November 2017
!
!> \ingroup complex16_blas_level1
!
!> \par Further Details:
!  =====================
!>
!> \verbatim
!>
!>     jack dongarra, 3/11/78.
!>     modified 3/93 to return if incx .le. 0.
!>     modified 12/3/93, array(1) declarations changed to array(*)
!> \endverbatim
!>
!  =====================================================================
!
!  -- Reference BLAS level1 routine (version 3.8.0) --
!  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
!  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
!     November 2017
!
!     .. Scalar Arguments ..
!     ..
!     .. Array Arguments ..
!     ..
!
!  =====================================================================
!
!     .. Local Scalars ..
!     ..
!
!        code for increment equal to 1
!
!
!        code for increment not equal to 1
!
! END
use M_blas, only : zscal_=>ZSCAL
implicit none
      COMPLEX*16 ZA
      INTEGER INCX,N
      COMPLEX*16 ZX(*)
    call ZSCAL_(N,ZA,ZX,INCX)
end subroutine ZSCAL

subroutine ZSWAP(N,ZX,INCX,ZY,INCY)
! COMMENT --file zswap.3m_blas.man
!> \brief \b ZSWAP
!
!  =========== DOCUMENTATION ===========
!
! Online html documentation available at
!            http://www.netlib.org/lapack/explore-html/
!
!  Definition:
!  ===========
!
!       SUBROUTINE ZSWAP(N,ZX,INCX,ZY,INCY)
!
!       .. Scalar Arguments ..
!       INTEGER INCX,INCY,N
!       ..
!       .. Array Arguments ..
!       COMPLEX*16 ZX(*),ZY(*)
!       ..
!
!
!> \par Purpose:
!  =============
!>
!> \verbatim
!>
!>    ZSWAP interchanges two vectors.
!> \endverbatim
!
!  Arguments:
!  ==========
!
!> \param[in] N
!> \verbatim
!>          N is INTEGER
!>         number of elements in input vector(s)
!> \endverbatim
!>
!> \param[in,out] ZX
!> \verbatim
!>          ZX is COMPLEX*16 array, dimension ( 1 + ( N - 1 )*abs( INCX ) )
!> \endverbatim
!>
!> \param[in] INCX
!> \verbatim
!>          INCX is INTEGER
!>         storage spacing between elements of ZX
!> \endverbatim
!>
!> \param[in,out] ZY
!> \verbatim
!>          ZY is COMPLEX*16 array, dimension ( 1 + ( N - 1 )*abs( INCY ) )
!> \endverbatim
!>
!> \param[in] INCY
!> \verbatim
!>          INCY is INTEGER
!>         storage spacing between elements of ZY
!> \endverbatim
!
!  Authors:
!  ========
!
!> \author Univ. of Tennessee
!> \author Univ. of California Berkeley
!> \author Univ. of Colorado Denver
!> \author NAG Ltd.
!
!> \date November 2017
!
!> \ingroup complex16_blas_level1
!
!> \par Further Details:
!  =====================
!>
!> \verbatim
!>
!>     jack dongarra, 3/11/78.
!>     modified 12/3/93, array(1) declarations changed to array(*)
!> \endverbatim
!>
!  =====================================================================
!
!  -- Reference BLAS level1 routine (version 3.8.0) --
!  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
!  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
!     November 2017
!
!     .. Scalar Arguments ..
!     ..
!     .. Array Arguments ..
!     ..
!
!  =====================================================================
!
!     .. Local Scalars ..
!     ..
!
!       code for both increments equal to 1
!
!       code for unequal increments or equal increments not equal
!         to 1
!
! END
use M_blas, only : zswap_=>ZSWAP
implicit none
      INTEGER INCX,INCY,N
      COMPLEX*16 ZX(*),ZY(*)
    call ZSWAP_(N,ZX,INCX,ZY,INCY)
end subroutine ZSWAP

subroutine ZSYMM(SIDE,UPLO,M,N,ALPHA,A,LDA,B,LDB,BETA,C,LDC)
! COMMENT --file zsymm.3m_blas.man
!> \brief \b ZSYMM
!
!  =========== DOCUMENTATION ===========
!
! Online html documentation available at
!            http://www.netlib.org/lapack/explore-html/
!
!  Definition:
!  ===========
!
!       SUBROUTINE ZSYMM(SIDE,UPLO,M,N,ALPHA,A,LDA,B,LDB,BETA,C,LDC)
!
!       .. Scalar Arguments ..
!       COMPLEX*16 ALPHA,BETA
!       INTEGER LDA,LDB,LDC,M,N
!       CHARACTER SIDE,UPLO
!       ..
!       .. Array Arguments ..
!       COMPLEX*16 A(LDA,*),B(LDB,*),C(LDC,*)
!       ..
!
!
!> \par Purpose:
!  =============
!>
!> \verbatim
!>
!> ZSYMM  performs one of the matrix-matrix operations
!>
!>    C := alpha*A*B + beta*C,
!>
!> or
!>
!>    C := alpha*B*A + beta*C,
!>
!> where  alpha and beta are scalars, A is a symmetric matrix and  B and
!> C are m by n matrices.
!> \endverbatim
!
!  Arguments:
!  ==========
!
!> \param[in] SIDE
!> \verbatim
!>          SIDE is CHARACTER*1
!>           On entry,  SIDE  specifies whether  the  symmetric matrix  A
!>           appears on the  left or right  in the  operation as follows:
!>
!>              SIDE = 'L' or 'l'   C := alpha*A*B + beta*C,
!>
!>              SIDE = 'R' or 'r'   C := alpha*B*A + beta*C,
!> \endverbatim
!>
!> \param[in] UPLO
!> \verbatim
!>          UPLO is CHARACTER*1
!>           On  entry,   UPLO  specifies  whether  the  upper  or  lower
!>           triangular  part  of  the  symmetric  matrix   A  is  to  be
!>           referenced as follows:
!>
!>              UPLO = 'U' or 'u'   Only the upper triangular part of the
!>                                  symmetric matrix is to be referenced.
!>
!>              UPLO = 'L' or 'l'   Only the lower triangular part of the
!>                                  symmetric matrix is to be referenced.
!> \endverbatim
!>
!> \param[in] M
!> \verbatim
!>          M is INTEGER
!>           On entry,  M  specifies the number of rows of the matrix  C.
!>           M  must be at least zero.
!> \endverbatim
!>
!> \param[in] N
!> \verbatim
!>          N is INTEGER
!>           On entry, N specifies the number of columns of the matrix C.
!>           N  must be at least zero.
!> \endverbatim
!>
!> \param[in] ALPHA
!> \verbatim
!>          ALPHA is COMPLEX*16
!>           On entry, ALPHA specifies the scalar alpha.
!> \endverbatim
!>
!> \param[in] A
!> \verbatim
!>          A is COMPLEX*16 array, dimension ( LDA, ka ), where ka is
!>           m  when  SIDE = 'L' or 'l'  and is n  otherwise.
!>           Before entry  with  SIDE = 'L' or 'l',  the  m by m  part of
!>           the array  A  must contain the  symmetric matrix,  such that
!>           when  UPLO = 'U' or 'u', the leading m by m upper triangular
!>           part of the array  A  must contain the upper triangular part
!>           of the  symmetric matrix and the  strictly  lower triangular
!>           part of  A  is not referenced,  and when  UPLO = 'L' or 'l',
!>           the leading  m by m  lower triangular part  of the  array  A
!>           must  contain  the  lower triangular part  of the  symmetric
!>           matrix and the  strictly upper triangular part of  A  is not
!>           referenced.
!>           Before entry  with  SIDE = 'R' or 'r',  the  n by n  part of
!>           the array  A  must contain the  symmetric matrix,  such that
!>           when  UPLO = 'U' or 'u', the leading n by n upper triangular
!>           part of the array  A  must contain the upper triangular part
!>           of the  symmetric matrix and the  strictly  lower triangular
!>           part of  A  is not referenced,  and when  UPLO = 'L' or 'l',
!>           the leading  n by n  lower triangular part  of the  array  A
!>           must  contain  the  lower triangular part  of the  symmetric
!>           matrix and the  strictly upper triangular part of  A  is not
!>           referenced.
!> \endverbatim
!>
!> \param[in] LDA
!> \verbatim
!>          LDA is INTEGER
!>           On entry, LDA specifies the first dimension of A as declared
!>           in the  calling (sub) program. When  SIDE = 'L' or 'l'  then
!>           LDA must be at least  max( 1, m ), otherwise  LDA must be at
!>           least max( 1, n ).
!> \endverbatim
!>
!> \param[in] B
!> \verbatim
!>          B is COMPLEX*16 array, dimension ( LDB, N )
!>           Before entry, the leading  m by n part of the array  B  must
!>           contain the matrix B.
!> \endverbatim
!>
!> \param[in] LDB
!> \verbatim
!>          LDB is INTEGER
!>           On entry, LDB specifies the first dimension of B as declared
!>           in  the  calling  (sub)  program.   LDB  must  be  at  least
!>           max( 1, m ).
!> \endverbatim
!>
!> \param[in] BETA
!> \verbatim
!>          BETA is COMPLEX*16
!>           On entry,  BETA  specifies the scalar  beta.  When  BETA  is
!>           supplied as zero then C need not be set on input.
!> \endverbatim
!>
!> \param[in,out] C
!> \verbatim
!>          C is COMPLEX*16 array, dimension ( LDC, N )
!>           Before entry, the leading  m by n  part of the array  C must
!>           contain the matrix  C,  except when  beta  is zero, in which
!>           case C need not be set on entry.
!>           On exit, the array  C  is overwritten by the  m by n updated
!>           matrix.
!> \endverbatim
!>
!> \param[in] LDC
!> \verbatim
!>          LDC is INTEGER
!>           On entry, LDC specifies the first dimension of C as declared
!>           in  the  calling  (sub)  program.   LDC  must  be  at  least
!>           max( 1, m ).
!> \endverbatim
!
!  Authors:
!  ========
!
!> \author Univ. of Tennessee
!> \author Univ. of California Berkeley
!> \author Univ. of Colorado Denver
!> \author NAG Ltd.
!
!> \date December 2016
!
!> \ingroup complex16_blas_level3
!
!> \par Further Details:
!  =====================
!>
!> \verbatim
!>
!>  Level 3 Blas routine.
!>
!>  -- Written on 8-February-1989.
!>     Jack Dongarra, Argonne National Laboratory.
!>     Iain Duff, AERE Harwell.
!>     Jeremy Du Croz, Numerical Algorithms Group Ltd.
!>     Sven Hammarling, Numerical Algorithms Group Ltd.
!> \endverbatim
!>
!  =====================================================================
!
!  -- Reference BLAS level3 routine (version 3.7.0) --
!  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
!  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
!     December 2016
!
!     .. Scalar Arguments ..
!     ..
!     .. Array Arguments ..
!     ..
!
!  =====================================================================
!
!     .. External Functions ..
!     ..
!     .. External Subroutines ..
!     ..
!     .. Intrinsic Functions ..
!     ..
!     .. Local Scalars ..
!     ..
!     .. Parameters ..
!     ..
!
!     Set NROWA as the number of rows of A.
!
!
!     Test the input parameters.
!
!
!     Quick return if possible.
!
!
!     And when  alpha.eq.zero.
!
!
!     Start the operations.
!
!
!        Form  C := alpha*A*B + beta*C.
!
!
!        Form  C := alpha*B*A + beta*C.
!
!
!
!     End of ZSYMM .
!
! END
use M_blas, only : zsymm_=>ZSYMM
implicit none
      COMPLEX*16 ALPHA,BETA
      INTEGER LDA,LDB,LDC,M,N
      CHARACTER SIDE,UPLO
      COMPLEX*16 A(LDA,*),B(LDB,*),C(LDC,*)
    call ZSYMM_(SIDE,UPLO,M,N,ALPHA,A,LDA,B,LDB,BETA,C,LDC)
end subroutine ZSYMM

subroutine ZSYR2K(UPLO,TRANS,N,K,ALPHA,A,LDA,B,LDB,BETA,C,LDC)
! COMMENT --file zsyr2k.3m_blas.man
!> \brief \b ZSYR2K
!
!  =========== DOCUMENTATION ===========
!
! Online html documentation available at
!            http://www.netlib.org/lapack/explore-html/
!
!  Definition:
!  ===========
!
!       SUBROUTINE ZSYR2K(UPLO,TRANS,N,K,ALPHA,A,LDA,B,LDB,BETA,C,LDC)
!
!       .. Scalar Arguments ..
!       COMPLEX*16 ALPHA,BETA
!       INTEGER K,LDA,LDB,LDC,N
!       CHARACTER TRANS,UPLO
!       ..
!       .. Array Arguments ..
!       COMPLEX*16 A(LDA,*),B(LDB,*),C(LDC,*)
!       ..
!
!
!> \par Purpose:
!  =============
!>
!> \verbatim
!>
!> ZSYR2K  performs one of the symmetric rank 2k operations
!>
!>    C := alpha*A*B**T + alpha*B*A**T + beta*C,
!>
!> or
!>
!>    C := alpha*A**T*B + alpha*B**T*A + beta*C,
!>
!> where  alpha and beta  are scalars,  C is an  n by n symmetric matrix
!> and  A and B  are  n by k  matrices  in the  first  case  and  k by n
!> matrices in the second case.
!> \endverbatim
!
!  Arguments:
!  ==========
!
!> \param[in] UPLO
!> \verbatim
!>          UPLO is CHARACTER*1
!>           On  entry,   UPLO  specifies  whether  the  upper  or  lower
!>           triangular  part  of the  array  C  is to be  referenced  as
!>           follows:
!>
!>              UPLO = 'U' or 'u'   Only the  upper triangular part of  C
!>                                  is to be referenced.
!>
!>              UPLO = 'L' or 'l'   Only the  lower triangular part of  C
!>                                  is to be referenced.
!> \endverbatim
!>
!> \param[in] TRANS
!> \verbatim
!>          TRANS is CHARACTER*1
!>           On entry,  TRANS  specifies the operation to be performed as
!>           follows:
!>
!>              TRANS = 'N' or 'n'    C := alpha*A*B**T + alpha*B*A**T +
!>                                         beta*C.
!>
!>              TRANS = 'T' or 't'    C := alpha*A**T*B + alpha*B**T*A +
!>                                         beta*C.
!> \endverbatim
!>
!> \param[in] N
!> \verbatim
!>          N is INTEGER
!>           On entry,  N specifies the order of the matrix C.  N must be
!>           at least zero.
!> \endverbatim
!>
!> \param[in] K
!> \verbatim
!>          K is INTEGER
!>           On entry with  TRANS = 'N' or 'n',  K  specifies  the number
!>           of  columns  of the  matrices  A and B,  and on  entry  with
!>           TRANS = 'T' or 't',  K  specifies  the number of rows of the
!>           matrices  A and B.  K must be at least zero.
!> \endverbatim
!>
!> \param[in] ALPHA
!> \verbatim
!>          ALPHA is COMPLEX*16
!>           On entry, ALPHA specifies the scalar alpha.
!> \endverbatim
!>
!> \param[in] A
!> \verbatim
!>          A is COMPLEX*16 array, dimension ( LDA, ka ), where ka is
!>           k  when  TRANS = 'N' or 'n',  and is  n  otherwise.
!>           Before entry with  TRANS = 'N' or 'n',  the  leading  n by k
!>           part of the array  A  must contain the matrix  A,  otherwise
!>           the leading  k by n  part of the array  A  must contain  the
!>           matrix A.
!> \endverbatim
!>
!> \param[in] LDA
!> \verbatim
!>          LDA is INTEGER
!>           On entry, LDA specifies the first dimension of A as declared
!>           in  the  calling  (sub)  program.   When  TRANS = 'N' or 'n'
!>           then  LDA must be at least  max( 1, n ), otherwise  LDA must
!>           be at least  max( 1, k ).
!> \endverbatim
!>
!> \param[in] B
!> \verbatim
!>          B is COMPLEX*16 array, dimension ( LDB, kb ), where kb is
!>           k  when  TRANS = 'N' or 'n',  and is  n  otherwise.
!>           Before entry with  TRANS = 'N' or 'n',  the  leading  n by k
!>           part of the array  B  must contain the matrix  B,  otherwise
!>           the leading  k by n  part of the array  B  must contain  the
!>           matrix B.
!> \endverbatim
!>
!> \param[in] LDB
!> \verbatim
!>          LDB is INTEGER
!>           On entry, LDB specifies the first dimension of B as declared
!>           in  the  calling  (sub)  program.   When  TRANS = 'N' or 'n'
!>           then  LDB must be at least  max( 1, n ), otherwise  LDB must
!>           be at least  max( 1, k ).
!> \endverbatim
!>
!> \param[in] BETA
!> \verbatim
!>          BETA is COMPLEX*16
!>           On entry, BETA specifies the scalar beta.
!> \endverbatim
!>
!> \param[in,out] C
!> \verbatim
!>          C is COMPLEX*16 array, dimension ( LDC, N )
!>           Before entry  with  UPLO = 'U' or 'u',  the leading  n by n
!>           upper triangular part of the array C must contain the upper
!>           triangular part  of the  symmetric matrix  and the strictly
!>           lower triangular part of C is not referenced.  On exit, the
!>           upper triangular part of the array  C is overwritten by the
!>           upper triangular part of the updated matrix.
!>           Before entry  with  UPLO = 'L' or 'l',  the leading  n by n
!>           lower triangular part of the array C must contain the lower
!>           triangular part  of the  symmetric matrix  and the strictly
!>           upper triangular part of C is not referenced.  On exit, the
!>           lower triangular part of the array  C is overwritten by the
!>           lower triangular part of the updated matrix.
!> \endverbatim
!>
!> \param[in] LDC
!> \verbatim
!>          LDC is INTEGER
!>           On entry, LDC specifies the first dimension of C as declared
!>           in  the  calling  (sub)  program.   LDC  must  be  at  least
!>           max( 1, n ).
!> \endverbatim
!
!  Authors:
!  ========
!
!> \author Univ. of Tennessee
!> \author Univ. of California Berkeley
!> \author Univ. of Colorado Denver
!> \author NAG Ltd.
!
!> \date December 2016
!
!> \ingroup complex16_blas_level3
!
!> \par Further Details:
!  =====================
!>
!> \verbatim
!>
!>  Level 3 Blas routine.
!>
!>  -- Written on 8-February-1989.
!>     Jack Dongarra, Argonne National Laboratory.
!>     Iain Duff, AERE Harwell.
!>     Jeremy Du Croz, Numerical Algorithms Group Ltd.
!>     Sven Hammarling, Numerical Algorithms Group Ltd.
!> \endverbatim
!>
!  =====================================================================
!
!  -- Reference BLAS level3 routine (version 3.7.0) --
!  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
!  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
!     December 2016
!
!     .. Scalar Arguments ..
!     ..
!     .. Array Arguments ..
!     ..
!
!  =====================================================================
!
!     .. External Functions ..
!     ..
!     .. External Subroutines ..
!     ..
!     .. Intrinsic Functions ..
!     ..
!     .. Local Scalars ..
!     ..
!     .. Parameters ..
!     ..
!
!     Test the input parameters.
!
!
!
!     Quick return if possible.
!
!
!     And when  alpha.eq.zero.
!
!
!     Start the operations.
!
!
!        Form  C := alpha*A*B**T + alpha*B*A**T + C.
!
!
!        Form  C := alpha*A**T*B + alpha*B**T*A + C.
!
!
!
!     End of ZSYR2K.
!
! END
use M_blas, only : zsyr2k_=>ZSYR2K
implicit none
      COMPLEX*16 ALPHA,BETA
      INTEGER K,LDA,LDB,LDC,N
      CHARACTER TRANS,UPLO
      COMPLEX*16 A(LDA,*),B(LDB,*),C(LDC,*)
    call ZSYR2K_(UPLO,TRANS,N,K,ALPHA,A,LDA,B,LDB,BETA,C,LDC)
end subroutine ZSYR2K

subroutine ZSYRK(UPLO,TRANS,N,K,ALPHA,A,LDA,BETA,C,LDC)
! COMMENT --file zsyrk.3m_blas.man
!> \brief \b ZSYRK
!
!  =========== DOCUMENTATION ===========
!
! Online html documentation available at
!            http://www.netlib.org/lapack/explore-html/
!
!  Definition:
!  ===========
!
!       SUBROUTINE ZSYRK(UPLO,TRANS,N,K,ALPHA,A,LDA,BETA,C,LDC)
!
!       .. Scalar Arguments ..
!       COMPLEX*16 ALPHA,BETA
!       INTEGER K,LDA,LDC,N
!       CHARACTER TRANS,UPLO
!       ..
!       .. Array Arguments ..
!       COMPLEX*16 A(LDA,*),C(LDC,*)
!       ..
!
!
!> \par Purpose:
!  =============
!>
!> \verbatim
!>
!> ZSYRK  performs one of the symmetric rank k operations
!>
!>    C := alpha*A*A**T + beta*C,
!>
!> or
!>
!>    C := alpha*A**T*A + beta*C,
!>
!> where  alpha and beta  are scalars,  C is an  n by n symmetric matrix
!> and  A  is an  n by k  matrix in the first case and a  k by n  matrix
!> in the second case.
!> \endverbatim
!
!  Arguments:
!  ==========
!
!> \param[in] UPLO
!> \verbatim
!>          UPLO is CHARACTER*1
!>           On  entry,   UPLO  specifies  whether  the  upper  or  lower
!>           triangular  part  of the  array  C  is to be  referenced  as
!>           follows:
!>
!>              UPLO = 'U' or 'u'   Only the  upper triangular part of  C
!>                                  is to be referenced.
!>
!>              UPLO = 'L' or 'l'   Only the  lower triangular part of  C
!>                                  is to be referenced.
!> \endverbatim
!>
!> \param[in] TRANS
!> \verbatim
!>          TRANS is CHARACTER*1
!>           On entry,  TRANS  specifies the operation to be performed as
!>           follows:
!>
!>              TRANS = 'N' or 'n'   C := alpha*A*A**T + beta*C.
!>
!>              TRANS = 'T' or 't'   C := alpha*A**T*A + beta*C.
!> \endverbatim
!>
!> \param[in] N
!> \verbatim
!>          N is INTEGER
!>           On entry,  N specifies the order of the matrix C.  N must be
!>           at least zero.
!> \endverbatim
!>
!> \param[in] K
!> \verbatim
!>          K is INTEGER
!>           On entry with  TRANS = 'N' or 'n',  K  specifies  the number
!>           of  columns   of  the   matrix   A,   and  on   entry   with
!>           TRANS = 'T' or 't',  K  specifies  the number of rows of the
!>           matrix A.  K must be at least zero.
!> \endverbatim
!>
!> \param[in] ALPHA
!> \verbatim
!>          ALPHA is COMPLEX*16
!>           On entry, ALPHA specifies the scalar alpha.
!> \endverbatim
!>
!> \param[in] A
!> \verbatim
!>          A is COMPLEX*16 array, dimension ( LDA, ka ), where ka is
!>           k  when  TRANS = 'N' or 'n',  and is  n  otherwise.
!>           Before entry with  TRANS = 'N' or 'n',  the  leading  n by k
!>           part of the array  A  must contain the matrix  A,  otherwise
!>           the leading  k by n  part of the array  A  must contain  the
!>           matrix A.
!> \endverbatim
!>
!> \param[in] LDA
!> \verbatim
!>          LDA is INTEGER
!>           On entry, LDA specifies the first dimension of A as declared
!>           in  the  calling  (sub)  program.   When  TRANS = 'N' or 'n'
!>           then  LDA must be at least  max( 1, n ), otherwise  LDA must
!>           be at least  max( 1, k ).
!> \endverbatim
!>
!> \param[in] BETA
!> \verbatim
!>          BETA is COMPLEX*16
!>           On entry, BETA specifies the scalar beta.
!> \endverbatim
!>
!> \param[in,out] C
!> \verbatim
!>          C is COMPLEX*16 array, dimension ( LDC, N )
!>           Before entry  with  UPLO = 'U' or 'u',  the leading  n by n
!>           upper triangular part of the array C must contain the upper
!>           triangular part  of the  symmetric matrix  and the strictly
!>           lower triangular part of C is not referenced.  On exit, the
!>           upper triangular part of the array  C is overwritten by the
!>           upper triangular part of the updated matrix.
!>           Before entry  with  UPLO = 'L' or 'l',  the leading  n by n
!>           lower triangular part of the array C must contain the lower
!>           triangular part  of the  symmetric matrix  and the strictly
!>           upper triangular part of C is not referenced.  On exit, the
!>           lower triangular part of the array  C is overwritten by the
!>           lower triangular part of the updated matrix.
!> \endverbatim
!>
!> \param[in] LDC
!> \verbatim
!>          LDC is INTEGER
!>           On entry, LDC specifies the first dimension of C as declared
!>           in  the  calling  (sub)  program.   LDC  must  be  at  least
!>           max( 1, n ).
!> \endverbatim
!
!  Authors:
!  ========
!
!> \author Univ. of Tennessee
!> \author Univ. of California Berkeley
!> \author Univ. of Colorado Denver
!> \author NAG Ltd.
!
!> \date December 2016
!
!> \ingroup complex16_blas_level3
!
!> \par Further Details:
!  =====================
!>
!> \verbatim
!>
!>  Level 3 Blas routine.
!>
!>  -- Written on 8-February-1989.
!>     Jack Dongarra, Argonne National Laboratory.
!>     Iain Duff, AERE Harwell.
!>     Jeremy Du Croz, Numerical Algorithms Group Ltd.
!>     Sven Hammarling, Numerical Algorithms Group Ltd.
!> \endverbatim
!>
!  =====================================================================
!
!  -- Reference BLAS level3 routine (version 3.7.0) --
!  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
!  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
!     December 2016
!
!     .. Scalar Arguments ..
!     ..
!     .. Array Arguments ..
!     ..
!
!  =====================================================================
!
!     .. External Functions ..
!     ..
!     .. External Subroutines ..
!     ..
!     .. Intrinsic Functions ..
!     ..
!     .. Local Scalars ..
!     ..
!     .. Parameters ..
!     ..
!
!     Test the input parameters.
!
!
!
!     Quick return if possible.
!
!
!     And when  alpha.eq.zero.
!
!
!     Start the operations.
!
!
!        Form  C := alpha*A*A**T + beta*C.
!
!
!        Form  C := alpha*A**T*A + beta*C.
!
!
!
!     End of ZSYRK .
!
! END
use M_blas, only : zsyrk_=>ZSYRK
implicit none
      COMPLEX*16 ALPHA,BETA
      INTEGER K,LDA,LDC,N
      CHARACTER TRANS,UPLO
      COMPLEX*16 A(LDA,*),C(LDC,*)
    call ZSYRK_(UPLO,TRANS,N,K,ALPHA,A,LDA,BETA,C,LDC)
end subroutine ZSYRK

subroutine ZTBMV(UPLO,TRANS,DIAG,N,K,A,LDA,X,INCX)
! COMMENT --file ztbmv.3m_blas.man
!> \brief \b ZTBMV
!
!  =========== DOCUMENTATION ===========
!
! Online html documentation available at
!            http://www.netlib.org/lapack/explore-html/
!
!  Definition:
!  ===========
!
!       SUBROUTINE ZTBMV(UPLO,TRANS,DIAG,N,K,A,LDA,X,INCX)
!
!       .. Scalar Arguments ..
!       INTEGER INCX,K,LDA,N
!       CHARACTER DIAG,TRANS,UPLO
!       ..
!       .. Array Arguments ..
!       COMPLEX*16 A(LDA,*),X(*)
!       ..
!
!
!> \par Purpose:
!  =============
!>
!> \verbatim
!>
!> ZTBMV  performs one of the matrix-vector operations
!>
!>    x := A*x,   or   x := A**T*x,   or   x := A**H*x,
!>
!> where x is an n element vector and  A is an n by n unit, or non-unit,
!> upper or lower triangular band matrix, with ( k + 1 ) diagonals.
!> \endverbatim
!
!  Arguments:
!  ==========
!
!> \param[in] UPLO
!> \verbatim
!>          UPLO is CHARACTER*1
!>           On entry, UPLO specifies whether the matrix is an upper or
!>           lower triangular matrix as follows:
!>
!>              UPLO = 'U' or 'u'   A is an upper triangular matrix.
!>
!>              UPLO = 'L' or 'l'   A is a lower triangular matrix.
!> \endverbatim
!>
!> \param[in] TRANS
!> \verbatim
!>          TRANS is CHARACTER*1
!>           On entry, TRANS specifies the operation to be performed as
!>           follows:
!>
!>              TRANS = 'N' or 'n'   x := A*x.
!>
!>              TRANS = 'T' or 't'   x := A**T*x.
!>
!>              TRANS = 'C' or 'c'   x := A**H*x.
!> \endverbatim
!>
!> \param[in] DIAG
!> \verbatim
!>          DIAG is CHARACTER*1
!>           On entry, DIAG specifies whether or not A is unit
!>           triangular as follows:
!>
!>              DIAG = 'U' or 'u'   A is assumed to be unit triangular.
!>
!>              DIAG = 'N' or 'n'   A is not assumed to be unit
!>                                  triangular.
!> \endverbatim
!>
!> \param[in] N
!> \verbatim
!>          N is INTEGER
!>           On entry, N specifies the order of the matrix A.
!>           N must be at least zero.
!> \endverbatim
!>
!> \param[in] K
!> \verbatim
!>          K is INTEGER
!>           On entry with UPLO = 'U' or 'u', K specifies the number of
!>           super-diagonals of the matrix A.
!>           On entry with UPLO = 'L' or 'l', K specifies the number of
!>           sub-diagonals of the matrix A.
!>           K must satisfy  0 .le. K.
!> \endverbatim
!>
!> \param[in] A
!> \verbatim
!>          A is COMPLEX*16 array, dimension ( LDA, N ).
!>           Before entry with UPLO = 'U' or 'u', the leading ( k + 1 )
!>           by n part of the array A must contain the upper triangular
!>           band part of the matrix of coefficients, supplied column by
!>           column, with the leading diagonal of the matrix in row
!>           ( k + 1 ) of the array, the first super-diagonal starting at
!>           position 2 in row k, and so on. The top left k by k triangle
!>           of the array A is not referenced.
!>           The following program segment will transfer an upper
!>           triangular band matrix from conventional full matrix storage
!>           to band storage:
!>
!>                 DO 20, J = 1, N
!>                    M = K + 1 - J
!>                    DO 10, I = MAX( 1, J - K ), J
!>                       A( M + I, J ) = matrix( I, J )
!>              10    CONTINUE
!>              20 CONTINUE
!>
!>           Before entry with UPLO = 'L' or 'l', the leading ( k + 1 )
!>           by n part of the array A must contain the lower triangular
!>           band part of the matrix of coefficients, supplied column by
!>           column, with the leading diagonal of the matrix in row 1 of
!>           the array, the first sub-diagonal starting at position 1 in
!>           row 2, and so on. The bottom right k by k triangle of the
!>           array A is not referenced.
!>           The following program segment will transfer a lower
!>           triangular band matrix from conventional full matrix storage
!>           to band storage:
!>
!>                 DO 20, J = 1, N
!>                    M = 1 - J
!>                    DO 10, I = J, MIN( N, J + K )
!>                       A( M + I, J ) = matrix( I, J )
!>              10    CONTINUE
!>              20 CONTINUE
!>
!>           Note that when DIAG = 'U' or 'u' the elements of the array A
!>           corresponding to the diagonal elements of the matrix are not
!>           referenced, but are assumed to be unity.
!> \endverbatim
!>
!> \param[in] LDA
!> \verbatim
!>          LDA is INTEGER
!>           On entry, LDA specifies the first dimension of A as declared
!>           in the calling (sub) program. LDA must be at least
!>           ( k + 1 ).
!> \endverbatim
!>
!> \param[in,out] X
!> \verbatim
!>          X is COMPLEX*16 array, dimension at least
!>           ( 1 + ( n - 1 )*abs( INCX ) ).
!>           Before entry, the incremented array X must contain the n
!>           element vector x. On exit, X is overwritten with the
!>           transformed vector x.
!> \endverbatim
!>
!> \param[in] INCX
!> \verbatim
!>          INCX is INTEGER
!>           On entry, INCX specifies the increment for the elements of
!>           X. INCX must not be zero.
!> \endverbatim
!
!  Authors:
!  ========
!
!> \author Univ. of Tennessee
!> \author Univ. of California Berkeley
!> \author Univ. of Colorado Denver
!> \author NAG Ltd.
!
!> \date December 2016
!
!> \ingroup complex16_blas_level2
!
!> \par Further Details:
!  =====================
!>
!> \verbatim
!>
!>  Level 2 Blas routine.
!>  The vector and matrix arguments are not referenced when N = 0, or M = 0
!>
!>  -- Written on 22-October-1986.
!>     Jack Dongarra, Argonne National Lab.
!>     Jeremy Du Croz, Nag Central Office.
!>     Sven Hammarling, Nag Central Office.
!>     Richard Hanson, Sandia National Labs.
!> \endverbatim
!>
!  =====================================================================
!
!  -- Reference BLAS level2 routine (version 3.7.0) --
!  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
!  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
!     December 2016
!
!     .. Scalar Arguments ..
!     ..
!     .. Array Arguments ..
!     ..
!
!  =====================================================================
!
!     .. Parameters ..
!     ..
!     .. Local Scalars ..
!     ..
!     .. External Functions ..
!     ..
!     .. External Subroutines ..
!     ..
!     .. Intrinsic Functions ..
!     ..
!
!     Test the input parameters.
!
!
!     Quick return if possible.
!
!
!
!     Set up the start point in X if the increment is not unity. This
!     will be  ( N - 1 )*INCX   too small for descending loops.
!
!
!     Start the operations. In this version the elements of A are
!     accessed sequentially with one pass through A.
!
!
!         Form  x := A*x.
!
!
!        Form  x := A**T*x  or  x := A**H*x.
!
!
!
!     End of ZTBMV .
!
! END
use M_blas, only : ztbmv_=>ZTBMV
implicit none
      INTEGER INCX,K,LDA,N
      CHARACTER DIAG,TRANS,UPLO
      COMPLEX*16 A(LDA,*),X(*)
    call ZTBMV_(UPLO,TRANS,DIAG,N,K,A,LDA,X,INCX)
end subroutine ZTBMV

subroutine ZTBSV(UPLO,TRANS,DIAG,N,K,A,LDA,X,INCX)
! COMMENT --file ztbsv.3m_blas.man
!> \brief \b ZTBSV
!
!  =========== DOCUMENTATION ===========
!
! Online html documentation available at
!            http://www.netlib.org/lapack/explore-html/
!
!  Definition:
!  ===========
!
!       SUBROUTINE ZTBSV(UPLO,TRANS,DIAG,N,K,A,LDA,X,INCX)
!
!       .. Scalar Arguments ..
!       INTEGER INCX,K,LDA,N
!       CHARACTER DIAG,TRANS,UPLO
!       ..
!       .. Array Arguments ..
!       COMPLEX*16 A(LDA,*),X(*)
!       ..
!
!
!> \par Purpose:
!  =============
!>
!> \verbatim
!>
!> ZTBSV  solves one of the systems of equations
!>
!>    A*x = b,   or   A**T*x = b,   or   A**H*x = b,
!>
!> where b and x are n element vectors and A is an n by n unit, or
!> non-unit, upper or lower triangular band matrix, with ( k + 1 )
!> diagonals.
!>
!> No test for singularity or near-singularity is included in this
!> routine. Such tests must be performed before calling this routine.
!> \endverbatim
!
!  Arguments:
!  ==========
!
!> \param[in] UPLO
!> \verbatim
!>          UPLO is CHARACTER*1
!>           On entry, UPLO specifies whether the matrix is an upper or
!>           lower triangular matrix as follows:
!>
!>              UPLO = 'U' or 'u'   A is an upper triangular matrix.
!>
!>              UPLO = 'L' or 'l'   A is a lower triangular matrix.
!> \endverbatim
!>
!> \param[in] TRANS
!> \verbatim
!>          TRANS is CHARACTER*1
!>           On entry, TRANS specifies the equations to be solved as
!>           follows:
!>
!>              TRANS = 'N' or 'n'   A*x = b.
!>
!>              TRANS = 'T' or 't'   A**T*x = b.
!>
!>              TRANS = 'C' or 'c'   A**H*x = b.
!> \endverbatim
!>
!> \param[in] DIAG
!> \verbatim
!>          DIAG is CHARACTER*1
!>           On entry, DIAG specifies whether or not A is unit
!>           triangular as follows:
!>
!>              DIAG = 'U' or 'u'   A is assumed to be unit triangular.
!>
!>              DIAG = 'N' or 'n'   A is not assumed to be unit
!>                                  triangular.
!> \endverbatim
!>
!> \param[in] N
!> \verbatim
!>          N is INTEGER
!>           On entry, N specifies the order of the matrix A.
!>           N must be at least zero.
!> \endverbatim
!>
!> \param[in] K
!> \verbatim
!>          K is INTEGER
!>           On entry with UPLO = 'U' or 'u', K specifies the number of
!>           super-diagonals of the matrix A.
!>           On entry with UPLO = 'L' or 'l', K specifies the number of
!>           sub-diagonals of the matrix A.
!>           K must satisfy  0 .le. K.
!> \endverbatim
!>
!> \param[in] A
!> \verbatim
!>          A is COMPLEX*16 array, dimension ( LDA, N )
!>           Before entry with UPLO = 'U' or 'u', the leading ( k + 1 )
!>           by n part of the array A must contain the upper triangular
!>           band part of the matrix of coefficients, supplied column by
!>           column, with the leading diagonal of the matrix in row
!>           ( k + 1 ) of the array, the first super-diagonal starting at
!>           position 2 in row k, and so on. The top left k by k triangle
!>           of the array A is not referenced.
!>           The following program segment will transfer an upper
!>           triangular band matrix from conventional full matrix storage
!>           to band storage:
!>
!>                 DO 20, J = 1, N
!>                    M = K + 1 - J
!>                    DO 10, I = MAX( 1, J - K ), J
!>                       A( M + I, J ) = matrix( I, J )
!>              10    CONTINUE
!>              20 CONTINUE
!>
!>           Before entry with UPLO = 'L' or 'l', the leading ( k + 1 )
!>           by n part of the array A must contain the lower triangular
!>           band part of the matrix of coefficients, supplied column by
!>           column, with the leading diagonal of the matrix in row 1 of
!>           the array, the first sub-diagonal starting at position 1 in
!>           row 2, and so on. The bottom right k by k triangle of the
!>           array A is not referenced.
!>           The following program segment will transfer a lower
!>           triangular band matrix from conventional full matrix storage
!>           to band storage:
!>
!>                 DO 20, J = 1, N
!>                    M = 1 - J
!>                    DO 10, I = J, MIN( N, J + K )
!>                       A( M + I, J ) = matrix( I, J )
!>              10    CONTINUE
!>              20 CONTINUE
!>
!>           Note that when DIAG = 'U' or 'u' the elements of the array A
!>           corresponding to the diagonal elements of the matrix are not
!>           referenced, but are assumed to be unity.
!> \endverbatim
!>
!> \param[in] LDA
!> \verbatim
!>          LDA is INTEGER
!>           On entry, LDA specifies the first dimension of A as declared
!>           in the calling (sub) program. LDA must be at least
!>           ( k + 1 ).
!> \endverbatim
!>
!> \param[in,out] X
!> \verbatim
!>          X is COMPLEX*16 array, dimension at least
!>           ( 1 + ( n - 1 )*abs( INCX ) ).
!>           Before entry, the incremented array X must contain the n
!>           element right-hand side vector b. On exit, X is overwritten
!>           with the solution vector x.
!> \endverbatim
!>
!> \param[in] INCX
!> \verbatim
!>          INCX is INTEGER
!>           On entry, INCX specifies the increment for the elements of
!>           X. INCX must not be zero.
!> \endverbatim
!
!  Authors:
!  ========
!
!> \author Univ. of Tennessee
!> \author Univ. of California Berkeley
!> \author Univ. of Colorado Denver
!> \author NAG Ltd.
!
!> \date December 2016
!
!> \ingroup complex16_blas_level2
!
!> \par Further Details:
!  =====================
!>
!> \verbatim
!>
!>  Level 2 Blas routine.
!>
!>  -- Written on 22-October-1986.
!>     Jack Dongarra, Argonne National Lab.
!>     Jeremy Du Croz, Nag Central Office.
!>     Sven Hammarling, Nag Central Office.
!>     Richard Hanson, Sandia National Labs.
!> \endverbatim
!>
!  =====================================================================
!
!  -- Reference BLAS level2 routine (version 3.7.0) --
!  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
!  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
!     December 2016
!
!     .. Scalar Arguments ..
!     ..
!     .. Array Arguments ..
!     ..
!
!  =====================================================================
!
!     .. Parameters ..
!     ..
!     .. Local Scalars ..
!     ..
!     .. External Functions ..
!     ..
!     .. External Subroutines ..
!     ..
!     .. Intrinsic Functions ..
!     ..
!
!     Test the input parameters.
!
!
!     Quick return if possible.
!
!
!
!     Set up the start point in X if the increment is not unity. This
!     will be  ( N - 1 )*INCX  too small for descending loops.
!
!
!     Start the operations. In this version the elements of A are
!     accessed by sequentially with one pass through A.
!
!
!        Form  x := inv( A )*x.
!
!
!        Form  x := inv( A**T )*x  or  x := inv( A**H )*x.
!
!
!
!     End of ZTBSV .
!
! END
use M_blas, only : ztbsv_=>ZTBSV
implicit none
      INTEGER INCX,K,LDA,N
      CHARACTER DIAG,TRANS,UPLO
      COMPLEX*16 A(LDA,*),X(*)
    call ZTBSV_(UPLO,TRANS,DIAG,N,K,A,LDA,X,INCX)
end subroutine ZTBSV

subroutine ZTPMV(UPLO,TRANS,DIAG,N,AP,X,INCX)
! COMMENT --file ztpmv.3m_blas.man
!> \brief \b ZTPMV
!
!  =========== DOCUMENTATION ===========
!
! Online html documentation available at
!            http://www.netlib.org/lapack/explore-html/
!
!  Definition:
!  ===========
!
!       SUBROUTINE ZTPMV(UPLO,TRANS,DIAG,N,AP,X,INCX)
!
!       .. Scalar Arguments ..
!       INTEGER INCX,N
!       CHARACTER DIAG,TRANS,UPLO
!       ..
!       .. Array Arguments ..
!       COMPLEX*16 AP(*),X(*)
!       ..
!
!
!> \par Purpose:
!  =============
!>
!> \verbatim
!>
!> ZTPMV  performs one of the matrix-vector operations
!>
!>    x := A*x,   or   x := A**T*x,   or   x := A**H*x,
!>
!> where x is an n element vector and  A is an n by n unit, or non-unit,
!> upper or lower triangular matrix, supplied in packed form.
!> \endverbatim
!
!  Arguments:
!  ==========
!
!> \param[in] UPLO
!> \verbatim
!>          UPLO is CHARACTER*1
!>           On entry, UPLO specifies whether the matrix is an upper or
!>           lower triangular matrix as follows:
!>
!>              UPLO = 'U' or 'u'   A is an upper triangular matrix.
!>
!>              UPLO = 'L' or 'l'   A is a lower triangular matrix.
!> \endverbatim
!>
!> \param[in] TRANS
!> \verbatim
!>          TRANS is CHARACTER*1
!>           On entry, TRANS specifies the operation to be performed as
!>           follows:
!>
!>              TRANS = 'N' or 'n'   x := A*x.
!>
!>              TRANS = 'T' or 't'   x := A**T*x.
!>
!>              TRANS = 'C' or 'c'   x := A**H*x.
!> \endverbatim
!>
!> \param[in] DIAG
!> \verbatim
!>          DIAG is CHARACTER*1
!>           On entry, DIAG specifies whether or not A is unit
!>           triangular as follows:
!>
!>              DIAG = 'U' or 'u'   A is assumed to be unit triangular.
!>
!>              DIAG = 'N' or 'n'   A is not assumed to be unit
!>                                  triangular.
!> \endverbatim
!>
!> \param[in] N
!> \verbatim
!>          N is INTEGER
!>           On entry, N specifies the order of the matrix A.
!>           N must be at least zero.
!> \endverbatim
!>
!> \param[in] AP
!> \verbatim
!>          AP is COMPLEX*16 array, dimension at least
!>           ( ( n*( n + 1 ) )/2 ).
!>           Before entry with  UPLO = 'U' or 'u', the array AP must
!>           contain the upper triangular matrix packed sequentially,
!>           column by column, so that AP( 1 ) contains a( 1, 1 ),
!>           AP( 2 ) and AP( 3 ) contain a( 1, 2 ) and a( 2, 2 )
!>           respectively, and so on.
!>           Before entry with UPLO = 'L' or 'l', the array AP must
!>           contain the lower triangular matrix packed sequentially,
!>           column by column, so that AP( 1 ) contains a( 1, 1 ),
!>           AP( 2 ) and AP( 3 ) contain a( 2, 1 ) and a( 3, 1 )
!>           respectively, and so on.
!>           Note that when  DIAG = 'U' or 'u', the diagonal elements of
!>           A are not referenced, but are assumed to be unity.
!> \endverbatim
!>
!> \param[in,out] X
!> \verbatim
!>          X is COMPLEX*16 array, dimension at least
!>           ( 1 + ( n - 1 )*abs( INCX ) ).
!>           Before entry, the incremented array X must contain the n
!>           element vector x. On exit, X is overwritten with the
!>           transformed vector x.
!> \endverbatim
!>
!> \param[in] INCX
!> \verbatim
!>          INCX is INTEGER
!>           On entry, INCX specifies the increment for the elements of
!>           X. INCX must not be zero.
!> \endverbatim
!
!  Authors:
!  ========
!
!> \author Univ. of Tennessee
!> \author Univ. of California Berkeley
!> \author Univ. of Colorado Denver
!> \author NAG Ltd.
!
!> \date December 2016
!
!> \ingroup complex16_blas_level2
!
!> \par Further Details:
!  =====================
!>
!> \verbatim
!>
!>  Level 2 Blas routine.
!>  The vector and matrix arguments are not referenced when N = 0, or M = 0
!>
!>  -- Written on 22-October-1986.
!>     Jack Dongarra, Argonne National Lab.
!>     Jeremy Du Croz, Nag Central Office.
!>     Sven Hammarling, Nag Central Office.
!>     Richard Hanson, Sandia National Labs.
!> \endverbatim
!>
!  =====================================================================
!
!  -- Reference BLAS level2 routine (version 3.7.0) --
!  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
!  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
!     December 2016
!
!     .. Scalar Arguments ..
!     ..
!     .. Array Arguments ..
!     ..
!
!  =====================================================================
!
!     .. Parameters ..
!     ..
!     .. Local Scalars ..
!     ..
!     .. External Functions ..
!     ..
!     .. External Subroutines ..
!     ..
!     .. Intrinsic Functions ..
!     ..
!
!     Test the input parameters.
!
!
!     Quick return if possible.
!
!
!
!     Set up the start point in X if the increment is not unity. This
!     will be  ( N - 1 )*INCX  too small for descending loops.
!
!
!     Start the operations. In this version the elements of AP are
!     accessed sequentially with one pass through AP.
!
!
!        Form  x:= A*x.
!
!
!        Form  x := A**T*x  or  x := A**H*x.
!
!
!
!     End of ZTPMV .
!
! END
use M_blas, only : ztpmv_=>ZTPMV
implicit none
      INTEGER INCX,N
      CHARACTER DIAG,TRANS,UPLO
      COMPLEX*16 AP(*),X(*)
    call ZTPMV_(UPLO,TRANS,DIAG,N,AP,X,INCX)
end subroutine ZTPMV

subroutine ZTPSV(UPLO,TRANS,DIAG,N,AP,X,INCX)
! COMMENT --file ztpsv.3m_blas.man
!> \brief \b ZTPSV
!
!  =========== DOCUMENTATION ===========
!
! Online html documentation available at
!            http://www.netlib.org/lapack/explore-html/
!
!  Definition:
!  ===========
!
!       SUBROUTINE ZTPSV(UPLO,TRANS,DIAG,N,AP,X,INCX)
!
!       .. Scalar Arguments ..
!       INTEGER INCX,N
!       CHARACTER DIAG,TRANS,UPLO
!       ..
!       .. Array Arguments ..
!       COMPLEX*16 AP(*),X(*)
!       ..
!
!
!> \par Purpose:
!  =============
!>
!> \verbatim
!>
!> ZTPSV  solves one of the systems of equations
!>
!>    A*x = b,   or   A**T*x = b,   or   A**H*x = b,
!>
!> where b and x are n element vectors and A is an n by n unit, or
!> non-unit, upper or lower triangular matrix, supplied in packed form.
!>
!> No test for singularity or near-singularity is included in this
!> routine. Such tests must be performed before calling this routine.
!> \endverbatim
!
!  Arguments:
!  ==========
!
!> \param[in] UPLO
!> \verbatim
!>          UPLO is CHARACTER*1
!>           On entry, UPLO specifies whether the matrix is an upper or
!>           lower triangular matrix as follows:
!>
!>              UPLO = 'U' or 'u'   A is an upper triangular matrix.
!>
!>              UPLO = 'L' or 'l'   A is a lower triangular matrix.
!> \endverbatim
!>
!> \param[in] TRANS
!> \verbatim
!>          TRANS is CHARACTER*1
!>           On entry, TRANS specifies the equations to be solved as
!>           follows:
!>
!>              TRANS = 'N' or 'n'   A*x = b.
!>
!>              TRANS = 'T' or 't'   A**T*x = b.
!>
!>              TRANS = 'C' or 'c'   A**H*x = b.
!> \endverbatim
!>
!> \param[in] DIAG
!> \verbatim
!>          DIAG is CHARACTER*1
!>           On entry, DIAG specifies whether or not A is unit
!>           triangular as follows:
!>
!>              DIAG = 'U' or 'u'   A is assumed to be unit triangular.
!>
!>              DIAG = 'N' or 'n'   A is not assumed to be unit
!>                                  triangular.
!> \endverbatim
!>
!> \param[in] N
!> \verbatim
!>          N is INTEGER
!>           On entry, N specifies the order of the matrix A.
!>           N must be at least zero.
!> \endverbatim
!>
!> \param[in] AP
!> \verbatim
!>          AP is COMPLEX*16 array, dimension at least
!>           ( ( n*( n + 1 ) )/2 ).
!>           Before entry with  UPLO = 'U' or 'u', the array AP must
!>           contain the upper triangular matrix packed sequentially,
!>           column by column, so that AP( 1 ) contains a( 1, 1 ),
!>           AP( 2 ) and AP( 3 ) contain a( 1, 2 ) and a( 2, 2 )
!>           respectively, and so on.
!>           Before entry with UPLO = 'L' or 'l', the array AP must
!>           contain the lower triangular matrix packed sequentially,
!>           column by column, so that AP( 1 ) contains a( 1, 1 ),
!>           AP( 2 ) and AP( 3 ) contain a( 2, 1 ) and a( 3, 1 )
!>           respectively, and so on.
!>           Note that when  DIAG = 'U' or 'u', the diagonal elements of
!>           A are not referenced, but are assumed to be unity.
!> \endverbatim
!>
!> \param[in,out] X
!> \verbatim
!>          X is COMPLEX*16 array, dimension at least
!>           ( 1 + ( n - 1 )*abs( INCX ) ).
!>           Before entry, the incremented array X must contain the n
!>           element right-hand side vector b. On exit, X is overwritten
!>           with the solution vector x.
!> \endverbatim
!>
!> \param[in] INCX
!> \verbatim
!>          INCX is INTEGER
!>           On entry, INCX specifies the increment for the elements of
!>           X. INCX must not be zero.
!> \endverbatim
!
!  Authors:
!  ========
!
!> \author Univ. of Tennessee
!> \author Univ. of California Berkeley
!> \author Univ. of Colorado Denver
!> \author NAG Ltd.
!
!> \date December 2016
!
!> \ingroup complex16_blas_level2
!
!> \par Further Details:
!  =====================
!>
!> \verbatim
!>
!>  Level 2 Blas routine.
!>
!>  -- Written on 22-October-1986.
!>     Jack Dongarra, Argonne National Lab.
!>     Jeremy Du Croz, Nag Central Office.
!>     Sven Hammarling, Nag Central Office.
!>     Richard Hanson, Sandia National Labs.
!> \endverbatim
!>
!  =====================================================================
!
!  -- Reference BLAS level2 routine (version 3.7.0) --
!  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
!  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
!     December 2016
!
!     .. Scalar Arguments ..
!     ..
!     .. Array Arguments ..
!     ..
!
!  =====================================================================
!
!     .. Parameters ..
!     ..
!     .. Local Scalars ..
!     ..
!     .. External Functions ..
!     ..
!     .. External Subroutines ..
!     ..
!     .. Intrinsic Functions ..
!     ..
!
!     Test the input parameters.
!
!
!     Quick return if possible.
!
!
!
!     Set up the start point in X if the increment is not unity. This
!     will be  ( N - 1 )*INCX  too small for descending loops.
!
!
!     Start the operations. In this version the elements of AP are
!     accessed sequentially with one pass through AP.
!
!
!        Form  x := inv( A )*x.
!
!
!        Form  x := inv( A**T )*x  or  x := inv( A**H )*x.
!
!
!
!     End of ZTPSV .
!
! END
use M_blas, only : ztpsv_=>ZTPSV
implicit none
      INTEGER INCX,N
      CHARACTER DIAG,TRANS,UPLO
      COMPLEX*16 AP(*),X(*)
    call ZTPSV_(UPLO,TRANS,DIAG,N,AP,X,INCX)
end subroutine ZTPSV

subroutine ZTRMM(SIDE,UPLO,TRANSA,DIAG,M,N,ALPHA,A,LDA,B,LDB)
! COMMENT --file ztrmm.3m_blas.man
!> \brief \b ZTRMM
!
!  =========== DOCUMENTATION ===========
!
! Online html documentation available at
!            http://www.netlib.org/lapack/explore-html/
!
!  Definition:
!  ===========
!
!       SUBROUTINE ZTRMM(SIDE,UPLO,TRANSA,DIAG,M,N,ALPHA,A,LDA,B,LDB)
!
!       .. Scalar Arguments ..
!       COMPLEX*16 ALPHA
!       INTEGER LDA,LDB,M,N
!       CHARACTER DIAG,SIDE,TRANSA,UPLO
!       ..
!       .. Array Arguments ..
!       COMPLEX*16 A(LDA,*),B(LDB,*)
!       ..
!
!
!> \par Purpose:
!  =============
!>
!> \verbatim
!>
!> ZTRMM  performs one of the matrix-matrix operations
!>
!>    B := alpha*op( A )*B,   or   B := alpha*B*op( A )
!>
!> where  alpha  is a scalar,  B  is an m by n matrix,  A  is a unit, or
!> non-unit,  upper or lower triangular matrix  and  op( A )  is one  of
!>
!>    op( A ) = A   or   op( A ) = A**T   or   op( A ) = A**H.
!> \endverbatim
!
!  Arguments:
!  ==========
!
!> \param[in] SIDE
!> \verbatim
!>          SIDE is CHARACTER*1
!>           On entry,  SIDE specifies whether  op( A ) multiplies B from
!>           the left or right as follows:
!>
!>              SIDE = 'L' or 'l'   B := alpha*op( A )*B.
!>
!>              SIDE = 'R' or 'r'   B := alpha*B*op( A ).
!> \endverbatim
!>
!> \param[in] UPLO
!> \verbatim
!>          UPLO is CHARACTER*1
!>           On entry, UPLO specifies whether the matrix A is an upper or
!>           lower triangular matrix as follows:
!>
!>              UPLO = 'U' or 'u'   A is an upper triangular matrix.
!>
!>              UPLO = 'L' or 'l'   A is a lower triangular matrix.
!> \endverbatim
!>
!> \param[in] TRANSA
!> \verbatim
!>          TRANSA is CHARACTER*1
!>           On entry, TRANSA specifies the form of op( A ) to be used in
!>           the matrix multiplication as follows:
!>
!>              TRANSA = 'N' or 'n'   op( A ) = A.
!>
!>              TRANSA = 'T' or 't'   op( A ) = A**T.
!>
!>              TRANSA = 'C' or 'c'   op( A ) = A**H.
!> \endverbatim
!>
!> \param[in] DIAG
!> \verbatim
!>          DIAG is CHARACTER*1
!>           On entry, DIAG specifies whether or not A is unit triangular
!>           as follows:
!>
!>              DIAG = 'U' or 'u'   A is assumed to be unit triangular.
!>
!>              DIAG = 'N' or 'n'   A is not assumed to be unit
!>                                  triangular.
!> \endverbatim
!>
!> \param[in] M
!> \verbatim
!>          M is INTEGER
!>           On entry, M specifies the number of rows of B. M must be at
!>           least zero.
!> \endverbatim
!>
!> \param[in] N
!> \verbatim
!>          N is INTEGER
!>           On entry, N specifies the number of columns of B.  N must be
!>           at least zero.
!> \endverbatim
!>
!> \param[in] ALPHA
!> \verbatim
!>          ALPHA is COMPLEX*16
!>           On entry,  ALPHA specifies the scalar  alpha. When  alpha is
!>           zero then  A is not referenced and  B need not be set before
!>           entry.
!> \endverbatim
!>
!> \param[in] A
!> \verbatim
!>          A is COMPLEX*16 array, dimension ( LDA, k ), where k is m
!>           when  SIDE = 'L' or 'l'  and is  n  when  SIDE = 'R' or 'r'.
!>           Before entry  with  UPLO = 'U' or 'u',  the  leading  k by k
!>           upper triangular part of the array  A must contain the upper
!>           triangular matrix  and the strictly lower triangular part of
!>           A is not referenced.
!>           Before entry  with  UPLO = 'L' or 'l',  the  leading  k by k
!>           lower triangular part of the array  A must contain the lower
!>           triangular matrix  and the strictly upper triangular part of
!>           A is not referenced.
!>           Note that when  DIAG = 'U' or 'u',  the diagonal elements of
!>           A  are not referenced either,  but are assumed to be  unity.
!> \endverbatim
!>
!> \param[in] LDA
!> \verbatim
!>          LDA is INTEGER
!>           On entry, LDA specifies the first dimension of A as declared
!>           in the calling (sub) program.  When  SIDE = 'L' or 'l'  then
!>           LDA  must be at least  max( 1, m ),  when  SIDE = 'R' or 'r'
!>           then LDA must be at least max( 1, n ).
!> \endverbatim
!>
!> \param[in,out] B
!> \verbatim
!>          B is COMPLEX*16 array, dimension ( LDB, N ).
!>           Before entry,  the leading  m by n part of the array  B must
!>           contain the matrix  B,  and  on exit  is overwritten  by the
!>           transformed matrix.
!> \endverbatim
!>
!> \param[in] LDB
!> \verbatim
!>          LDB is INTEGER
!>           On entry, LDB specifies the first dimension of B as declared
!>           in  the  calling  (sub)  program.   LDB  must  be  at  least
!>           max( 1, m ).
!> \endverbatim
!
!  Authors:
!  ========
!
!> \author Univ. of Tennessee
!> \author Univ. of California Berkeley
!> \author Univ. of Colorado Denver
!> \author NAG Ltd.
!
!> \date December 2016
!
!> \ingroup complex16_blas_level3
!
!> \par Further Details:
!  =====================
!>
!> \verbatim
!>
!>  Level 3 Blas routine.
!>
!>  -- Written on 8-February-1989.
!>     Jack Dongarra, Argonne National Laboratory.
!>     Iain Duff, AERE Harwell.
!>     Jeremy Du Croz, Numerical Algorithms Group Ltd.
!>     Sven Hammarling, Numerical Algorithms Group Ltd.
!> \endverbatim
!>
!  =====================================================================
!
!  -- Reference BLAS level3 routine (version 3.7.0) --
!  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
!  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
!     December 2016
!
!     .. Scalar Arguments ..
!     ..
!     .. Array Arguments ..
!     ..
!
!  =====================================================================
!
!     .. External Functions ..
!     ..
!     .. External Subroutines ..
!     ..
!     .. Intrinsic Functions ..
!     ..
!     .. Local Scalars ..
!     ..
!     .. Parameters ..
!     ..
!
!     Test the input parameters.
!
!
!
!     Quick return if possible.
!
!
!     And when  alpha.eq.zero.
!
!
!     Start the operations.
!
!
!           Form  B := alpha*A*B.
!
!
!           Form  B := alpha*A**T*B   or   B := alpha*A**H*B.
!
!
!           Form  B := alpha*B*A.
!
!
!           Form  B := alpha*B*A**T   or   B := alpha*B*A**H.
!
!
!
!     End of ZTRMM .
!
! END
use M_blas, only : ztrmm_=>ZTRMM
implicit none
      COMPLEX*16 ALPHA
      INTEGER LDA,LDB,M,N
      CHARACTER DIAG,SIDE,TRANSA,UPLO
      COMPLEX*16 A(LDA,*),B(LDB,*)
    call ZTRMM_(SIDE,UPLO,TRANSA,DIAG,M,N,ALPHA,A,LDA,B,LDB)
end subroutine ZTRMM

subroutine ZTRMV(UPLO,TRANS,DIAG,N,A,LDA,X,INCX)
! COMMENT --file ztrmv.3m_blas.man
!> \brief \b ZTRMV
!
!  =========== DOCUMENTATION ===========
!
! Online html documentation available at
!            http://www.netlib.org/lapack/explore-html/
!
!  Definition:
!  ===========
!
!       SUBROUTINE ZTRMV(UPLO,TRANS,DIAG,N,A,LDA,X,INCX)
!
!       .. Scalar Arguments ..
!       INTEGER INCX,LDA,N
!       CHARACTER DIAG,TRANS,UPLO
!       ..
!       .. Array Arguments ..
!       COMPLEX*16 A(LDA,*),X(*)
!       ..
!
!
!> \par Purpose:
!  =============
!>
!> \verbatim
!>
!> ZTRMV  performs one of the matrix-vector operations
!>
!>    x := A*x,   or   x := A**T*x,   or   x := A**H*x,
!>
!> where x is an n element vector and  A is an n by n unit, or non-unit,
!> upper or lower triangular matrix.
!> \endverbatim
!
!  Arguments:
!  ==========
!
!> \param[in] UPLO
!> \verbatim
!>          UPLO is CHARACTER*1
!>           On entry, UPLO specifies whether the matrix is an upper or
!>           lower triangular matrix as follows:
!>
!>              UPLO = 'U' or 'u'   A is an upper triangular matrix.
!>
!>              UPLO = 'L' or 'l'   A is a lower triangular matrix.
!> \endverbatim
!>
!> \param[in] TRANS
!> \verbatim
!>          TRANS is CHARACTER*1
!>           On entry, TRANS specifies the operation to be performed as
!>           follows:
!>
!>              TRANS = 'N' or 'n'   x := A*x.
!>
!>              TRANS = 'T' or 't'   x := A**T*x.
!>
!>              TRANS = 'C' or 'c'   x := A**H*x.
!> \endverbatim
!>
!> \param[in] DIAG
!> \verbatim
!>          DIAG is CHARACTER*1
!>           On entry, DIAG specifies whether or not A is unit
!>           triangular as follows:
!>
!>              DIAG = 'U' or 'u'   A is assumed to be unit triangular.
!>
!>              DIAG = 'N' or 'n'   A is not assumed to be unit
!>                                  triangular.
!> \endverbatim
!>
!> \param[in] N
!> \verbatim
!>          N is INTEGER
!>           On entry, N specifies the order of the matrix A.
!>           N must be at least zero.
!> \endverbatim
!>
!> \param[in] A
!> \verbatim
!>          A is COMPLEX*16 array, dimension ( LDA, N ).
!>           Before entry with  UPLO = 'U' or 'u', the leading n by n
!>           upper triangular part of the array A must contain the upper
!>           triangular matrix and the strictly lower triangular part of
!>           A is not referenced.
!>           Before entry with UPLO = 'L' or 'l', the leading n by n
!>           lower triangular part of the array A must contain the lower
!>           triangular matrix and the strictly upper triangular part of
!>           A is not referenced.
!>           Note that when  DIAG = 'U' or 'u', the diagonal elements of
!>           A are not referenced either, but are assumed to be unity.
!> \endverbatim
!>
!> \param[in] LDA
!> \verbatim
!>          LDA is INTEGER
!>           On entry, LDA specifies the first dimension of A as declared
!>           in the calling (sub) program. LDA must be at least
!>           max( 1, n ).
!> \endverbatim
!>
!> \param[in,out] X
!> \verbatim
!>          X is COMPLEX*16 array, dimension at least
!>           ( 1 + ( n - 1 )*abs( INCX ) ).
!>           Before entry, the incremented array X must contain the n
!>           element vector x. On exit, X is overwritten with the
!>           transformed vector x.
!> \endverbatim
!>
!> \param[in] INCX
!> \verbatim
!>          INCX is INTEGER
!>           On entry, INCX specifies the increment for the elements of
!>           X. INCX must not be zero.
!> \endverbatim
!
!  Authors:
!  ========
!
!> \author Univ. of Tennessee
!> \author Univ. of California Berkeley
!> \author Univ. of Colorado Denver
!> \author NAG Ltd.
!
!> \date December 2016
!
!> \ingroup complex16_blas_level2
!
!> \par Further Details:
!  =====================
!>
!> \verbatim
!>
!>  Level 2 Blas routine.
!>  The vector and matrix arguments are not referenced when N = 0, or M = 0
!>
!>  -- Written on 22-October-1986.
!>     Jack Dongarra, Argonne National Lab.
!>     Jeremy Du Croz, Nag Central Office.
!>     Sven Hammarling, Nag Central Office.
!>     Richard Hanson, Sandia National Labs.
!> \endverbatim
!>
!  =====================================================================
!
!  -- Reference BLAS level2 routine (version 3.7.0) --
!  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
!  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
!     December 2016
!
!     .. Scalar Arguments ..
!     ..
!     .. Array Arguments ..
!     ..
!
!  =====================================================================
!
!     .. Parameters ..
!     ..
!     .. Local Scalars ..
!     ..
!     .. External Functions ..
!     ..
!     .. External Subroutines ..
!     ..
!     .. Intrinsic Functions ..
!     ..
!
!     Test the input parameters.
!
!
!     Quick return if possible.
!
!
!
!     Set up the start point in X if the increment is not unity. This
!     will be  ( N - 1 )*INCX  too small for descending loops.
!
!
!     Start the operations. In this version the elements of A are
!     accessed sequentially with one pass through A.
!
!
!        Form  x := A*x.
!
!
!        Form  x := A**T*x  or  x := A**H*x.
!
!
!
!     End of ZTRMV .
!
! END
use M_blas, only : ztrmv_=>ZTRMV
implicit none
      INTEGER INCX,LDA,N
      CHARACTER DIAG,TRANS,UPLO
      COMPLEX*16 A(LDA,*),X(*)
    call ZTRMV_(UPLO,TRANS,DIAG,N,A,LDA,X,INCX)
end subroutine ZTRMV

subroutine ZTRSM(SIDE,UPLO,TRANSA,DIAG,M,N,ALPHA,A,LDA,B,LDB)
! COMMENT --file ztrsm.3m_blas.man
!> \brief \b ZTRSM
!
!  =========== DOCUMENTATION ===========
!
! Online html documentation available at
!            http://www.netlib.org/lapack/explore-html/
!
!  Definition:
!  ===========
!
!       SUBROUTINE ZTRSM(SIDE,UPLO,TRANSA,DIAG,M,N,ALPHA,A,LDA,B,LDB)
!
!       .. Scalar Arguments ..
!       COMPLEX*16 ALPHA
!       INTEGER LDA,LDB,M,N
!       CHARACTER DIAG,SIDE,TRANSA,UPLO
!       ..
!       .. Array Arguments ..
!       COMPLEX*16 A(LDA,*),B(LDB,*)
!       ..
!
!
!> \par Purpose:
!  =============
!>
!> \verbatim
!>
!> ZTRSM  solves one of the matrix equations
!>
!>    op( A )*X = alpha*B,   or   X*op( A ) = alpha*B,
!>
!> where alpha is a scalar, X and B are m by n matrices, A is a unit, or
!> non-unit,  upper or lower triangular matrix  and  op( A )  is one  of
!>
!>    op( A ) = A   or   op( A ) = A**T   or   op( A ) = A**H.
!>
!> The matrix X is overwritten on B.
!> \endverbatim
!
!  Arguments:
!  ==========
!
!> \param[in] SIDE
!> \verbatim
!>          SIDE is CHARACTER*1
!>           On entry, SIDE specifies whether op( A ) appears on the left
!>           or right of X as follows:
!>
!>              SIDE = 'L' or 'l'   op( A )*X = alpha*B.
!>
!>              SIDE = 'R' or 'r'   X*op( A ) = alpha*B.
!> \endverbatim
!>
!> \param[in] UPLO
!> \verbatim
!>          UPLO is CHARACTER*1
!>           On entry, UPLO specifies whether the matrix A is an upper or
!>           lower triangular matrix as follows:
!>
!>              UPLO = 'U' or 'u'   A is an upper triangular matrix.
!>
!>              UPLO = 'L' or 'l'   A is a lower triangular matrix.
!> \endverbatim
!>
!> \param[in] TRANSA
!> \verbatim
!>          TRANSA is CHARACTER*1
!>           On entry, TRANSA specifies the form of op( A ) to be used in
!>           the matrix multiplication as follows:
!>
!>              TRANSA = 'N' or 'n'   op( A ) = A.
!>
!>              TRANSA = 'T' or 't'   op( A ) = A**T.
!>
!>              TRANSA = 'C' or 'c'   op( A ) = A**H.
!> \endverbatim
!>
!> \param[in] DIAG
!> \verbatim
!>          DIAG is CHARACTER*1
!>           On entry, DIAG specifies whether or not A is unit triangular
!>           as follows:
!>
!>              DIAG = 'U' or 'u'   A is assumed to be unit triangular.
!>
!>              DIAG = 'N' or 'n'   A is not assumed to be unit
!>                                  triangular.
!> \endverbatim
!>
!> \param[in] M
!> \verbatim
!>          M is INTEGER
!>           On entry, M specifies the number of rows of B. M must be at
!>           least zero.
!> \endverbatim
!>
!> \param[in] N
!> \verbatim
!>          N is INTEGER
!>           On entry, N specifies the number of columns of B.  N must be
!>           at least zero.
!> \endverbatim
!>
!> \param[in] ALPHA
!> \verbatim
!>          ALPHA is COMPLEX*16
!>           On entry,  ALPHA specifies the scalar  alpha. When  alpha is
!>           zero then  A is not referenced and  B need not be set before
!>           entry.
!> \endverbatim
!>
!> \param[in] A
!> \verbatim
!>          A is COMPLEX*16 array, dimension ( LDA, k ),
!>           where k is m when SIDE = 'L' or 'l'
!>             and k is n when SIDE = 'R' or 'r'.
!>           Before entry  with  UPLO = 'U' or 'u',  the  leading  k by k
!>           upper triangular part of the array  A must contain the upper
!>           triangular matrix  and the strictly lower triangular part of
!>           A is not referenced.
!>           Before entry  with  UPLO = 'L' or 'l',  the  leading  k by k
!>           lower triangular part of the array  A must contain the lower
!>           triangular matrix  and the strictly upper triangular part of
!>           A is not referenced.
!>           Note that when  DIAG = 'U' or 'u',  the diagonal elements of
!>           A  are not referenced either,  but are assumed to be  unity.
!> \endverbatim
!>
!> \param[in] LDA
!> \verbatim
!>          LDA is INTEGER
!>           On entry, LDA specifies the first dimension of A as declared
!>           in the calling (sub) program.  When  SIDE = 'L' or 'l'  then
!>           LDA  must be at least  max( 1, m ),  when  SIDE = 'R' or 'r'
!>           then LDA must be at least max( 1, n ).
!> \endverbatim
!>
!> \param[in,out] B
!> \verbatim
!>          B is COMPLEX*16 array, dimension ( LDB, N )
!>           Before entry,  the leading  m by n part of the array  B must
!>           contain  the  right-hand  side  matrix  B,  and  on exit  is
!>           overwritten by the solution matrix  X.
!> \endverbatim
!>
!> \param[in] LDB
!> \verbatim
!>          LDB is INTEGER
!>           On entry, LDB specifies the first dimension of B as declared
!>           in  the  calling  (sub)  program.   LDB  must  be  at  least
!>           max( 1, m ).
!> \endverbatim
!
!  Authors:
!  ========
!
!> \author Univ. of Tennessee
!> \author Univ. of California Berkeley
!> \author Univ. of Colorado Denver
!> \author NAG Ltd.
!
!> \date December 2016
!
!> \ingroup complex16_blas_level3
!
!> \par Further Details:
!  =====================
!>
!> \verbatim
!>
!>  Level 3 Blas routine.
!>
!>  -- Written on 8-February-1989.
!>     Jack Dongarra, Argonne National Laboratory.
!>     Iain Duff, AERE Harwell.
!>     Jeremy Du Croz, Numerical Algorithms Group Ltd.
!>     Sven Hammarling, Numerical Algorithms Group Ltd.
!> \endverbatim
!>
!  =====================================================================
!
!  -- Reference BLAS level3 routine (version 3.7.0) --
!  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
!  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
!     December 2016
!
!     .. Scalar Arguments ..
!     ..
!     .. Array Arguments ..
!     ..
!
!  =====================================================================
!
!     .. External Functions ..
!     ..
!     .. External Subroutines ..
!     ..
!     .. Intrinsic Functions ..
!     ..
!     .. Local Scalars ..
!     ..
!     .. Parameters ..
!     ..
!
!     Test the input parameters.
!
!
!
!     Quick return if possible.
!
!
!     And when  alpha.eq.zero.
!
!
!     Start the operations.
!
!
!           Form  B := alpha*inv( A )*B.
!
!
!           Form  B := alpha*inv( A**T )*B
!           or    B := alpha*inv( A**H )*B.
!
!
!           Form  B := alpha*B*inv( A ).
!
!
!           Form  B := alpha*B*inv( A**T )
!           or    B := alpha*B*inv( A**H ).
!
!
!
!     End of ZTRSM .
!
! END
use M_blas, only : ztrsm_=>ZTRSM
implicit none
      COMPLEX*16 ALPHA
      INTEGER LDA,LDB,M,N
      CHARACTER DIAG,SIDE,TRANSA,UPLO
      COMPLEX*16 A(LDA,*),B(LDB,*)
    call ZTRSM_(SIDE,UPLO,TRANSA,DIAG,M,N,ALPHA,A,LDA,B,LDB)
end subroutine ZTRSM

subroutine ZTRSV(UPLO,TRANS,DIAG,N,A,LDA,X,INCX)
! COMMENT --file ztrsv.3m_blas.man
!> \brief \b ZTRSV
!
!  =========== DOCUMENTATION ===========
!
! Online html documentation available at
!            http://www.netlib.org/lapack/explore-html/
!
!  Definition:
!  ===========
!
!       SUBROUTINE ZTRSV(UPLO,TRANS,DIAG,N,A,LDA,X,INCX)
!
!       .. Scalar Arguments ..
!       INTEGER INCX,LDA,N
!       CHARACTER DIAG,TRANS,UPLO
!       ..
!       .. Array Arguments ..
!       COMPLEX*16 A(LDA,*),X(*)
!       ..
!
!
!> \par Purpose:
!  =============
!>
!> \verbatim
!>
!> ZTRSV  solves one of the systems of equations
!>
!>    A*x = b,   or   A**T*x = b,   or   A**H*x = b,
!>
!> where b and x are n element vectors and A is an n by n unit, or
!> non-unit, upper or lower triangular matrix.
!>
!> No test for singularity or near-singularity is included in this
!> routine. Such tests must be performed before calling this routine.
!> \endverbatim
!
!  Arguments:
!  ==========
!
!> \param[in] UPLO
!> \verbatim
!>          UPLO is CHARACTER*1
!>           On entry, UPLO specifies whether the matrix is an upper or
!>           lower triangular matrix as follows:
!>
!>              UPLO = 'U' or 'u'   A is an upper triangular matrix.
!>
!>              UPLO = 'L' or 'l'   A is a lower triangular matrix.
!> \endverbatim
!>
!> \param[in] TRANS
!> \verbatim
!>          TRANS is CHARACTER*1
!>           On entry, TRANS specifies the equations to be solved as
!>           follows:
!>
!>              TRANS = 'N' or 'n'   A*x = b.
!>
!>              TRANS = 'T' or 't'   A**T*x = b.
!>
!>              TRANS = 'C' or 'c'   A**H*x = b.
!> \endverbatim
!>
!> \param[in] DIAG
!> \verbatim
!>          DIAG is CHARACTER*1
!>           On entry, DIAG specifies whether or not A is unit
!>           triangular as follows:
!>
!>              DIAG = 'U' or 'u'   A is assumed to be unit triangular.
!>
!>              DIAG = 'N' or 'n'   A is not assumed to be unit
!>                                  triangular.
!> \endverbatim
!>
!> \param[in] N
!> \verbatim
!>          N is INTEGER
!>           On entry, N specifies the order of the matrix A.
!>           N must be at least zero.
!> \endverbatim
!>
!> \param[in] A
!> \verbatim
!>          A is COMPLEX*16 array, dimension ( LDA, N )
!>           Before entry with  UPLO = 'U' or 'u', the leading n by n
!>           upper triangular part of the array A must contain the upper
!>           triangular matrix and the strictly lower triangular part of
!>           A is not referenced.
!>           Before entry with UPLO = 'L' or 'l', the leading n by n
!>           lower triangular part of the array A must contain the lower
!>           triangular matrix and the strictly upper triangular part of
!>           A is not referenced.
!>           Note that when  DIAG = 'U' or 'u', the diagonal elements of
!>           A are not referenced either, but are assumed to be unity.
!> \endverbatim
!>
!> \param[in] LDA
!> \verbatim
!>          LDA is INTEGER
!>           On entry, LDA specifies the first dimension of A as declared
!>           in the calling (sub) program. LDA must be at least
!>           max( 1, n ).
!> \endverbatim
!>
!> \param[in,out] X
!> \verbatim
!>          X is COMPLEX*16 array, dimension at least
!>           ( 1 + ( n - 1 )*abs( INCX ) ).
!>           Before entry, the incremented array X must contain the n
!>           element right-hand side vector b. On exit, X is overwritten
!>           with the solution vector x.
!> \endverbatim
!>
!> \param[in] INCX
!> \verbatim
!>          INCX is INTEGER
!>           On entry, INCX specifies the increment for the elements of
!>           X. INCX must not be zero.
!> \endverbatim
!
!  Authors:
!  ========
!
!> \author Univ. of Tennessee
!> \author Univ. of California Berkeley
!> \author Univ. of Colorado Denver
!> \author NAG Ltd.
!
!> \date December 2016
!
!> \ingroup complex16_blas_level2
!
!> \par Further Details:
!  =====================
!>
!> \verbatim
!>
!>  Level 2 Blas routine.
!>
!>  -- Written on 22-October-1986.
!>     Jack Dongarra, Argonne National Lab.
!>     Jeremy Du Croz, Nag Central Office.
!>     Sven Hammarling, Nag Central Office.
!>     Richard Hanson, Sandia National Labs.
!> \endverbatim
!>
!  =====================================================================
!
!  -- Reference BLAS level2 routine (version 3.7.0) --
!  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
!  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
!     December 2016
!
!     .. Scalar Arguments ..
!     ..
!     .. Array Arguments ..
!     ..
!
!  =====================================================================
!
!     .. Parameters ..
!     ..
!     .. Local Scalars ..
!     ..
!     .. External Functions ..
!     ..
!     .. External Subroutines ..
!     ..
!     .. Intrinsic Functions ..
!     ..
!
!     Test the input parameters.
!
!
!     Quick return if possible.
!
!
!
!     Set up the start point in X if the increment is not unity. This
!     will be  ( N - 1 )*INCX  too small for descending loops.
!
!
!     Start the operations. In this version the elements of A are
!     accessed sequentially with one pass through A.
!
!
!        Form  x := inv( A )*x.
!
!
!        Form  x := inv( A**T )*x  or  x := inv( A**H )*x.
!
!
!
!     End of ZTRSV .
!
! END
use M_blas, only : ztrsv_=>ZTRSV
implicit none
      INTEGER INCX,LDA,N
      CHARACTER DIAG,TRANS,UPLO
      COMPLEX*16 A(LDA,*),X(*)
    call ZTRSV_(UPLO,TRANS,DIAG,N,A,LDA,X,INCX)
end subroutine ZTRSV