scnrm2 Function

public pure function scnrm2(n, x, incx)

NAME

scnrm2(3f) - [BLAS:SINGLE_BLAS_LEVEL1] SCNRM2:= square root of sum of magnitudes of entries of CX.

SYNOPSIS

 real function scnrm2(n,x,incx)

  ..
  .. Scalar Arguments ..
  integer,intent(in) :: incx, n
  ..
  .. Array Arguments ..
  complex(wp),intent(in) :: x(*)
  ..

DEFINITION

SCNRM2 returns the euclidean norm of a vector via the function name, so that

 SCNRM2 := sqrt( x**H*x )

OPTIONS

N

       N is INTEGER
      number of elements in input vector(s)

X

       X is COMPLEX array, dimension (N)
      complex vector with N elements

INCX

       INCX is INTEGER, storage spacing between elements of X
       If INCX > 0, X(1+(i-1)*INCX) = x(i) for 1 <= i <= n
       If INCX < 0, X(1-(n-i)*INCX) = x(i) for 1 <= i <= n
       If INCX = 0, x isn't a vector so there is no need to call
       this subroutine. If you call it anyway, it will count x(1)
       in the vector norm N times.

AUTHORS

  • Edward Anderson, Lockheed Martin

date:August 2016

\par Contributors:

Weslley Pereira, University of Colorado Denver, USA

FURTHER DETAILS

Anderson E. (2017) Algorithm 978: Safe Scaling in the Level 1 BLAS ACM Trans Math Softw 44:1–28 https://doi.org/10.1145/3061665

Blue, James L. (1978) A Portable Fortran Program to Find the Euclidean Norm of a Vector ACM Trans Math Softw 4:15–23 https://doi.org/10.1145/355769.355771

SEE ALSO

Online html documentation available at
http://www.netlib.org/lapack/explore-html/

Arguments

Type IntentOptional Attributes Name
integer, intent(in) :: n
complex(kind=wp), intent(in) :: x(*)
integer, intent(in) :: incx

Return Value real(kind=wp)


Contents

Source Code


Variables

Type Visibility Attributes Name Initial
real(kind=wp), public :: abig
real(kind=wp), public :: amed
real(kind=wp), public :: asml
real(kind=wp), public :: ax
integer, public :: i
integer, public :: ix
real(kind=wp), public, parameter :: maxn = huge(0.0_wp)
logical, public :: notbig
real(kind=wp), public, parameter :: one = 1.0_wp
real(kind=wp), public, parameter :: sbig = real(radix(0._wp), wp)**(-ceiling((maxexponent(0._wp)-digits(0._wp)+1)*0.5_wp))
real(kind=wp), public :: scl
real(kind=wp), public, parameter :: ssml = real(radix(0._wp), wp)**(-floor((minexponent(0._wp)-1)*0.5_wp))
real(kind=wp), public :: sumsq
real(kind=wp), public, parameter :: tbig = real(radix(0._wp), wp)**floor((maxexponent(0._wp)-digits(0._wp)+1)*0.5_wp)
real(kind=wp), public, parameter :: tsml = real(radix(0._wp), wp)**ceiling((minexponent(0._wp)-1)*0.5_wp)
integer, public, parameter :: wp = kind(1.e0)
real(kind=wp), public :: ymax
real(kind=wp), public :: ymin
real(kind=wp), public, parameter :: zero = 0.0_wp

Source Code

pure function scnrm2( n, x, incx )
   integer, parameter :: wp = kind(1.e0)
   real(wp) :: scnrm2
!
!  -- Reference BLAS level1 routine (version 3.9.1) --
!  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
!  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
!     March 2021
!
!  .. Constants ..
   real(wp), parameter :: zero = 0.0_wp
   real(wp), parameter :: one  = 1.0_wp
   real(wp), parameter :: maxn = huge(0.0_wp)
!  ..
!  .. Blue's scaling constants ..
   real(wp), parameter :: tsml = real(radix(0._wp), wp)**ceiling( (minexponent(0._wp) - 1) * 0.5_wp)
   real(wp), parameter :: tbig = real(radix(0._wp), wp)**floor( (maxexponent(0._wp) - digits(0._wp) + 1) * 0.5_wp)
   real(wp), parameter :: ssml = real(radix(0._wp), wp)**( - floor( (minexponent(0._wp) - 1) * 0.5_wp))
   real(wp), parameter :: sbig = real(radix(0._wp), wp)**( - ceiling( (maxexponent(0._wp) - digits(0._wp) + 1) * 0.5_wp))
!  ..
!  .. Scalar Arguments ..
   integer,intent(in) :: incx, n
!  ..
!  .. Array Arguments ..
   complex(wp),intent(in) :: x(*)
!  ..
!  .. Local Scalars ..
   integer :: i, ix
   logical :: notbig
   real(wp) :: abig, amed, asml, ax, scl, sumsq, ymax, ymin
!
!  Quick return if possible
!
   scnrm2 = zero
   if( n <= 0 ) return
!
   scl = one
   sumsq = zero
!
!  Compute the sum of squares in 3 accumulators:
!     abig -- sums of squares scaled down to avoid overflow
!     asml -- sums of squares scaled up to avoid underflow
!     amed -- sums of squares that do not require scaling
!  The thresholds and multipliers are
!     tbig -- values bigger than this are scaled down by sbig
!     tsml -- values smaller than this are scaled up by ssml
!
   notbig = .true.
   asml = zero
   amed = zero
   abig = zero
   ix = 1
   if( incx < 0 ) ix = 1 - (n-1)*incx
   do i = 1, n
      ax = abs(real(x(ix)))
      if (ax > tbig) then
         abig = abig + (ax*sbig)**2
         notbig = .false.
      elseif (ax < tsml) then
         if (notbig) asml = asml + (ax*ssml)**2
      else
         amed = amed + ax**2
      endif
      ax = abs(aimag(x(ix)))
      if (ax > tbig) then
         abig = abig + (ax*sbig)**2
         notbig = .false.
      elseif (ax < tsml) then
         if (notbig) asml = asml + (ax*ssml)**2
      else
         amed = amed + ax**2
      endif
      ix = ix + incx
   enddo
!
!  Combine abig and amed or amed and asml if more than one
!  accumulator was used.
!
   if (abig > zero) then
!
!     Combine abig and amed if abig > 0.
!
      if ( (amed > zero) .or. (amed > maxn) .or. (amed /= amed) ) then
         abig = abig + (amed*sbig)*sbig
      endif
      scl = one / sbig
      sumsq = abig
   elseif (asml > zero) then
!
!     Combine amed and asml if asml > 0.
!
      if ( (amed > zero) .or. (amed > maxn) .or. (amed /= amed) ) then
         amed = sqrt(amed)
         asml = sqrt(asml) / ssml
         if (asml > amed) then
            ymin = amed
            ymax = asml
         else
            ymin = asml
            ymax = amed
         endif
         scl = one
         sumsq = ymax**2*( one + (ymin/ymax)**2 )
      else
         scl = one / ssml
         sumsq = asml
      endif
   else
!
!     Otherwise all values are mid-range
!
      scl = one
      sumsq = amed
   endif
   scnrm2 = scl*sqrt( sumsq )
end function scnrm2