crotg Subroutine

public subroutine crotg(a, b, c, s)

NAME

crotg(3f) - [BLAS:SINGLE_BLAS_LEVEL1] Generate a hermitian Given's rotation.

SYNOPSIS

 subroutine CROTG( a, b, c, s )

  .. Scalar Arguments ..
     complex(wp),intent(inout) :: a
     complex(wp),intent(in)    :: b
     real(wp),intent(out)      :: c
     complex(wp),intent(out)   :: s

DESCRIPTION

CROTG constructs a plane rotation

  [  c         s ] [ a ] = [ r ]
  [ -conjg(s)  c ] [ b ]   [ 0 ]

where c is real, s ic complex, and c*2 + conjg(s)s = 1.

The computation uses the formulas

 |x| = sqrt( Re(x)**2 + Im(x)**2 )
 sgn(x) = x / |x|  if x /= 0
        = 1        if x  = 0
 c = |a| / sqrt(|a|**2 + |b|**2)
 s = sgn(a) * conjg(b) / sqrt(|a|**2 + |b|**2)

When a and b are real and r /= 0, the formulas simplify to

 r = sgn(a)*sqrt(|a|**2 + |b|**2)
 c = a / r
 s = b / r

the same as in CROTG when |a| > |b|. When |b| >= |a|, the sign of c and s will be different from those computed by CROTG if the signs of a and b are not the same.

OPTIONS

A  On entry, the scalar a. On exit, the scalar r.
B  The scalar b.
C  The scalar c.
S  The scalar s.

AUTHORS

  • Edward Anderson, Lockheed Martin

CONTRIBUTORS

  • Weslley Pereira, University of Colorado Denver, USA

FURTHER DETAILS

 Anderson E. (2017)
 Algorithm 978: Safe Scaling in the Level 1 BLAS
 ACM Trans Math Softw 44:1--28
 https://doi.org/10.1145/3061665

SEE ALSO

Online html documentation available at
http://www.netlib.org/lapack/explore-html/

Arguments

Type IntentOptional Attributes Name
complex(kind=wp), intent(inout) :: a
complex(kind=wp), intent(in) :: b
real(kind=wp), intent(out) :: c
complex(kind=wp), intent(out) :: s

Contents

Source Code


Variables

Type Visibility Attributes Name Initial
real(kind=wp), public :: abssq
complex(kind=wp), public, parameter :: czero = 0.0_wp
real(kind=wp), public :: d
complex(kind=wp), public :: f
real(kind=wp), public :: f1
real(kind=wp), public :: f2
complex(kind=wp), public :: fs
complex(kind=wp), public :: g
real(kind=wp), public :: g1
real(kind=wp), public :: g2
complex(kind=wp), public :: gs
real(kind=wp), public :: h2
real(kind=wp), public, parameter :: one = 1.0_wp
real(kind=wp), public :: p
complex(kind=wp), public :: r
real(kind=wp), public, parameter :: rtmax = sqrt(real(radix(0._wp), wp)**max(1-minexponent(0._wp), maxexponent(0._wp)-1)*epsilon(0._wp))
real(kind=wp), public, parameter :: rtmin = sqrt(real(radix(0._wp), wp)**max(minexponent(0._wp)-1, 1-maxexponent(0._wp))/epsilon(0._wp))
real(kind=wp), public, parameter :: safmax = real(radix(0._wp), wp)**max(1-minexponent(0._wp), maxexponent(0._wp)-1)
real(kind=wp), public, parameter :: safmin = real(radix(0._wp), wp)**max(minexponent(0._wp)-1, 1-maxexponent(0._wp))
complex(kind=wp), public :: t
real(kind=wp), public :: u
real(kind=wp), public :: uu
real(kind=wp), public :: v
real(kind=wp), public :: vv
real(kind=wp), public :: w
integer, public, parameter :: wp = kind(1.e0)
real(kind=wp), public, parameter :: zero = 0.0_wp

Source Code

subroutine crotg( a, b, c, s )
   integer, parameter :: wp = kind(1.e0)
!
!  -- Reference BLAS level1 routine --
!  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
!  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
!
!  .. Constants ..
   real(wp), parameter :: zero = 0.0_wp
   real(wp), parameter :: one  = 1.0_wp
   complex(wp), parameter :: czero  = 0.0_wp
!  ..
!  .. Scaling constants ..
   real(wp), parameter :: safmin = real(radix(0._wp),wp)**max( minexponent(0._wp)-1, 1-maxexponent(0._wp) )
   real(wp), parameter :: safmax = real(radix(0._wp),wp)**max( 1-minexponent(0._wp), maxexponent(0._wp)-1 )
   real(wp), parameter :: rtmin = sqrt( real(radix(0._wp),wp)**max( minexponent(0._wp)-1, 1-maxexponent(0._wp) ) / epsilon(0._wp) )
   real(wp), parameter :: rtmax = sqrt( real(radix(0._wp),wp)**max( 1-minexponent(0._wp), maxexponent(0._wp)-1 ) * epsilon(0._wp) )

!  ..
!  .. Scalar Arguments ..
   complex(wp),intent(inout) :: a
   complex(wp),intent(in)    :: b
   real(wp),intent(out)      :: c
   complex(wp),intent(out)   :: s
!  ..
!  .. Local Scalars ..
   real(wp) :: d, f1, f2, g1, g2, h2, p, u, uu, v, vv, w
   complex(wp) :: f, fs, g, gs, r, t
!  ..
!  .. Intrinsic Functions ..
   intrinsic :: abs, aimag, conjg, max, min, real, sqrt
!  ..
!  .. Statement Functions ..
   real(wp) :: abssq
!  ..
!  .. Statement Function definitions ..
   abssq( t ) = real( t )**2 + aimag( t )**2
!  ..
!  .. Executable Statements ..
!
   f = a
   g = b
   if( g == czero ) then
      c = one
      s = czero
      r = f
   elseif ( f == czero ) then
      c = zero
      g1 = max( abs(real(g)), abs(aimag(g)) )
      if( g1 > rtmin .and. g1 < rtmax ) then
!
!        Use unscaled algorithm
!
         g2 = abssq( g )
         d = sqrt( g2 )
         s = conjg( g ) / d
         r = d
      else
!
!        Use scaled algorithm
!
         u = min( safmax, max( safmin, g1 ) )
         uu = one / u
         gs = g*uu
         g2 = abssq( gs )
         d = sqrt( g2 )
         s = conjg( gs ) / d
         r = d*u
      endif
   else
      f1 = max( abs(real(f)), abs(aimag(f)) )
      g1 = max( abs(real(g)), abs(aimag(g)) )
      if( f1 > rtmin .and. f1 < rtmax .and. &
          g1 > rtmin .and. g1 < rtmax ) then
!
!        Use unscaled algorithm
!
         f2 = abssq( f )
         g2 = abssq( g )
         h2 = f2 + g2
         if( f2 > rtmin .and. h2 < rtmax ) then
            d = sqrt( f2*h2 )
         else
            d = sqrt( f2 )*sqrt( h2 )
         endif
         p = 1 / d
         c = f2*p
         s = conjg( g )*( f*p )
         r = f*( h2*p )
      else
!
!        Use scaled algorithm
!
         u = min( safmax, max( safmin, f1, g1 ) )
         uu = one / u
         gs = g*uu
         g2 = abssq( gs )
         if( f1*uu < rtmin ) then
!
!           f is not well-scaled when scaled by g1.
!           Use a different scaling for f.
!
            v = min( safmax, max( safmin, f1 ) )
            vv = one / v
            w = v * uu
            fs = f*vv
            f2 = abssq( fs )
            h2 = f2*w**2 + g2
         else
!
!           Otherwise use the same scaling for f and g.
!
            w = one
            fs = f*uu
            f2 = abssq( fs )
            h2 = f2 + g2
         endif
         if( f2 > rtmin .and. h2 < rtmax ) then
            d = sqrt( f2*h2 )
         else
            d = sqrt( f2 )*sqrt( h2 )
         endif
         p = 1 / d
         c = ( f2*p )*w
         s = conjg( gs )*( fs*p )
         r = ( fs*( h2*p ) )*u
      endif
   endif
   a = r
end subroutine crotg