crotg(3f) - [BLAS:SINGLE_BLAS_LEVEL1] Generate a hermitian Given's rotation.
subroutine CROTG( a, b, c, s )
.. Scalar Arguments ..
complex(wp),intent(inout) :: a
complex(wp),intent(in) :: b
real(wp),intent(out) :: c
complex(wp),intent(out) :: s
CROTG constructs a plane rotation
[ c s ] [ a ] = [ r ]
[ -conjg(s) c ] [ b ] [ 0 ]
where c is real, s ic complex, and c*2 + conjg(s)s = 1.
The computation uses the formulas
|x| = sqrt( Re(x)**2 + Im(x)**2 )
sgn(x) = x / |x| if x /= 0
= 1 if x = 0
c = |a| / sqrt(|a|**2 + |b|**2)
s = sgn(a) * conjg(b) / sqrt(|a|**2 + |b|**2)
When a and b are real and r /= 0, the formulas simplify to
r = sgn(a)*sqrt(|a|**2 + |b|**2)
c = a / r
s = b / r
the same as in CROTG when |a| > |b|. When |b| >= |a|, the sign of c and s will be different from those computed by CROTG if the signs of a and b are not the same.
A On entry, the scalar a. On exit, the scalar r.
B The scalar b.
C The scalar c.
S The scalar s.
Anderson E. (2017)
Algorithm 978: Safe Scaling in the Level 1 BLAS
ACM Trans Math Softw 44:1--28
https://doi.org/10.1145/3061665
Online html documentation available at
http://www.netlib.org/lapack/explore-html/
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
complex(kind=wp), | intent(inout) | :: | a | |||
complex(kind=wp), | intent(in) | :: | b | |||
real(kind=wp), | intent(out) | :: | c | |||
complex(kind=wp), | intent(out) | :: | s |
Type | Visibility | Attributes | Name | Initial | |||
---|---|---|---|---|---|---|---|
real(kind=wp), | public | :: | abssq | ||||
complex(kind=wp), | public, | parameter | :: | czero | = | 0.0_wp | |
real(kind=wp), | public | :: | d | ||||
complex(kind=wp), | public | :: | f | ||||
real(kind=wp), | public | :: | f1 | ||||
real(kind=wp), | public | :: | f2 | ||||
complex(kind=wp), | public | :: | fs | ||||
complex(kind=wp), | public | :: | g | ||||
real(kind=wp), | public | :: | g1 | ||||
real(kind=wp), | public | :: | g2 | ||||
complex(kind=wp), | public | :: | gs | ||||
real(kind=wp), | public | :: | h2 | ||||
real(kind=wp), | public, | parameter | :: | one | = | 1.0_wp | |
real(kind=wp), | public | :: | p | ||||
complex(kind=wp), | public | :: | r | ||||
real(kind=wp), | public, | parameter | :: | rtmax | = | sqrt(real(radix(0._wp), wp)**max(1-minexponent(0._wp), maxexponent(0._wp)-1)*epsilon(0._wp)) | |
real(kind=wp), | public, | parameter | :: | rtmin | = | sqrt(real(radix(0._wp), wp)**max(minexponent(0._wp)-1, 1-maxexponent(0._wp))/epsilon(0._wp)) | |
real(kind=wp), | public, | parameter | :: | safmax | = | real(radix(0._wp), wp)**max(1-minexponent(0._wp), maxexponent(0._wp)-1) | |
real(kind=wp), | public, | parameter | :: | safmin | = | real(radix(0._wp), wp)**max(minexponent(0._wp)-1, 1-maxexponent(0._wp)) | |
complex(kind=wp), | public | :: | t | ||||
real(kind=wp), | public | :: | u | ||||
real(kind=wp), | public | :: | uu | ||||
real(kind=wp), | public | :: | v | ||||
real(kind=wp), | public | :: | vv | ||||
real(kind=wp), | public | :: | w | ||||
integer, | public, | parameter | :: | wp | = | kind(1.e0) | |
real(kind=wp), | public, | parameter | :: | zero | = | 0.0_wp |
subroutine crotg( a, b, c, s )
integer, parameter :: wp = kind(1.e0)
!
! -- Reference BLAS level1 routine --
! -- Reference BLAS is a software package provided by Univ. of Tennessee, --
! -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
!
! .. Constants ..
real(wp), parameter :: zero = 0.0_wp
real(wp), parameter :: one = 1.0_wp
complex(wp), parameter :: czero = 0.0_wp
! ..
! .. Scaling constants ..
real(wp), parameter :: safmin = real(radix(0._wp),wp)**max( minexponent(0._wp)-1, 1-maxexponent(0._wp) )
real(wp), parameter :: safmax = real(radix(0._wp),wp)**max( 1-minexponent(0._wp), maxexponent(0._wp)-1 )
real(wp), parameter :: rtmin = sqrt( real(radix(0._wp),wp)**max( minexponent(0._wp)-1, 1-maxexponent(0._wp) ) / epsilon(0._wp) )
real(wp), parameter :: rtmax = sqrt( real(radix(0._wp),wp)**max( 1-minexponent(0._wp), maxexponent(0._wp)-1 ) * epsilon(0._wp) )
! ..
! .. Scalar Arguments ..
complex(wp),intent(inout) :: a
complex(wp),intent(in) :: b
real(wp),intent(out) :: c
complex(wp),intent(out) :: s
! ..
! .. Local Scalars ..
real(wp) :: d, f1, f2, g1, g2, h2, p, u, uu, v, vv, w
complex(wp) :: f, fs, g, gs, r, t
! ..
! .. Intrinsic Functions ..
intrinsic :: abs, aimag, conjg, max, min, real, sqrt
! ..
! .. Statement Functions ..
real(wp) :: abssq
! ..
! .. Statement Function definitions ..
abssq( t ) = real( t )**2 + aimag( t )**2
! ..
! .. Executable Statements ..
!
f = a
g = b
if( g == czero ) then
c = one
s = czero
r = f
elseif ( f == czero ) then
c = zero
g1 = max( abs(real(g)), abs(aimag(g)) )
if( g1 > rtmin .and. g1 < rtmax ) then
!
! Use unscaled algorithm
!
g2 = abssq( g )
d = sqrt( g2 )
s = conjg( g ) / d
r = d
else
!
! Use scaled algorithm
!
u = min( safmax, max( safmin, g1 ) )
uu = one / u
gs = g*uu
g2 = abssq( gs )
d = sqrt( g2 )
s = conjg( gs ) / d
r = d*u
endif
else
f1 = max( abs(real(f)), abs(aimag(f)) )
g1 = max( abs(real(g)), abs(aimag(g)) )
if( f1 > rtmin .and. f1 < rtmax .and. &
g1 > rtmin .and. g1 < rtmax ) then
!
! Use unscaled algorithm
!
f2 = abssq( f )
g2 = abssq( g )
h2 = f2 + g2
if( f2 > rtmin .and. h2 < rtmax ) then
d = sqrt( f2*h2 )
else
d = sqrt( f2 )*sqrt( h2 )
endif
p = 1 / d
c = f2*p
s = conjg( g )*( f*p )
r = f*( h2*p )
else
!
! Use scaled algorithm
!
u = min( safmax, max( safmin, f1, g1 ) )
uu = one / u
gs = g*uu
g2 = abssq( gs )
if( f1*uu < rtmin ) then
!
! f is not well-scaled when scaled by g1.
! Use a different scaling for f.
!
v = min( safmax, max( safmin, f1 ) )
vv = one / v
w = v * uu
fs = f*vv
f2 = abssq( fs )
h2 = f2*w**2 + g2
else
!
! Otherwise use the same scaling for f and g.
!
w = one
fs = f*uu
f2 = abssq( fs )
h2 = f2 + g2
endif
if( f2 > rtmin .and. h2 < rtmax ) then
d = sqrt( f2*h2 )
else
d = sqrt( f2 )*sqrt( h2 )
endif
p = 1 / d
c = ( f2*p )*w
s = conjg( gs )*( fs*p )
r = ( fs*( h2*p ) )*u
endif
endif
a = r
end subroutine crotg