ctrsv(3f) - [BLAS:COMPLEX_BLAS_LEVEL2]
CX := INVERSE(A)*CX, where A is a triangular matrix.
subroutine ctrsv(uplo,trans,diag,n,a,lda,x,incx)
.. Scalar Arguments ..
integer,intent(in) :: incx,lda,n
character,intent(in) :: diag,trans,uplo
..
.. Array Arguments ..
complex,intent(in) :: a(lda,*)
complex,intent(inout) :: x(*)
..
CTRSV solves one of the systems of equations
A*x = b, or A**T*x = b, or A**H*x = b,
where b and x are n element vectors and A is an n by n unit, or non-unit, upper or lower triangular matrix.
No test for singularity or near-singularity is included in this routine. Such tests must be performed before calling this routine.
UPLO
UPLO is CHARACTER*1
On entry, UPLO specifies whether the matrix is an upper or
lower triangular matrix as follows:
UPLO = 'U' or 'u' A is an upper triangular matrix.
UPLO = 'L' or 'l' A is a lower triangular matrix.
TRANS
TRANS is CHARACTER*1
On entry, TRANS specifies the equations to be solved as
follows:
TRANS = 'N' or 'n' A*x = b.
TRANS = 'T' or 't' A**T*x = b.
TRANS = 'C' or 'c' A**H*x = b.
DIAG
DIAG is CHARACTER*1
On entry, DIAG specifies whether or not A is unit
triangular as follows:
DIAG = 'U' or 'u' A is assumed to be unit triangular.
DIAG = 'N' or 'n' A is not assumed to be unit
triangular.
N
N is INTEGER
On entry, N specifies the order of the matrix A.
N must be at least zero.
A
A is COMPLEX array, dimension ( LDA, N )
Before entry with UPLO = 'U' or 'u', the leading n by n
upper triangular part of the array A must contain the upper
triangular matrix and the strictly lower triangular part of
A is not referenced.
Before entry with UPLO = 'L' or 'l', the leading n by n
lower triangular part of the array A must contain the lower
triangular matrix and the strictly upper triangular part of
A is not referenced.
Note that when DIAG = 'U' or 'u', the diagonal elements of
A are not referenced either, but are assumed to be unity.
LDA
LDA is INTEGER
On entry, LDA specifies the first dimension of A as declared
in the calling (sub) program. LDA must be at least
max( 1, n ).
X
X is COMPLEX array, dimension at least
( 1 + ( n - 1 )*abs( INCX ) ).
Before entry, the incremented array X must contain the n
element right-hand side vector b. On exit, X is overwritten
with the solution vector x.
INCX
INCX is INTEGER
On entry, INCX specifies the increment for the elements of
X. INCX must not be zero.
date:December 2016
FURTHER DETAILS
Level 2 Blas routine.
– Written on 22-October-1986. Jack Dongarra, Argonne National Lab. Jeremy Du Croz, Nag Central Office. Sven Hammarling, Nag Central Office. Richard Hanson, Sandia National Labs.
Online html documentation available at
http://www.netlib.org/lapack/explore-html/
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
character(len=1), | intent(in) | :: | uplo | |||
character(len=1), | intent(in) | :: | trans | |||
character(len=1), | intent(in) | :: | diag | |||
integer, | intent(in) | :: | n | |||
complex, | intent(in) | :: | a(lda,*) | |||
integer, | intent(in) | :: | lda | |||
complex, | intent(inout) | :: | x(*) | |||
integer, | intent(in) | :: | incx |
Type | Visibility | Attributes | Name | Initial | |||
---|---|---|---|---|---|---|---|
integer, | public | :: | i | ||||
integer, | public | :: | info | ||||
integer, | public | :: | ix | ||||
integer, | public | :: | j | ||||
integer, | public | :: | jx | ||||
integer, | public | :: | kx | ||||
logical, | public | :: | noconj | ||||
logical, | public | :: | nounit | ||||
complex, | public | :: | temp | ||||
complex, | public, | parameter | :: | zero | = | (0.0e+0,0.0e+0) |
subroutine ctrsv(uplo,trans,diag,n,a,lda,x,incx)
implicit none
!
! -- Reference BLAS level2 routine (version 3.7.0) --
! -- Reference BLAS is a software package provided by Univ. of Tennessee, --
! -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
! December 2016
!
! .. Scalar Arguments ..
integer,intent(in) :: incx,lda,n
character,intent(in) :: diag,trans,uplo
! ..
! .. Array Arguments ..
complex,intent(in) :: a(lda,*)
complex,intent(inout) :: x(*)
! ..
!
! =====================================================================
!
! .. Parameters ..
complex zero
parameter (zero= (0.0e+0,0.0e+0))
! ..
! .. Local Scalars ..
complex temp
integer i,info,ix,j,jx,kx
logical noconj,nounit
! ..
! .. External Functions ..
! ..
! .. External Subroutines ..
! ..
! .. Intrinsic Functions ..
intrinsic conjg,max
! ..
!
! Test the input parameters.
!
info = 0
if (.not.lsame(uplo,'U') .and. .not.lsame(uplo,'L')) then
info = 1
elseif (.not.lsame(trans,'N') .and. .not.lsame(trans,'T') .and. .not.lsame(trans,'C')) then
info = 2
elseif (.not.lsame(diag,'U') .and. .not.lsame(diag,'N')) then
info = 3
elseif (n.lt.0) then
info = 4
elseif (lda.lt.max(1,n)) then
info = 6
elseif (incx.eq.0) then
info = 8
endif
if (info.ne.0) then
call xerbla('CTRSV ',info)
return
endif
!
! Quick return if possible.
!
if (n.eq.0) return
!
noconj = lsame(trans,'T')
nounit = lsame(diag,'N')
!
! Set up the start point in X if the increment is not unity. This
! will be ( N - 1 )*INCX too small for descending loops.
!
if (incx.le.0) then
kx = 1 - (n-1)*incx
elseif (incx.ne.1) then
kx = 1
endif
!
! Start the operations. In this version the elements of A are
! accessed sequentially with one pass through A.
!
if (lsame(trans,'N')) then
!
! Form x := inv( A )*x.
!
if (lsame(uplo,'U')) then
if (incx.eq.1) then
do j = n,1,-1
if (x(j).ne.zero) then
if (nounit) x(j) = x(j)/a(j,j)
temp = x(j)
do i = j - 1,1,-1
x(i) = x(i) - temp*a(i,j)
enddo
endif
enddo
else
jx = kx + (n-1)*incx
do j = n,1,-1
if (x(jx).ne.zero) then
if (nounit) x(jx) = x(jx)/a(j,j)
temp = x(jx)
ix = jx
do i = j - 1,1,-1
ix = ix - incx
x(ix) = x(ix) - temp*a(i,j)
enddo
endif
jx = jx - incx
enddo
endif
else
if (incx.eq.1) then
do j = 1,n
if (x(j).ne.zero) then
if (nounit) x(j) = x(j)/a(j,j)
temp = x(j)
do i = j + 1,n
x(i) = x(i) - temp*a(i,j)
enddo
endif
enddo
else
jx = kx
do j = 1,n
if (x(jx).ne.zero) then
if (nounit) x(jx) = x(jx)/a(j,j)
temp = x(jx)
ix = jx
do i = j + 1,n
ix = ix + incx
x(ix) = x(ix) - temp*a(i,j)
enddo
endif
jx = jx + incx
enddo
endif
endif
else
!
! Form x := inv( A**T )*x or x := inv( A**H )*x.
!
if (lsame(uplo,'U')) then
if (incx.eq.1) then
do j = 1,n
temp = x(j)
if (noconj) then
do i = 1,j - 1
temp = temp - a(i,j)*x(i)
enddo
if (nounit) temp = temp/a(j,j)
else
do i = 1,j - 1
temp = temp - conjg(a(i,j))*x(i)
enddo
if (nounit) temp = temp/conjg(a(j,j))
endif
x(j) = temp
enddo
else
jx = kx
do j = 1,n
ix = kx
temp = x(jx)
if (noconj) then
do i = 1,j - 1
temp = temp - a(i,j)*x(ix)
ix = ix + incx
enddo
if (nounit) temp = temp/a(j,j)
else
do i = 1,j - 1
temp = temp - conjg(a(i,j))*x(ix)
ix = ix + incx
enddo
if (nounit) temp = temp/conjg(a(j,j))
endif
x(jx) = temp
jx = jx + incx
enddo
endif
else
if (incx.eq.1) then
do j = n,1,-1
temp = x(j)
if (noconj) then
do i = n,j + 1,-1
temp = temp - a(i,j)*x(i)
enddo
if (nounit) temp = temp/a(j,j)
else
do i = n,j + 1,-1
temp = temp - conjg(a(i,j))*x(i)
enddo
if (nounit) temp = temp/conjg(a(j,j))
endif
x(j) = temp
enddo
else
kx = kx + (n-1)*incx
jx = kx
do j = n,1,-1
ix = kx
temp = x(jx)
if (noconj) then
do i = n,j + 1,-1
temp = temp - a(i,j)*x(ix)
ix = ix - incx
enddo
if (nounit) temp = temp/a(j,j)
else
do i = n,j + 1,-1
temp = temp - conjg(a(i,j))*x(ix)
ix = ix - incx
enddo
if (nounit) temp = temp/conjg(a(j,j))
endif
x(jx) = temp
jx = jx - incx
enddo
endif
endif
endif
!
! End of CTRSV .
!
end subroutine ctrsv