dgemv Subroutine

public subroutine dgemv(trans, m, n, alpha, a, lda, x, incx, beta, y, incy)

NAME

dgemv(3f) - [BLAS:DOUBLE_BLAS_LEVEL2]

SYNOPSIS

 subroutine dgemv(trans,m,n,alpha,a,lda,x,incx,beta,y,incy)

   .. Scalar Arguments ..
   double precision,intent(in)    :: alpha,beta
   integer,intent(in)             :: incx,incy,lda,m,n
   character,intent(in)           :: trans
   ..
   .. Array Arguments ..
   double precision,intent(in)    :: a(lda,*),x(*)
   double precision,intent(inout) :: y(*)
   ..

DEFINITION

DGEMV performs one of the matrix-vector operations

 y := alpha*A*x + beta*y,   or   y := alpha*A**T*x + beta*y,

where alpha and beta are scalars, x and y are vectors and A is an m by n matrix.

OPTIONS

TRANS

       TRANS is CHARACTER*1
        On entry, TRANS specifies the operation to be performed as
        follows:

           TRANS = 'N' or 'n'   y := alpha*A*x + beta*y.

           TRANS = 'T' or 't'   y := alpha*A**T*x + beta*y.

           TRANS = 'C' or 'c'   y := alpha*A**T*x + beta*y.

M

       M is INTEGER
        On entry, M specifies the number of rows of the matrix A.
        M must be at least zero.

N

       N is INTEGER
        On entry, N specifies the number of columns of the matrix A.
        N must be at least zero.

ALPHA

       ALPHA is DOUBLE PRECISION.
        On entry, ALPHA specifies the scalar alpha.

A

       A is DOUBLE PRECISION array, dimension ( LDA, N )
        Before entry, the leading m by n part of the array A must
        contain the matrix of coefficients.

LDA

       LDA is INTEGER
        On entry, LDA specifies the first dimension of A as declared
        in the calling (sub) program. LDA must be at least
        max( 1, m ).

X

       X is DOUBLE PRECISION array, dimension at least
        ( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n'
        and at least
        ( 1 + ( m - 1 )*abs( INCX ) ) otherwise.
        Before entry, the incremented array X must contain the
        vector x.

INCX

       INCX is INTEGER
        On entry, INCX specifies the increment for the elements of
        X. INCX must not be zero.

BETA

       BETA is DOUBLE PRECISION.
        On entry, BETA specifies the scalar beta. When BETA is
        supplied as zero then Y need not be set on input.

Y

       Y is DOUBLE PRECISION array, dimension at least
        ( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n'
        and at least
        ( 1 + ( n - 1 )*abs( INCY ) ) otherwise.
        Before entry with BETA non-zero, the incremented array Y
        must contain the vector y. On exit, Y is overwritten by the
        updated vector y.

INCY

       INCY is INTEGER
        On entry, INCY specifies the increment for the elements of
        Y. INCY must not be zero.

AUTHORS

  • Univ. of Tennessee
  • Univ. of California Berkeley
  • Univ. of Colorado Denver
  • NAG Ltd.

date:December 2016

FURTHER DETAILS

Level 2 Blas routine. The vector and matrix arguments are not referenced when N = 0, or M = 0

– Written on 22-October-1986. Jack Dongarra, Argonne National Lab. Jeremy Du Croz, Nag Central Office. Sven Hammarling, Nag Central Office. Richard Hanson, Sandia National Labs.

SEE ALSO

Online html documentation available at
http://www.netlib.org/lapack/explore-html/

Arguments

Type IntentOptional Attributes Name
character(len=1), intent(in) :: trans
integer, intent(in) :: m
integer, intent(in) :: n
double precision, intent(in) :: alpha
double precision, intent(in) :: a(lda,*)
integer, intent(in) :: lda
double precision, intent(in) :: x(*)
integer, intent(in) :: incx
double precision, intent(in) :: beta
double precision, intent(inout) :: y(*)
integer, intent(in) :: incy

Contents

Source Code


Variables

Type Visibility Attributes Name Initial
integer, public :: i
integer, public :: info
integer, public :: ix
integer, public :: iy
integer, public :: j
integer, public :: jx
integer, public :: jy
integer, public :: kx
integer, public :: ky
integer, public :: lenx
integer, public :: leny
double precision, public, parameter :: one = 1.0d+0
double precision, public :: temp
double precision, public, parameter :: zero = 0.0d+0

Source Code

       subroutine dgemv(trans,m,n,alpha,a,lda,x,incx,beta,y,incy)
      implicit none
!
!  -- Reference BLAS level2 routine (version 3.7.0) --
!  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
!  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
!     December 2016
!
!     .. Scalar Arguments ..
      double precision,intent(in)    :: alpha,beta
      integer,intent(in)             :: incx,incy,lda,m,n
      character,intent(in)           :: trans
!     ..
!     .. Array Arguments ..
      double precision,intent(in)    :: a(lda,*),x(*)
      double precision,intent(inout) :: y(*)
!     ..
!
!  =====================================================================
!
!     .. Parameters ..
      double precision one,zero
      parameter (one=1.0d+0,zero=0.0d+0)
!     ..
!     .. Local Scalars ..
      double precision temp
      integer i,info,ix,iy,j,jx,jy,kx,ky,lenx,leny
!     ..
!     .. External Functions ..
!     ..
!     .. External Subroutines ..
!     ..
!     .. Intrinsic Functions ..
      intrinsic max
!     ..
!
!     Test the input parameters.
!
      info = 0
      if (.not.lsame(trans,'N') .and. .not.lsame(trans,'T') .and.  .not.lsame(trans,'C')) then
          info = 1
      else if (m.lt.0) then
          info = 2
      else if (n.lt.0) then
          info = 3
      else if (lda.lt.max(1,m)) then
          info = 6
      else if (incx.eq.0) then
          info = 8
      else if (incy.eq.0) then
          info = 11
      endif
      if (info.ne.0) then
          call xerbla('DGEMV ',info)
          return
      endif
!
!     Quick return if possible.
!
      if ((m.eq.0) .or. (n.eq.0) .or.  ((alpha.eq.zero).and. (beta.eq.one))) return
!
!     Set  LENX  and  LENY, the lengths of the vectors x and y, and set
!     up the start points in  X  and  Y.
!
      if (lsame(trans,'N')) then
          lenx = n
          leny = m
      else
          lenx = m
          leny = n
      endif
      if (incx.gt.0) then
          kx = 1
      else
          kx = 1 - (lenx-1)*incx
      endif
      if (incy.gt.0) then
          ky = 1
      else
          ky = 1 - (leny-1)*incy
      endif
!
!     Start the operations. In this version the elements of A are
!     accessed sequentially with one pass through A.
!
!     First form  y := beta*y.
!
      if (beta.ne.one) then
          if (incy.eq.1) then
              if (beta.eq.zero) then
                  y(1:leny) = zero
              else
                  y(1:leny) = beta*y(1:leny)
              endif
          else
              iy = ky
              if (beta.eq.zero) then
                  do i = 1,leny
                      y(iy) = zero
                      iy = iy + incy
                  enddo
              else
                  do i = 1,leny
                      y(iy) = beta*y(iy)
                      iy = iy + incy
                  enddo
              endif
          endif
      endif
      if (alpha.eq.zero) return
      if (lsame(trans,'N')) then
!
!        Form  y := alpha*A*x + y.
!
          jx = kx
          if (incy.eq.1) then
              do j = 1,n
                  temp = alpha*x(jx)
                  y(1:m) = y(1:m) + temp*a(1:m,j)
                  jx = jx + incx
              enddo
          else
              do j = 1,n
                  temp = alpha*x(jx)
                  iy = ky
                  do i = 1,m
                      y(iy) = y(iy) + temp*a(i,j)
                      iy = iy + incy
                  enddo
                  jx = jx + incx
              enddo
          endif
      else
!
!        Form  y := alpha*A**T*x + y.
!
          jy = ky
          if (incx.eq.1) then
              do j = 1,n
                  temp = zero
                  do i = 1,m
                      temp = temp + a(i,j)*x(i)
                  enddo
                  y(jy) = y(jy) + alpha*temp
                  jy = jy + incy
              enddo
          else
              do j = 1,n
                  temp = zero
                  ix = kx
                  do i = 1,m
                      temp = temp + a(i,j)*x(ix)
                      ix = ix + incx
                  enddo
                  y(jy) = y(jy) + alpha*temp
                  jy = jy + incy
              enddo
          endif
      endif
!
      end subroutine dgemv