ssbmv Subroutine

public subroutine ssbmv(uplo, n, k, alpha, a, lda, x, incx, beta, y, incy)

NAME

ssbmv(3f) - [BLAS:SINGLE_BLAS_LEVEL2] SY:=alpha*A*SX+beta*SY, A a symmetric band matrix.

SYNOPSIS

 subroutine ssbmv(uplo,n,k,alpha,a,lda,x,incx,beta,y,incy)

   .. Scalar Arguments ..
   real,intent(in)      :: alpha,beta
   integer,intent(in)   :: incx,incy,k,lda,n
   character,intent(in) :: uplo
   ..
   .. Array Arguments ..
   real,intent(in)      :: a(lda,*),x(*)
   real,intent(inout)   :: y(*)
   ..

DEFINITION

SSBMV performs the matrix-vector operation

 y := alpha*A*x + beta*y,

where alpha and beta are scalars, x and y are n element vectors and A is an n by n symmetric band matrix, with k super-diagonals.

OPTIONS

UPLO

       UPLO is CHARACTER*1
        On entry, UPLO specifies whether the upper or lower
        triangular part of the band matrix A is being supplied as
        follows:

           UPLO = 'U' or 'u'   The upper triangular part of A is
                               being supplied.

           UPLO = 'L' or 'l'   The lower triangular part of A is
                               being supplied.

N

       N is INTEGER
        On entry, N specifies the order of the matrix A.
        N must be at least zero.

K

       K is INTEGER
        On entry, K specifies the number of super-diagonals of the
        matrix A. K must satisfy 0 .le. K.

ALPHA

       ALPHA is REAL
        On entry, ALPHA specifies the scalar alpha.

A

       A is REAL array, dimension ( LDA, N )
        Before entry with UPLO = 'U' or 'u', the leading ( k + 1 )
        by n part of the array A must contain the upper triangular
        band part of the symmetric matrix, supplied column by
        column, with the leading diagonal of the matrix in row
        ( k + 1 ) of the array, the first super-diagonal starting at
        position 2 in row k, and so on. The top left k by k triangle
        of the array A is not referenced.
        The following program segment will transfer the upper
        triangular part of a symmetric band matrix from conventional
        full matrix storage to band storage:

           >    DO 20, J = 1, N
           >       M = K + 1 - J
           >       DO 10, I = MAX( 1, J - K ), J
           >          A( M + I, J ) = matrix( I, J )
           > 10    CONTINUE
           > 20 CONTINUE

        Before entry with UPLO = 'L' or 'l', the leading ( k + 1 )
        by n part of the array A must contain the lower triangular
        band part of the symmetric matrix, supplied column by
        column, with the leading diagonal of the matrix in row 1 of
        the array, the first sub-diagonal starting at position 1 in
        row 2, and so on. The bottom right k by k triangle of the
        array A is not referenced.
        The following program segment will transfer the lower
        triangular part of a symmetric band matrix from conventional
        full matrix storage to band storage:

           >    DO 20, J = 1, N
           >       M = 1 - J
           >       DO 10, I = J, MIN( N, J + K )
           >          A( M + I, J ) = matrix( I, J )
           > 10    CONTINUE
           > 20 CONTINUE

LDA

       LDA is INTEGER
        On entry, LDA specifies the first dimension of A as declared
        in the calling (sub) program. LDA must be at least
        ( k + 1 ).

X

       X is REAL array, dimension at least
        ( 1 + ( n - 1 )*abs( INCX ) ).
        Before entry, the incremented array X must contain the
        vector x.

INCX

       INCX is INTEGER
        On entry, INCX specifies the increment for the elements of
        X. INCX must not be zero.

BETA

       BETA is REAL
        On entry, BETA specifies the scalar beta.

Y

       Y is REAL array, dimension at least
        ( 1 + ( n - 1 )*abs( INCY ) ).
        Before entry, the incremented array Y must contain the
        vector y. On exit, Y is overwritten by the updated vector y.

INCY

       INCY is INTEGER
        On entry, INCY specifies the increment for the elements of
        Y. INCY must not be zero.

AUTHORS

  • Univ. of Tennessee
  • Univ. of California Berkeley
  • Univ. of Colorado Denver
  • NAG Ltd.

date:December 2016

FURTHER DETAILS

Level 2 Blas routine. The vector and matrix arguments are not referenced when N = 0, or M = 0

– Written on 22-October-1986. Jack Dongarra, Argonne National Lab. Jeremy Du Croz, Nag Central Office. Sven Hammarling, Nag Central Office. Richard Hanson, Sandia National Labs.

SEE ALSO

Online html documentation available at
http://www.netlib.org/lapack/explore-html/

Arguments

Type IntentOptional Attributes Name
character(len=1), intent(in) :: uplo
integer, intent(in) :: n
integer, intent(in) :: k
real, intent(in) :: alpha
real, intent(in) :: a(lda,*)
integer, intent(in) :: lda
real, intent(in) :: x(*)
integer, intent(in) :: incx
real, intent(in) :: beta
real, intent(inout) :: y(*)
integer, intent(in) :: incy

Contents

Source Code


Variables

Type Visibility Attributes Name Initial
integer, public :: i
integer, public :: info
integer, public :: ix
integer, public :: iy
integer, public :: j
integer, public :: jx
integer, public :: jy
integer, public :: kplus1
integer, public :: kx
integer, public :: ky
integer, public :: l
real, public, parameter :: one = 1.0e+0
real, public :: temp1
real, public :: temp2
real, public, parameter :: zero = 0.0e+0

Source Code

       subroutine ssbmv(uplo,n,k,alpha,a,lda,x,incx,beta,y,incy)
      implicit none
!
!  -- Reference BLAS level2 routine (version 3.7.0) --
!  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
!  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
!     December 2016
!
!     .. Scalar Arguments ..
      real,intent(in)      :: alpha,beta
      integer,intent(in)   :: incx,incy,k,lda,n
      character,intent(in) :: uplo
!     ..
!     .. Array Arguments ..
      real,intent(in)      :: a(lda,*),x(*)
      real,intent(inout)   :: y(*)
!     ..
!
!  =====================================================================
!
!     .. Parameters ..
      real one,zero
      parameter (one=1.0e+0,zero=0.0e+0)
!     ..
!     .. Local Scalars ..
      real temp1,temp2
      integer i,info,ix,iy,j,jx,jy,kplus1,kx,ky,l
!     ..
!     .. External Functions ..  LOGICAL LSAME
!     ..
!     .. External Subroutines ..  EXTERNAL XERBLA
!     ..
!     .. Intrinsic Functions ..
      intrinsic max,min
!     ..
!
!     Test the input parameters.
!
      info = 0
      if (.not.lsame(uplo,'U') .and. .not.lsame(uplo,'L')) then
          info = 1
      elseif (n.lt.0) then
          info = 2
      elseif (k.lt.0) then
          info = 3
      elseif (lda.lt. (k+1)) then
          info = 6
      elseif (incx.eq.0) then
          info = 8
      elseif (incy.eq.0) then
          info = 11
      endif
      if (info.ne.0) then
          call xerbla('SSBMV ',info)
          return
      endif
!
!     Quick return if possible.
!
      if ((n.eq.0) .or. ((alpha.eq.zero).and. (beta.eq.one))) return
!
!     Set up the start points in  X  and  Y.
!
      if (incx.gt.0) then
          kx = 1
      else
          kx = 1 - (n-1)*incx
      endif
      if (incy.gt.0) then
          ky = 1
      else
          ky = 1 - (n-1)*incy
      endif
!
!     Start the operations. In this version the elements of the array A
!     are accessed sequentially with one pass through A.
!
!     First form  y := beta*y.
!
      if (beta.ne.one) then
          if (incy.eq.1) then
              if (beta.eq.zero) then
                  y(1:n) = zero
              else
                  y(1:n) = beta*y(1:n)
              endif
          else
              iy = ky
              if (beta.eq.zero) then
                  do i = 1,n
                      y(iy) = zero
                      iy = iy + incy
                  enddo
              else
                  do i = 1,n
                      y(iy) = beta*y(iy)
                      iy = iy + incy
                  enddo
              endif
          endif
      endif
      if (alpha.eq.zero) return
      if (lsame(uplo,'U')) then
!
!        Form  y  when upper triangle of A is stored.
!
          kplus1 = k + 1
          if ((incx.eq.1) .and. (incy.eq.1)) then
              do j = 1,n
                  temp1 = alpha*x(j)
                  temp2 = zero
                  l = kplus1 - j
                  do i = max(1,j-k),j - 1
                      y(i) = y(i) + temp1*a(l+i,j)
                      temp2 = temp2 + a(l+i,j)*x(i)
                  enddo
                  y(j) = y(j) + temp1*a(kplus1,j) + alpha*temp2
              enddo
          else
              jx = kx
              jy = ky
              do j = 1,n
                  temp1 = alpha*x(jx)
                  temp2 = zero
                  ix = kx
                  iy = ky
                  l = kplus1 - j
                  do i = max(1,j-k),j - 1
                      y(iy) = y(iy) + temp1*a(l+i,j)
                      temp2 = temp2 + a(l+i,j)*x(ix)
                      ix = ix + incx
                      iy = iy + incy
                  enddo
                  y(jy) = y(jy) + temp1*a(kplus1,j) + alpha*temp2
                  jx = jx + incx
                  jy = jy + incy
                  if (j.gt.k) then
                      kx = kx + incx
                      ky = ky + incy
                  endif
              enddo
          endif
      else
!
!        Form  y  when lower triangle of A is stored.
!
          if ((incx.eq.1) .and. (incy.eq.1)) then
              do j = 1,n
                  temp1 = alpha*x(j)
                  temp2 = zero
                  y(j) = y(j) + temp1*a(1,j)
                  l = 1 - j
                  do i = j + 1,min(n,j+k)
                      y(i) = y(i) + temp1*a(l+i,j)
                      temp2 = temp2 + a(l+i,j)*x(i)
                  enddo
                  y(j) = y(j) + alpha*temp2
              enddo
          else
              jx = kx
              jy = ky
              do j = 1,n
                  temp1 = alpha*x(jx)
                  temp2 = zero
                  y(jy) = y(jy) + temp1*a(1,j)
                  l = 1 - j
                  ix = jx
                  iy = jy
                  do i = j + 1,min(n,j+k)
                      ix = ix + incx
                      iy = iy + incy
                      y(iy) = y(iy) + temp1*a(l+i,j)
                      temp2 = temp2 + a(l+i,j)*x(ix)
                  enddo
                  y(jy) = y(jy) + alpha*temp2
                  jx = jx + incx
                  jy = jy + incy
              enddo
          endif
      endif

      end subroutine ssbmv