zhemm(3f) - [BLAS:COMPLEX16_BLAS_LEVEL3]
subroutine zhemm(side,uplo,m,n,alpha,a,lda,b,ldb,beta,c,ldc)
.. Scalar Arguments ..
complex(kind=real64),intent(in) :: alpha,beta
integer,intent(in) :: lda,ldb,ldc,m,n
character,intent(in) :: side,uplo
..
.. Array Arguments ..
complex(kind=real64),intent(in) :: a(lda,*),b(ldb,*)
complex(kind=real64),intent(inout) :: c(ldc,*)
..
ZHEMM performs one of the matrix-matrix operations
C := alpha*A*B + beta*C,
or
C := alpha*B*A + beta*C,
where alpha and beta are scalars, A is an hermitian matrix and B and C are m by n matrices.
SIDE
SIDE is CHARACTER*1
On entry, SIDE specifies whether the hermitian matrix A
appears on the left or right in the operation as follows:
SIDE = 'L' or 'l' C := alpha*A*B + beta*C,
SIDE = 'R' or 'r' C := alpha*B*A + beta*C,
UPLO
UPLO is CHARACTER*1
On entry, UPLO specifies whether the upper or lower
triangular part of the hermitian matrix A is to be
referenced as follows:
UPLO = 'U' or 'u' Only the upper triangular part of the
hermitian matrix is to be referenced.
UPLO = 'L' or 'l' Only the lower triangular part of the
hermitian matrix is to be referenced.
M
M is INTEGER
On entry, M specifies the number of rows of the matrix C.
M must be at least zero.
N
N is INTEGER
On entry, N specifies the number of columns of the matrix C.
N must be at least zero.
ALPHA
ALPHA is complex(kind=real64)
On entry, ALPHA specifies the scalar alpha.
A
A is complex(kind=real64) array, dimension ( LDA, ka ), where ka is
m when SIDE = 'L' or 'l' and is n otherwise.
Before entry with SIDE = 'L' or 'l', the m by m part of
the array A must contain the hermitian matrix, such that
when UPLO = 'U' or 'u', the leading m by m upper triangular
part of the array A must contain the upper triangular part
of the hermitian matrix and the strictly lower triangular
part of A is not referenced, and when UPLO = 'L' or 'l',
the leading m by m lower triangular part of the array A
must contain the lower triangular part of the hermitian
matrix and the strictly upper triangular part of A is not
referenced.
Before entry with SIDE = 'R' or 'r', the n by n part of
the array A must contain the hermitian matrix, such that
when UPLO = 'U' or 'u', the leading n by n upper triangular
part of the array A must contain the upper triangular part
of the hermitian matrix and the strictly lower triangular
part of A is not referenced, and when UPLO = 'L' or 'l',
the leading n by n lower triangular part of the array A
must contain the lower triangular part of the hermitian
matrix and the strictly upper triangular part of A is not
referenced.
Note that the imaginary parts of the diagonal elements need
not be set, they are assumed to be zero.
LDA
LDA is INTEGER
On entry, LDA specifies the first dimension of A as declared
in the calling (sub) program. When SIDE = 'L' or 'l' then
LDA must be at least max( 1, m ), otherwise LDA must be at
least max( 1, n ).
B
B is complex(kind=real64) array, dimension ( LDB, N )
Before entry, the leading m by n part of the array B must
contain the matrix B.
LDB
LDB is INTEGER
On entry, LDB specifies the first dimension of B as declared
in the calling (sub) program. LDB must be at least
max( 1, m ).
BETA
BETA is complex(kind=real64)
On entry, BETA specifies the scalar beta. When BETA is
supplied as zero then C need not be set on input.
C
C is complex(kind=real64) array, dimension ( LDC, N )
Before entry, the leading m by n part of the array C must
contain the matrix C, except when beta is zero, in which
case C need not be set on entry.
On exit, the array C is overwritten by the m by n updated
matrix.
LDC
LDC is INTEGER
On entry, LDC specifies the first dimension of C as declared
in the calling (sub) program. LDC must be at least
max( 1, m ).
date:December 2016
FURTHER DETAILS
Level 3 Blas routine.
– Written on 8-February-1989. Jack Dongarra, Argonne National Laboratory. Iain Duff, AERE Harwell. Jeremy Du Croz, Numerical Algorithms Group Ltd. Sven Hammarling, Numerical Algorithms Group Ltd.
Online html documentation available at
http://www.netlib.org/lapack/explore-html/
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
character(len=1), | intent(in) | :: | side | |||
character(len=1), | intent(in) | :: | uplo | |||
integer, | intent(in) | :: | m | |||
integer, | intent(in) | :: | n | |||
complex(kind=real64), | intent(in) | :: | alpha | |||
complex(kind=real64), | intent(in) | :: | a(lda,*) | |||
integer, | intent(in) | :: | lda | |||
complex(kind=real64), | intent(in) | :: | b(ldb,*) | |||
integer, | intent(in) | :: | ldb | |||
complex(kind=real64), | intent(in) | :: | beta | |||
complex(kind=real64), | intent(inout) | :: | c(ldc,*) | |||
integer, | intent(in) | :: | ldc |
Type | Visibility | Attributes | Name | Initial | |||
---|---|---|---|---|---|---|---|
integer, | public | :: | i | ||||
integer, | public | :: | info | ||||
integer, | public | :: | j | ||||
integer, | public | :: | k | ||||
integer, | public | :: | nrowa | ||||
complex(kind=real64), | public, | parameter | :: | one | = | (1.0d+0,0.0d+0) | |
complex(kind=real64), | public | :: | temp1 | ||||
complex(kind=real64), | public | :: | temp2 | ||||
logical, | public | :: | upper | ||||
complex(kind=real64), | public, | parameter | :: | zero | = | (0.0d+0,0.0d+0) |
subroutine zhemm(side,uplo,m,n,alpha,a,lda,b,ldb,beta,c,ldc)
implicit none
!
! -- Reference BLAS level3 routine (version 3.7.0) --
! -- Reference BLAS is a software package provided by Univ. of Tennessee, --
! -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
! December 2016
!
! .. Scalar Arguments ..
complex(kind=real64),intent(in) :: alpha,beta
integer,intent(in) :: lda,ldb,ldc,m,n
character,intent(in) :: side,uplo
! ..
! .. Array Arguments ..
complex(kind=real64),intent(in) :: a(lda,*),b(ldb,*)
complex(kind=real64),intent(inout) :: c(ldc,*)
! ..
!
! =====================================================================
!
! .. External Functions ..
! LOGICAL LSAME
! EXTERNAL LSAME
! ..
! .. External Subroutines ..
! EXTERNAL XERBLA
! ..
! .. Intrinsic Functions ..
intrinsic dble,dconjg,max
! ..
! .. Local Scalars ..
complex(kind=real64) :: temp1,temp2
integer i,info,j,k,nrowa
logical upper
! ..
! .. Parameters ..
complex(kind=real64) :: one
parameter (one= (1.0d+0,0.0d+0))
complex(kind=real64) :: zero
parameter (zero= (0.0d+0,0.0d+0))
! ..
!
! Set NROWA as the number of rows of A.
!
if (lsame(side,'L')) then
nrowa = m
else
nrowa = n
endif
upper = lsame(uplo,'U')
!
! Test the input parameters.
!
info = 0
if ((.not.lsame(side,'L')) .and. (.not.lsame(side,'R'))) then
info = 1
elseif ((.not.upper) .and. (.not.lsame(uplo,'L'))) then
info = 2
elseif (m.lt.0) then
info = 3
elseif (n.lt.0) then
info = 4
elseif (lda.lt.max(1,nrowa)) then
info = 7
elseif (ldb.lt.max(1,m)) then
info = 9
elseif (ldc.lt.max(1,m)) then
info = 12
endif
if (info.ne.0) then
call xerbla('ZHEMM ',info)
return
endif
!
! Quick return if possible.
!
if ((m.eq.0) .or. (n.eq.0) .or. ((alpha.eq.zero).and. (beta.eq.one))) return
!
! And when alpha.eq.zero.
!
if (alpha.eq.zero) then
if (beta.eq.zero) then
c(1:m,1:n) = zero
else
c(1:m,1:n) = beta*c(1:m,1:n)
endif
return
endif
!
! Start the operations.
!
if (lsame(side,'L')) then
!
! Form C := alpha*A*B + beta*C.
!
if (upper) then
do j = 1,n
do i = 1,m
temp1 = alpha*b(i,j)
temp2 = zero
do k = 1,i - 1
c(k,j) = c(k,j) + temp1*a(k,i)
temp2 = temp2 + b(k,j)*dconjg(a(k,i))
enddo
if (beta.eq.zero) then
c(i,j) = temp1*dble(a(i,i)) + alpha*temp2
else
c(i,j) = beta*c(i,j) + temp1*dble(a(i,i)) + alpha*temp2
endif
enddo
enddo
else
do j = 1,n
do i = m,1,-1
temp1 = alpha*b(i,j)
temp2 = zero
do k = i + 1,m
c(k,j) = c(k,j) + temp1*a(k,i)
temp2 = temp2 + b(k,j)*dconjg(a(k,i))
enddo
if (beta.eq.zero) then
c(i,j) = temp1*dble(a(i,i)) + alpha*temp2
else
c(i,j) = beta*c(i,j) + temp1*dble(a(i,i)) + alpha*temp2
endif
enddo
enddo
endif
else
!
! Form C := alpha*B*A + beta*C.
!
do j = 1,n
temp1 = alpha*dble(a(j,j))
if (beta.eq.zero) then
c(1:m,j) = temp1*b(1:m,j)
else
c(1:m,j) = beta*c(1:m,j) + temp1*b(1:m,j)
endif
do k = 1,j - 1
if (upper) then
temp1 = alpha*a(k,j)
else
temp1 = alpha*dconjg(a(j,k))
endif
c(1:m,j) = c(1:m,j) + temp1*b(1:m,k)
enddo
do k = j + 1,n
if (upper) then
temp1 = alpha*dconjg(a(j,k))
else
temp1 = alpha*a(k,j)
endif
c(1:m,j) = c(1:m,j) + temp1*b(1:m,k)
enddo
enddo
endif
end subroutine zhemm