cgbmv(3f) - [BLAS:COMPLEX_BLAS_LEVEL2] CY := alpha*A*CX + beta*CY; ==> A is a rectangular band matrix).
subroutine cgbmv(trans,m,n,kl,ku,alpha,a,lda,x,incx,beta,y,incy)
.. Scalar Arguments ..
complex,intent(in) :: alpha,beta
integer,intent(in) :: incx,incy,kl,ku,lda,m,n
character,intent(in) :: trans
..
.. Array Arguments ..
complex,intent(in) :: a(lda,*),x(*)
complex,intent(inout) :: y(*)
..
CGBMV performs one of the matrix-vector operations
y := alpha*A*x + beta*y, or y := alpha*A**T*x + beta*y, or
y := alpha*A**H*x + beta*y,
where alpha and beta are scalars, x and y are vectors and A is an m by n band matrix, with kl sub-diagonals and ku super-diagonals.
TRANS On entry, TRANS specifies the operation to be performed as follows:
TRANS = 'N' or 'n' y := alpha*A*x + beta*y.
TRANS = 'T' or 't' y := alpha*A**T*x + beta*y.
TRANS = 'C' or 'c' y := alpha*A**H*x + beta*y.
M On entry, M specifies the number of rows of the matrix A. M must be at least zero.
N On entry, N specifies the number of columns of the matrix A. N must be at least zero.
KL On entry, KL specifies the number of sub-diagonals of the matrix A. KL must satisfy 0 .le. KL.
KU On entry, KU specifies the number of super-diagonals of the matrix A. KU must satisfy 0 .le. KU.
ALPHA On entry, ALPHA specifies the scalar alpha.
A A is COMPLEX array, dimension ( LDA, N ) Before entry, the leading ( kl + ku + 1 ) by n part of the array A must contain the matrix of coefficients, supplied column by column, with the leading diagonal of the matrix in row ( ku + 1 ) of the array, the first super-diagonal starting at position 2 in row ku, the first sub-diagonal starting at position 1 in row ( ku + 2 ), and so on.
Elements in the array A that do not correspond to elements
in the band matrix (such as the top left ku by ku triangle)
are not referenced.
The following program segment will transfer a band matrix
from conventional full matrix storage to band storage:
DO 20, J = 1, N
K = KU + 1 - J
DO 10, I = MAX( 1, J - KU ), MIN( M, J + KL )
A( K + I, J ) = matrix( I, J )
10 CONTINUE
20 CONTINUE
LDA On entry, LDA specifies the first dimension of A as declared in the calling (sub) program. LDA must be at least ( kl + ku + 1 ).
X X is COMPLEX array, dimension at least ( 1 + ( n - 1 )abs( INCX ) ) when TRANS = ‘N’ or ‘n’ and at least ( 1 + ( m - 1 )abs( INCX ) ) otherwise. Before entry, the incremented array X must contain the vector x.
INCX INCX is INTEGER On entry, INCX specifies the increment for the elements of X. INCX must not be zero.
BETA BETA is COMPLEX On entry, BETA specifies the scalar beta. When BETA is supplied as zero then Y need not be set on input.
Y Y is COMPLEX array, dimension at least ( 1 + ( m - 1 )abs( INCY ) ) when TRANS = ‘N’ or ‘n’ and at least ( 1 + ( n - 1 )abs( INCY ) ) otherwise. Before entry, the incremented array Y must contain the vector y. On exit, Y is overwritten by the updated vector y.
INCY INCY is INTEGER On entry, INCY specifies the increment for the elements of Y. INCY must not be zero.
date:December 2016
FURTHER DETAILS Level 2 Blas routine. The vector and matrix arguments are not referenced when N = 0, or M = 0
– Written on 22-October-1986. Jack Dongarra, Argonne National Lab. Jeremy Du Croz, Nag Central Office. Sven Hammarling, Nag Central Office.
Online html documentation available at
http://www.netlib.org/lapack/explore-html/
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
character(len=1), | intent(in) | :: | trans | |||
integer, | intent(in) | :: | m | |||
integer, | intent(in) | :: | n | |||
integer, | intent(in) | :: | kl | |||
integer, | intent(in) | :: | ku | |||
complex, | intent(in) | :: | alpha | |||
complex, | intent(in) | :: | a(lda,*) | |||
integer, | intent(in) | :: | lda | |||
complex, | intent(in) | :: | x(*) | |||
integer, | intent(in) | :: | incx | |||
complex, | intent(in) | :: | beta | |||
complex, | intent(inout) | :: | y(*) | |||
integer, | intent(in) | :: | incy |
Type | Visibility | Attributes | Name | Initial | |||
---|---|---|---|---|---|---|---|
integer, | public | :: | i | ||||
integer, | public | :: | info | ||||
integer, | public | :: | ix | ||||
integer, | public | :: | iy | ||||
integer, | public | :: | j | ||||
integer, | public | :: | jx | ||||
integer, | public | :: | jy | ||||
integer, | public | :: | k | ||||
integer, | public | :: | kup1 | ||||
integer, | public | :: | kx | ||||
integer, | public | :: | ky | ||||
integer, | public | :: | lenx | ||||
integer, | public | :: | leny | ||||
logical, | public | :: | noconj | ||||
complex, | public, | parameter | :: | one | = | (1.0e+0, 0.0e+0) | |
complex, | public | :: | temp | ||||
complex, | public, | parameter | :: | zero | = | (0.0e+0, 0.0e+0) |
subroutine cgbmv(trans,m,n,kl,ku,alpha,a,lda,x,incx,beta,y,incy)
implicit none
!
! -- Reference BLAS level2 routine (version 3.7.0) --
! -- Reference BLAS is a software package provided by Univ. of Tennessee, --
! -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
! December 2016
!
! .. Scalar Arguments ..
complex,intent(in) :: alpha,beta
integer,intent(in) :: incx,incy,kl,ku,lda,m,n
character,intent(in) :: trans
! ..
! .. Array Arguments ..
complex,intent(in) :: a(lda,*),x(*)
complex,intent(inout) :: y(*)
! ..
!
! =====================================================================
!
! .. Parameters ..
complex,parameter :: one= (1.0e+0,0.0e+0)
complex,parameter :: zero= (0.0e+0,0.0e+0)
! ..
! .. Local Scalars ..
complex temp
integer i,info,ix,iy,j,jx,jy,k,kup1,kx,ky,lenx,leny
logical noconj
! ..
! .. External Functions ..
! ..
! .. External Subroutines ..
! ..
! .. Intrinsic Functions ..
intrinsic conjg,max,min
! ..
!
! Test the input parameters.
!
info = 0
if (.not.lsame(trans,'N') .and. .not.lsame(trans,'T') .and. .not.lsame(trans,'C')) then
info = 1
elseif (m.lt.0) then
info = 2
elseif (n.lt.0) then
info = 3
elseif (kl.lt.0) then
info = 4
elseif (ku.lt.0) then
info = 5
elseif (lda.lt. (kl+ku+1)) then
info = 8
elseif (incx.eq.0) then
info = 10
elseif (incy.eq.0) then
info = 13
endif
if (info.ne.0) then
call xerbla('CGBMV ',info)
return
endif
!
! Quick return if possible.
!
if ((m.eq.0) .or. (n.eq.0) .or. ((alpha.eq.zero).and. (beta.eq.one))) return
!
noconj = lsame(trans,'T')
!
! Set LENX and LENY,the lengths of the vectors x and y, and set
! up the start points in X and Y.
!
if (lsame(trans,'N')) then
lenx = n
leny = m
else
lenx = m
leny = n
endif
if (incx.gt.0) then
kx = 1
else
kx = 1 - (lenx-1)*incx
endif
if (incy.gt.0) then
ky = 1
else
ky = 1 - (leny-1)*incy
endif
!
! Start the operations. In this version the elements of A are
! accessed sequentially with one pass through the band part of A.
!
! First form y := beta*y.
!
if (beta.ne.one) then
if (incy.eq.1) then
if (beta.eq.zero) then
do i = 1,leny
y(i) = zero
enddo
else
do i = 1,leny
y(i) = beta*y(i)
enddo
endif
else
iy = ky
if (beta.eq.zero) then
do i = 1,leny
y(iy) = zero
iy = iy + incy
enddo
else
do i = 1,leny
y(iy) = beta*y(iy)
iy = iy + incy
enddo
endif
endif
endif
if (alpha.eq.zero) return
kup1 = ku + 1
if (lsame(trans,'N')) then
!
! Form y := alpha*A*x + y.
!
jx = kx
if (incy.eq.1) then
do j = 1,n
temp = alpha*x(jx)
k = kup1 - j
do i = max(1,j-ku),min(m,j+kl)
y(i) = y(i) + temp*a(k+i,j)
enddo
jx = jx + incx
enddo
else
do j = 1,n
temp = alpha*x(jx)
iy = ky
k = kup1 - j
do i = max(1,j-ku),min(m,j+kl)
y(iy) = y(iy) + temp*a(k+i,j)
iy = iy + incy
enddo
jx = jx + incx
if (j.gt.ku) ky = ky + incy
enddo
endif
else
!
! Form y := alpha*A**T*x + y or y := alpha*A**H*x + y.
!
jy = ky
if (incx.eq.1) then
do j = 1,n
temp = zero
k = kup1 - j
if (noconj) then
do i = max(1,j-ku),min(m,j+kl)
temp = temp + a(k+i,j)*x(i)
enddo
else
do i = max(1,j-ku),min(m,j+kl)
temp = temp + conjg(a(k+i,j))*x(i)
enddo
endif
y(jy) = y(jy) + alpha*temp
jy = jy + incy
enddo
else
do j = 1,n
temp = zero
ix = kx
k = kup1 - j
if (noconj) then
do i = max(1,j-ku),min(m,j+kl)
temp = temp + a(k+i,j)*x(ix)
ix = ix + incx
enddo
else
do i = max(1,j-ku),min(m,j+kl)
temp = temp + conjg(a(k+i,j))*x(ix)
ix = ix + incx
enddo
endif
y(jy) = y(jy) + alpha*temp
jy = jy + incy
if (j.gt.ku) kx = kx + incx
enddo
endif
endif
end subroutine cgbmv