zhpr(3f) - [BLAS:COMPLEX_16_BLAS_LEVEL2]
subroutine zhpr(uplo,n,alpha,x,incx,ap)
.. Scalar Arguments ..
double precision ,intent(in) :: alpha
integer ,intent(in) :: incx,n
character,intent(in) :: uplo
..
.. Array Arguments ..
complex(kind=real64),intent(in) :: x(*)
complex(kind=real64),intent(inout) :: ap(*)
..
ZHPR performs the hermitian rank 1 operation
A := alpha*x*x**H + A,
where alpha is a real scalar, x is an n element vector and A is an n by n hermitian matrix, supplied in packed form.
UPLO
UPLO is CHARACTER*1
On entry, UPLO specifies whether the upper or lower
triangular part of the matrix A is supplied in the packed
array AP as follows:
UPLO = 'U' or 'u' The upper triangular part of A is
supplied in AP.
UPLO = 'L' or 'l' The lower triangular part of A is
supplied in AP.
N
N is INTEGER
On entry, N specifies the order of the matrix A.
N must be at least zero.
ALPHA
ALPHA is DOUBLE PRECISION.
On entry, ALPHA specifies the scalar alpha.
X
X is complex(kind=real64) array, dimension at least
( 1 + ( n - 1 )*abs( INCX ) ).
Before entry, the incremented array X must contain the n
element vector x.
INCX
INCX is INTEGER
On entry, INCX specifies the increment for the elements of
X. INCX must not be zero.
AP
AP is complex(kind=real64) array, dimension at least
( ( n*( n + 1 ) )/2 ).
Before entry with UPLO = 'U' or 'u', the array AP must
contain the upper triangular part of the hermitian matrix
packed sequentially, column by column, so that AP( 1 )
contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 )
and a( 2, 2 ) respectively, and so on. On exit, the array
AP is overwritten by the upper triangular part of the
updated matrix.
Before entry with UPLO = 'L' or 'l', the array AP must
contain the lower triangular part of the hermitian matrix
packed sequentially, column by column, so that AP( 1 )
contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 )
and a( 3, 1 ) respectively, and so on. On exit, the array
AP is overwritten by the lower triangular part of the
updated matrix.
Note that the imaginary parts of the diagonal elements need
not be set, they are assumed to be zero, and on exit they
are set to zero.
date:December 2016
FURTHER DETAILS
Level 2 Blas routine.
– Written on 22-October-1986. Jack Dongarra, Argonne National Lab. Jeremy Du Croz, Nag Central Office. Sven Hammarling, Nag Central Office. Richard Hanson, Sandia National Labs.
Online html documentation available at
http://www.netlib.org/lapack/explore-html/
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
character(len=1), | intent(in) | :: | uplo | |||
integer, | intent(in) | :: | n | |||
double precision, | intent(in) | :: | alpha | |||
complex(kind=real64), | intent(in) | :: | x(*) | |||
integer, | intent(in) | :: | incx | |||
complex(kind=real64), | intent(inout) | :: | ap(*) |
Type | Visibility | Attributes | Name | Initial | |||
---|---|---|---|---|---|---|---|
integer, | public | :: | i | ||||
integer, | public | :: | info | ||||
integer, | public | :: | ix | ||||
integer, | public | :: | j | ||||
integer, | public | :: | jx | ||||
integer, | public | :: | k | ||||
integer, | public | :: | kk | ||||
integer, | public | :: | kx | ||||
complex(kind=real64), | public | :: | temp | ||||
complex(kind=real64), | public, | parameter | :: | zero | = | (0.0d+0,0.0d+0) |
subroutine zhpr(uplo,n,alpha,x,incx,ap)
implicit none
!
! -- Reference BLAS level2 routine (version 3.7.0) --
! -- Reference BLAS is a software package provided by Univ. of Tennessee, --
! -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
! December 2016
!
! .. Scalar Arguments ..
double precision ,intent(in) :: alpha
integer ,intent(in) :: incx,n
character,intent(in) :: uplo
! ..
! .. Array Arguments ..
complex(kind=real64),intent(in) :: x(*)
complex(kind=real64),intent(inout) :: ap(*)
! ..
!
! =====================================================================
!
! .. Parameters ..
complex(kind=real64) :: zero
parameter (zero= (0.0d+0,0.0d+0))
! ..
! .. Local Scalars ..
complex(kind=real64) :: temp
integer i,info,ix,j,jx,k,kk,kx
! ..
! .. External Functions ..
! LOGICAL LSAME
! EXTERNAL LSAME
! ..
! .. External Subroutines ..
! EXTERNAL XERBLA
! ..
! .. Intrinsic Functions ..
intrinsic dble,dconjg
! ..
!
! Test the input parameters.
!
info = 0
if (.not.lsame(uplo,'U') .and. .not.lsame(uplo,'L')) then
info = 1
elseif (n.lt.0) then
info = 2
elseif (incx.eq.0) then
info = 5
endif
if (info.ne.0) then
call xerbla('ZHPR ',info)
return
endif
!
! Quick return if possible.
!
if ((n.eq.0) .or. (alpha.eq.dble(zero))) return
!
! Set the start point in X if the increment is not unity.
!
if (incx.le.0) then
kx = 1 - (n-1)*incx
elseif (incx.ne.1) then
kx = 1
endif
!
! Start the operations. In this version the elements of the array AP
! are accessed sequentially with one pass through AP.
!
kk = 1
if (lsame(uplo,'U')) then
!
! Form A when upper triangle is stored in AP.
!
if (incx.eq.1) then
do j = 1,n
if (x(j).ne.zero) then
temp = alpha*dconjg(x(j))
k = kk
do i = 1,j - 1
ap(k) = ap(k) + x(i)*temp
k = k + 1
enddo
ap(kk+j-1) = dble(ap(kk+j-1)) + dble(x(j)*temp)
else
ap(kk+j-1) = dble(ap(kk+j-1))
endif
kk = kk + j
enddo
else
jx = kx
do j = 1,n
if (x(jx).ne.zero) then
temp = alpha*dconjg(x(jx))
ix = kx
do k = kk,kk + j - 2
ap(k) = ap(k) + x(ix)*temp
ix = ix + incx
enddo
ap(kk+j-1) = dble(ap(kk+j-1)) + dble(x(jx)*temp)
else
ap(kk+j-1) = dble(ap(kk+j-1))
endif
jx = jx + incx
kk = kk + j
enddo
endif
else
!
! Form A when lower triangle is stored in AP.
!
if (incx.eq.1) then
do j = 1,n
if (x(j).ne.zero) then
temp = alpha*dconjg(x(j))
ap(kk) = dble(ap(kk)) + dble(temp*x(j))
k = kk + 1
do i = j + 1,n
ap(k) = ap(k) + x(i)*temp
k = k + 1
enddo
else
ap(kk) = dble(ap(kk))
endif
kk = kk + n - j + 1
enddo
else
jx = kx
do j = 1,n
if (x(jx).ne.zero) then
temp = alpha*dconjg(x(jx))
ap(kk) = dble(ap(kk)) + dble(temp*x(jx))
ix = jx
do k = kk + 1,kk + n - j
ix = ix + incx
ap(k) = ap(k) + x(ix)*temp
enddo
else
ap(kk) = dble(ap(kk))
endif
jx = jx + incx
kk = kk + n - j + 1
enddo
endif
endif
end subroutine zhpr