stpmv(3f) - [BLAS:SINGLE_BLAS_LEVEL2] SX:=A*SX, A a packed symmetric matrix.
subroutine stpmv(uplo,trans,diag,n,ap,x,incx)
.. Scalar Arguments ..
integer,intent(in) :: incx,n
character,intent(in) :: diag,trans,uplo
..
.. Array Arguments ..
real,intent(in) :: ap(*)
real,intent(inout) :: x(*)
..
STPMV performs one of the matrix-vector operations
x := A*x, or x := A**T*x,
where x is an n element vector and A is an n by n unit, or non-unit, upper or lower triangular matrix, supplied in packed form.
UPLO
UPLO is CHARACTER*1
On entry, UPLO specifies whether the matrix is an upper or
lower triangular matrix as follows:
UPLO = 'U' or 'u' A is an upper triangular matrix.
UPLO = 'L' or 'l' A is a lower triangular matrix.
TRANS
TRANS is CHARACTER*1
On entry, TRANS specifies the operation to be performed as
follows:
TRANS = 'N' or 'n' x := A*x.
TRANS = 'T' or 't' x := A**T*x.
TRANS = 'C' or 'c' x := A**T*x.
DIAG
DIAG is CHARACTER*1
On entry, DIAG specifies whether or not A is unit
triangular as follows:
DIAG = 'U' or 'u' A is assumed to be unit triangular.
DIAG = 'N' or 'n' A is not assumed to be unit
triangular.
N
N is INTEGER
On entry, N specifies the order of the matrix A.
N must be at least zero.
AP
AP is REAL array, dimension at least
( ( n*( n + 1 ) )/2 ).
Before entry with UPLO = 'U' or 'u', the array AP must
contain the upper triangular matrix packed sequentially,
column by column, so that AP( 1 ) contains a( 1, 1 ),
AP( 2 ) and AP( 3 ) contain a( 1, 2 ) and a( 2, 2 )
respectively, and so on.
Before entry with UPLO = 'L' or 'l', the array AP must
contain the lower triangular matrix packed sequentially,
column by column, so that AP( 1 ) contains a( 1, 1 ),
AP( 2 ) and AP( 3 ) contain a( 2, 1 ) and a( 3, 1 )
respectively, and so on.
Note that when DIAG = 'U' or 'u', the diagonal elements of
A are not referenced, but are assumed to be unity.
X
X is REAL array, dimension at least
( 1 + ( n - 1 )*abs( INCX ) ).
Before entry, the incremented array X must contain the n
element vector x. On exit, X is overwritten with the
transformed vector x.
INCX
INCX is INTEGER
On entry, INCX specifies the increment for the elements of
X. INCX must not be zero.
date:December 2016
FURTHER DETAILS
Level 2 Blas routine. The vector and matrix arguments are not referenced when N = 0, or M = 0
– Written on 22-October-1986. Jack Dongarra, Argonne National Lab. Jeremy Du Croz, Nag Central Office. Sven Hammarling, Nag Central Office. Richard Hanson, Sandia National Labs.
Online html documentation available at
http://www.netlib.org/lapack/explore-html/
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
character(len=1), | intent(in) | :: | uplo | |||
character(len=1), | intent(in) | :: | trans | |||
character(len=1), | intent(in) | :: | diag | |||
integer, | intent(in) | :: | n | |||
real, | intent(in) | :: | ap(*) | |||
real, | intent(inout) | :: | x(*) | |||
integer, | intent(in) | :: | incx |
Type | Visibility | Attributes | Name | Initial | |||
---|---|---|---|---|---|---|---|
integer, | public | :: | i | ||||
integer, | public | :: | info | ||||
integer, | public | :: | ix | ||||
integer, | public | :: | j | ||||
integer, | public | :: | jx | ||||
integer, | public | :: | k | ||||
integer, | public | :: | kk | ||||
integer, | public | :: | kx | ||||
logical, | public | :: | nounit | ||||
real, | public | :: | temp | ||||
real, | public, | parameter | :: | zero | = | 0.0e+0 |
subroutine stpmv(uplo,trans,diag,n,ap,x,incx)
implicit none
!
! -- Reference BLAS level2 routine (version 3.7.0) --
! -- Reference BLAS is a software package provided by Univ. of Tennessee, --
! -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
! December 2016
!
! .. Scalar Arguments ..
integer,intent(in) :: incx,n
character,intent(in) :: diag,trans,uplo
! ..
! .. Array Arguments ..
real,intent(in) :: ap(*)
real,intent(inout) :: x(*)
! ..
!
! =====================================================================
!
! .. Parameters ..
real,parameter :: zero=0.0e+0
! ..
! .. Local Scalars ..
real temp
integer i,info,ix,j,jx,k,kk,kx
logical nounit
! ..
! .. External Functions ..
! LOGICAL LSAME
! EXTERNAL LSAME
! ..
! .. External Subroutines ..
! EXTERNAL XERBLA
! ..
!
! Test the input parameters.
!
info = 0
if (.not.lsame(uplo,'U') .and. .not.lsame(uplo,'L')) then
info = 1
elseif (.not.lsame(trans,'N') .and. .not.lsame(trans,'T') .and. .not.lsame(trans,'C')) then
info = 2
elseif (.not.lsame(diag,'U') .and. .not.lsame(diag,'N')) then
info = 3
elseif (n.lt.0) then
info = 4
elseif (incx.eq.0) then
info = 7
endif
if (info.ne.0) then
call xerbla('STPMV ',info)
return
endif
!
! Quick return if possible.
!
if (n.eq.0) return
!
nounit = lsame(diag,'N')
!
! Set up the start point in X if the increment is not unity. This
! will be ( N - 1 )*INCX too small for descending loops.
!
if (incx.le.0) then
kx = 1 - (n-1)*incx
elseif (incx.ne.1) then
kx = 1
endif
!
! Start the operations. In this version the elements of AP are
! accessed sequentially with one pass through AP.
!
if (lsame(trans,'N')) then
!
! Form x:= A*x.
!
if (lsame(uplo,'U')) then
kk = 1
if (incx.eq.1) then
do j = 1,n
if (x(j).ne.zero) then
temp = x(j)
k = kk
do i = 1,j - 1
x(i) = x(i) + temp*ap(k)
k = k + 1
enddo
if (nounit) x(j) = x(j)*ap(kk+j-1)
endif
kk = kk + j
enddo
else
jx = kx
do j = 1,n
if (x(jx).ne.zero) then
temp = x(jx)
ix = kx
do k = kk,kk + j - 2
x(ix) = x(ix) + temp*ap(k)
ix = ix + incx
enddo
if (nounit) x(jx) = x(jx)*ap(kk+j-1)
endif
jx = jx + incx
kk = kk + j
enddo
endif
else
kk = (n* (n+1))/2
if (incx.eq.1) then
do j = n,1,-1
if (x(j).ne.zero) then
temp = x(j)
k = kk
do i = n,j + 1,-1
x(i) = x(i) + temp*ap(k)
k = k - 1
enddo
if (nounit) x(j) = x(j)*ap(kk-n+j)
endif
kk = kk - (n-j+1)
enddo
else
kx = kx + (n-1)*incx
jx = kx
do j = n,1,-1
if (x(jx).ne.zero) then
temp = x(jx)
ix = kx
do k = kk,kk - (n- (j+1)),-1
x(ix) = x(ix) + temp*ap(k)
ix = ix - incx
enddo
if (nounit) x(jx) = x(jx)*ap(kk-n+j)
endif
jx = jx - incx
kk = kk - (n-j+1)
enddo
endif
endif
else
!
! Form x := A**T*x.
!
if (lsame(uplo,'U')) then
kk = (n* (n+1))/2
if (incx.eq.1) then
do j = n,1,-1
temp = x(j)
if (nounit) temp = temp*ap(kk)
k = kk - 1
do i = j - 1,1,-1
temp = temp + ap(k)*x(i)
k = k - 1
enddo
x(j) = temp
kk = kk - j
enddo
else
jx = kx + (n-1)*incx
do j = n,1,-1
temp = x(jx)
ix = jx
if (nounit) temp = temp*ap(kk)
do k = kk - 1,kk - j + 1,-1
ix = ix - incx
temp = temp + ap(k)*x(ix)
enddo
x(jx) = temp
jx = jx - incx
kk = kk - j
enddo
endif
else
kk = 1
if (incx.eq.1) then
do j = 1,n
temp = x(j)
if (nounit) temp = temp*ap(kk)
k = kk + 1
do i = j + 1,n
temp = temp + ap(k)*x(i)
k = k + 1
enddo
x(j) = temp
kk = kk + (n-j+1)
enddo
else
jx = kx
do j = 1,n
temp = x(jx)
ix = jx
if (nounit) temp = temp*ap(kk)
do k = kk + 1,kk + n - j
ix = ix + incx
temp = temp + ap(k)*x(ix)
enddo
x(jx) = temp
jx = jx + incx
kk = kk + (n-j+1)
enddo
endif
endif
endif
end subroutine stpmv