ssymm(3f) - [BLAS:SINGLE_BLAS_LEVEL3] C:=alpha*A*B+beta*C, A symmetric, B, C rectangular.
subroutine ssymm(side,uplo,m,n,alpha,a,lda,b,ldb,beta,c,ldc)
.. Scalar Arguments ..
real,intent(in) :: alpha,beta
integer,intent(in) :: lda,ldb,ldc,m,n
character,intent(in) :: side,uplo
..
.. Array Arguments ..
real,intent(in) :: a(lda,*),b(ldb,*)
real,intent(inout) :: c(ldc,*)
..
SSYMM performs one of the matrix-matrix operations
C := alpha*A*B + beta*C,
or
C := alpha*B*A + beta*C,
where alpha and beta are scalars, A is a symmetric matrix and B and C are m by n matrices.
SIDE
SIDE is CHARACTER*1
On entry, SIDE specifies whether the symmetric matrix A
appears on the left or right in the operation as follows:
SIDE = 'L' or 'l' C := alpha*A*B + beta*C,
SIDE = 'R' or 'r' C := alpha*B*A + beta*C,
UPLO
UPLO is CHARACTER*1
On entry, UPLO specifies whether the upper or lower
triangular part of the symmetric matrix A is to be
referenced as follows:
UPLO = 'U' or 'u' Only the upper triangular part of the
symmetric matrix is to be referenced.
UPLO = 'L' or 'l' Only the lower triangular part of the
symmetric matrix is to be referenced.
M
M is INTEGER
On entry, M specifies the number of rows of the matrix C.
M must be at least zero.
N
N is INTEGER
On entry, N specifies the number of columns of the matrix C.
N must be at least zero.
ALPHA
ALPHA is REAL
On entry, ALPHA specifies the scalar alpha.
A
A is REAL array, dimension ( LDA, ka ), where ka is
m when SIDE = 'L' or 'l' and is n otherwise.
Before entry with SIDE = 'L' or 'l', the m by m part of
the array A must contain the symmetric matrix, such that
when UPLO = 'U' or 'u', the leading m by m upper triangular
part of the array A must contain the upper triangular part
of the symmetric matrix and the strictly lower triangular
part of A is not referenced, and when UPLO = 'L' or 'l',
the leading m by m lower triangular part of the array A
must contain the lower triangular part of the symmetric
matrix and the strictly upper triangular part of A is not
referenced.
Before entry with SIDE = 'R' or 'r', the n by n part of
the array A must contain the symmetric matrix, such that
when UPLO = 'U' or 'u', the leading n by n upper triangular
part of the array A must contain the upper triangular part
of the symmetric matrix and the strictly lower triangular
part of A is not referenced, and when UPLO = 'L' or 'l',
the leading n by n lower triangular part of the array A
must contain the lower triangular part of the symmetric
matrix and the strictly upper triangular part of A is not
referenced.
LDA
LDA is INTEGER
On entry, LDA specifies the first dimension of A as declared
in the calling (sub) program. When SIDE = 'L' or 'l' then
LDA must be at least max( 1, m ), otherwise LDA must be at
least max( 1, n ).
B
B is REAL array, dimension ( LDB, N )
Before entry, the leading m by n part of the array B must
contain the matrix B.
LDB
LDB is INTEGER
On entry, LDB specifies the first dimension of B as declared
in the calling (sub) program. LDB must be at least
max( 1, m ).
BETA
BETA is REAL
On entry, BETA specifies the scalar beta. When BETA is
supplied as zero then C need not be set on input.
C
C is REAL array, dimension ( LDC, N )
Before entry, the leading m by n part of the array C must
contain the matrix C, except when beta is zero, in which
case C need not be set on entry.
On exit, the array C is overwritten by the m by n updated
matrix.
LDC
LDC is INTEGER
On entry, LDC specifies the first dimension of C as declared
in the calling (sub) program. LDC must be at least
max( 1, m ).
date:December 2016
FURTHER DETAILS
Level 3 Blas routine.
– Written on 8-February-1989. Jack Dongarra, Argonne National Laboratory. Iain Duff, AERE Harwell. Jeremy Du Croz, Numerical Algorithms Group Ltd. Sven Hammarling, Numerical Algorithms Group Ltd.
Online html documentation available at
http://www.netlib.org/lapack/explore-html/
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
character(len=1), | intent(in) | :: | side | |||
character(len=1), | intent(in) | :: | uplo | |||
integer, | intent(in) | :: | m | |||
integer, | intent(in) | :: | n | |||
real, | intent(in) | :: | alpha | |||
real, | intent(in) | :: | a(lda,*) | |||
integer, | intent(in) | :: | lda | |||
real, | intent(in) | :: | b(ldb,*) | |||
integer, | intent(in) | :: | ldb | |||
real, | intent(in) | :: | beta | |||
real, | intent(inout) | :: | c(ldc,*) | |||
integer, | intent(in) | :: | ldc |
Type | Visibility | Attributes | Name | Initial | |||
---|---|---|---|---|---|---|---|
integer, | public | :: | i | ||||
integer, | public | :: | info | ||||
integer, | public | :: | j | ||||
integer, | public | :: | k | ||||
integer, | public | :: | nrowa | ||||
real, | public, | parameter | :: | one | = | 1.0e+0 | |
real, | public | :: | temp1 | ||||
real, | public | :: | temp2 | ||||
logical, | public | :: | upper | ||||
real, | public, | parameter | :: | zero | = | 0.0e+0 |
subroutine ssymm(side,uplo,m,n,alpha,a,lda,b,ldb,beta,c,ldc)
implicit none
!
! -- Reference BLAS level3 routine (version 3.7.0) --
! -- Reference BLAS is a software package provided by Univ. of Tennessee, --
! -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
! December 2016
!
! .. Scalar Arguments ..
real,intent(in) :: alpha,beta
integer,intent(in) :: lda,ldb,ldc,m,n
character,intent(in) :: side,uplo
! ..
! .. Array Arguments ..
real,intent(in) :: a(lda,*),b(ldb,*)
real,intent(inout) :: c(ldc,*)
! ..
!
! =====================================================================
!
! .. External Functions .. LOGICAL LSAME
! ..
! .. External Subroutines .. EXTERNAL XERBLA
! ..
! .. Intrinsic Functions ..
intrinsic max
! ..
! .. Local Scalars ..
real temp1,temp2
integer i,info,j,k,nrowa
logical upper
! ..
! .. Parameters ..
real,parameter :: one=1.0e+0,zero=0.0e+0
! ..
!
! Set NROWA as the number of rows of A.
!
if (lsame(side,'L')) then
nrowa = m
else
nrowa = n
endif
upper = lsame(uplo,'U')
!
! Test the input parameters.
!
info = 0
if ((.not.lsame(side,'L')) .and. (.not.lsame(side,'R'))) then
info = 1
elseif ((.not.upper) .and. (.not.lsame(uplo,'L'))) then
info = 2
elseif (m.lt.0) then
info = 3
elseif (n.lt.0) then
info = 4
elseif (lda.lt.max(1,nrowa)) then
info = 7
elseif (ldb.lt.max(1,m)) then
info = 9
elseif (ldc.lt.max(1,m)) then
info = 12
endif
if (info.ne.0) then
call xerbla('SSYMM ',info)
return
endif
!
! Quick return if possible.
!
if ((m.eq.0) .or. (n.eq.0) .or. ((alpha.eq.zero).and. (beta.eq.one))) return
!
! And when alpha.eq.zero.
!
if (alpha.eq.zero) then
if (beta.eq.zero) then
c(1:m,1:n) = zero
else
c(1:m,1:n) = beta*c(1:m,1:n)
endif
return
endif
!
! Start the operations.
!
if (lsame(side,'L')) then
!
! Form C := alpha*A*B + beta*C.
!
if (upper) then
do j = 1,n
do i = 1,m
temp1 = alpha*b(i,j)
temp2 = zero
do k = 1,i - 1
c(k,j) = c(k,j) + temp1*a(k,i)
temp2 = temp2 + b(k,j)*a(k,i)
enddo
if (beta.eq.zero) then
c(i,j) = temp1*a(i,i) + alpha*temp2
else
c(i,j) = beta*c(i,j) + temp1*a(i,i) + alpha*temp2
endif
enddo
enddo
else
do j = 1,n
do i = m,1,-1
temp1 = alpha*b(i,j)
temp2 = zero
do k = i + 1,m
c(k,j) = c(k,j) + temp1*a(k,i)
temp2 = temp2 + b(k,j)*a(k,i)
enddo
if (beta.eq.zero) then
c(i,j) = temp1*a(i,i) + alpha*temp2
else
c(i,j) = beta*c(i,j) + temp1*a(i,i) + alpha*temp2
endif
enddo
enddo
endif
else
!
! Form C := alpha*B*A + beta*C.
!
do j = 1,n
temp1 = alpha*a(j,j)
if (beta.eq.zero) then
do i = 1,m
c(i,j) = temp1*b(i,j)
enddo
else
do i = 1,m
c(i,j) = beta*c(i,j) + temp1*b(i,j)
enddo
endif
do k = 1,j - 1
if (upper) then
temp1 = alpha*a(k,j)
else
temp1 = alpha*a(j,k)
endif
do i = 1,m
c(i,j) = c(i,j) + temp1*b(i,k)
enddo
enddo
do k = j + 1,n
if (upper) then
temp1 = alpha*a(j,k)
else
temp1 = alpha*a(k,j)
endif
do i = 1,m
c(i,j) = c(i,j) + temp1*b(i,k)
enddo
enddo
enddo
endif
end subroutine ssymm