csyr2k(3f) - [BLAS:COMPLEX_BLAS_LEVEL3]
C:=alphaATRANSPOSE(B)+alphaBTRANSPOSE(A)+beta*C, C symmetric.
subroutine csyr2k(uplo,trans,n,k,alpha,a,lda,b,ldb,beta,c,ldc)
.. Scalar Arguments ..
complex,intent(in) :: alpha,beta
integer,intent(in) :: k,lda,ldb,ldc,n
character,intent(in) :: trans,uplo
..
.. Array Arguments ..
complex,intent(in) :: a(lda,*),b(ldb,*)
complex,intent(inout) :: c(ldc,*)
..
CSYR2K performs one of the symmetric rank 2k operations
C := alpha*A*B**T + alpha*B*A**T + beta*C,
or
C := alpha*A**T*B + alpha*B**T*A + beta*C,
where alpha and beta are scalars, C is an n by n symmetric matrix and A and B are n by k matrices in the first case and k by n matrices in the second case.
UPLO
UPLO is CHARACTER*1
On entry, UPLO specifies whether the upper or lower
triangular part of the array C is to be referenced as
follows:
UPLO = 'U' or 'u' Only the upper triangular part of C
is to be referenced.
UPLO = 'L' or 'l' Only the lower triangular part of C
is to be referenced.
TRANS
TRANS is CHARACTER*1
On entry, TRANS specifies the operation to be performed as
follows:
TRANS = 'N' or 'n' C := alpha*A*B**T + alpha*B*A**T +
beta*C.
TRANS = 'T' or 't' C := alpha*A**T*B + alpha*B**T*A +
beta*C.
N
N is INTEGER
On entry, N specifies the order of the matrix C. N must be
at least zero.
K
K is INTEGER
On entry with TRANS = 'N' or 'n', K specifies the number
of columns of the matrices A and B, and on entry with
TRANS = 'T' or 't', K specifies the number of rows of the
matrices A and B. K must be at least zero.
ALPHA
ALPHA is COMPLEX
On entry, ALPHA specifies the scalar alpha.
A
A is COMPLEX array, dimension ( LDA, ka ), where ka is
k when TRANS = 'N' or 'n', and is n otherwise.
Before entry with TRANS = 'N' or 'n', the leading n by k
part of the array A must contain the matrix A, otherwise
the leading k by n part of the array A must contain the
matrix A.
LDA
LDA is INTEGER
On entry, LDA specifies the first dimension of A as declared
in the calling (sub) program. When TRANS = 'N' or 'n'
then LDA must be at least max( 1, n ), otherwise LDA must
be at least max( 1, k ).
B
B is COMPLEX array, dimension ( LDB, kb ), where kb is
k when TRANS = 'N' or 'n', and is n otherwise.
Before entry with TRANS = 'N' or 'n', the leading n by k
part of the array B must contain the matrix B, otherwise
the leading k by n part of the array B must contain the
matrix B.
LDB
LDB is INTEGER
On entry, LDB specifies the first dimension of B as declared
in the calling (sub) program. When TRANS = 'N' or 'n'
then LDB must be at least max( 1, n ), otherwise LDB must
be at least max( 1, k ).
BETA
BETA is COMPLEX
On entry, BETA specifies the scalar beta.
C
C is COMPLEX array, dimension ( LDC, N )
Before entry with UPLO = 'U' or 'u', the leading n by n
upper triangular part of the array C must contain the upper
triangular part of the symmetric matrix and the strictly
lower triangular part of C is not referenced. On exit, the
upper triangular part of the array C is overwritten by the
upper triangular part of the updated matrix.
Before entry with UPLO = 'L' or 'l', the leading n by n
lower triangular part of the array C must contain the lower
triangular part of the symmetric matrix and the strictly
upper triangular part of C is not referenced. On exit, the
lower triangular part of the array C is overwritten by the
lower triangular part of the updated matrix.
LDC
LDC is INTEGER
On entry, LDC specifies the first dimension of C as declared
in the calling (sub) program. LDC must be at least
max( 1, n ).
date:December 2016
FURTHER DETAILS
Level 3 Blas routine.
– Written on 8-February-1989. Jack Dongarra, Argonne National Laboratory. Iain Duff, AERE Harwell. Jeremy Du Croz, Numerical Algorithms Group Ltd. Sven Hammarling, Numerical Algorithms Group Ltd.
Online html documentation available at
http://www.netlib.org/lapack/explore-html/
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
character(len=1), | intent(in) | :: | uplo | |||
character(len=1), | intent(in) | :: | trans | |||
integer, | intent(in) | :: | n | |||
integer, | intent(in) | :: | k | |||
complex, | intent(in) | :: | alpha | |||
complex, | intent(in) | :: | a(lda,*) | |||
integer, | intent(in) | :: | lda | |||
complex, | intent(in) | :: | b(ldb,*) | |||
integer, | intent(in) | :: | ldb | |||
complex, | intent(in) | :: | beta | |||
complex, | intent(inout) | :: | c(ldc,*) | |||
integer, | intent(in) | :: | ldc |
Type | Visibility | Attributes | Name | Initial | |||
---|---|---|---|---|---|---|---|
integer, | public | :: | i | ||||
integer, | public | :: | info | ||||
integer, | public | :: | j | ||||
integer, | public | :: | l | ||||
integer, | public | :: | nrowa | ||||
complex, | public, | parameter | :: | one | = | (1.0e+0,0.0e+0) | |
complex, | public | :: | temp1 | ||||
complex, | public | :: | temp2 | ||||
logical, | public | :: | upper | ||||
complex, | public, | parameter | :: | zero | = | (0.0e+0,0.0e+0) |
subroutine csyr2k(uplo,trans,n,k,alpha,a,lda,b,ldb,beta,c,ldc)
implicit none
!
! -- Reference BLAS level3 routine (version 3.7.0) --
! -- Reference BLAS is a software package provided by Univ. of Tennessee, --
! -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
! December 2016
!
! .. Scalar Arguments ..
complex,intent(in) :: alpha,beta
integer,intent(in) :: k,lda,ldb,ldc,n
character,intent(in) :: trans,uplo
! ..
! .. Array Arguments ..
complex,intent(in) :: a(lda,*),b(ldb,*)
complex,intent(inout) :: c(ldc,*)
! ..
!
! =====================================================================
!
! .. External Functions ..
! ..
! .. External Subroutines ..
! ..
! .. Intrinsic Functions ..
intrinsic max
! ..
! .. Local Scalars ..
complex temp1,temp2
integer i,info,j,l,nrowa
logical upper
! ..
! .. Parameters ..
complex one
parameter (one= (1.0e+0,0.0e+0))
complex zero
parameter (zero= (0.0e+0,0.0e+0))
! ..
!
! Test the input parameters.
!
if (lsame(trans,'N')) then
nrowa = n
else
nrowa = k
endif
upper = lsame(uplo,'U')
!
info = 0
if ((.not.upper) .and. (.not.lsame(uplo,'L'))) then
info = 1
elseif ((.not.lsame(trans,'N')) .and. (.not.lsame(trans,'T'))) then
info = 2
elseif (n.lt.0) then
info = 3
elseif (k.lt.0) then
info = 4
elseif (lda.lt.max(1,nrowa)) then
info = 7
elseif (ldb.lt.max(1,nrowa)) then
info = 9
elseif (ldc.lt.max(1,n)) then
info = 12
endif
if (info.ne.0) then
call xerbla('CSYR2K',info)
return
endif
!
! Quick return if possible.
!
if ((n.eq.0) .or. (((alpha.eq.zero).or. (k.eq.0)).and. (beta.eq.one))) return
!
! And when alpha.eq.zero.
!
if (alpha.eq.zero) then
if (upper) then
if (beta.eq.zero) then
do j = 1,n
c(1:j,j) = zero
enddo
else
do j = 1,n
c(1:j,j) = beta*c(1:j,j)
enddo
endif
else
if (beta.eq.zero) then
do j = 1,n
c(j:n,j) = zero
enddo
else
do j = 1,n
c(j:n,j) = beta*c(j:n,j)
enddo
endif
endif
return
endif
!
! Start the operations.
!
if (lsame(trans,'N')) then
!
! Form C := alpha*A*B**T + alpha*B*A**T + C.
!
if (upper) then
do j = 1,n
if (beta.eq.zero) then
c(1:j,j) = zero
elseif (beta.ne.one) then
c(1:j,j) = beta*c(1:j,j)
endif
do l = 1,k
if ((a(j,l).ne.zero) .or. (b(j,l).ne.zero)) then
temp1 = alpha*b(j,l)
temp2 = alpha*a(j,l)
do i = 1,j
c(i,j) = c(i,j) + a(i,l)*temp1 + b(i,l)*temp2
enddo
endif
enddo
enddo
else
do j = 1,n
if (beta.eq.zero) then
c(j:n,j) = zero
elseif (beta.ne.one) then
c(j:n,j) = beta*c(j:n,j)
endif
do l = 1,k
if ((a(j,l).ne.zero) .or. (b(j,l).ne.zero)) then
temp1 = alpha*b(j,l)
temp2 = alpha*a(j,l)
do i = j,n
c(i,j) = c(i,j) + a(i,l)*temp1 + b(i,l)*temp2
enddo
endif
enddo
enddo
endif
else
!
! Form C := alpha*A**T*B + alpha*B**T*A + C.
!
if (upper) then
do j = 1,n
do i = 1,j
temp1 = zero
temp2 = zero
do l = 1,k
temp1 = temp1 + a(l,i)*b(l,j)
temp2 = temp2 + b(l,i)*a(l,j)
enddo
if (beta.eq.zero) then
c(i,j) = alpha*temp1 + alpha*temp2
else
c(i,j) = beta*c(i,j) + alpha*temp1 + alpha*temp2
endif
enddo
enddo
else
do j = 1,n
do i = j,n
temp1 = zero
temp2 = zero
do l = 1,k
temp1 = temp1 + a(l,i)*b(l,j)
temp2 = temp2 + b(l,i)*a(l,j)
enddo
if (beta.eq.zero) then
c(i,j) = alpha*temp1 + alpha*temp2
else
c(i,j) = beta*c(i,j) + alpha*temp1 + alpha*temp2
endif
enddo
enddo
endif
endif
!
! End of CSYR2K.
!
end subroutine csyr2k