cher(3f) - [BLAS:COMPLEX_BLAS_LEVEL2] A := A + alpha*CX*CONJUGATE-TRANSPOSE(CX); ==> A a (square) hermitian matrix.
(performs the hermitian rank 1 operation)
subroutine cher(uplo,n,alpha,x,incx,a,lda)
.. Scalar Arguments ..
real,intent(in) :: alpha
integer,intent(in) :: incx,lda,n
character,intent(in) :: uplo
..
.. Array Arguments ..
complex,intent(inout) :: a(lda,*)
complex,intent(in) :: x(*)
..
CHER performs the hermitian rank 1 operation
A := alpha*x*x**H + A,
where alpha is a real scalar, x is an n element vector and A is an n by n hermitian matrix.
UPLO
UPLO is CHARACTER*1
On entry, UPLO specifies whether the upper or lower
triangular part of the array A is to be referenced as
follows:
UPLO = 'U' or 'u' Only the upper triangular part of A
is to be referenced.
UPLO = 'L' or 'l' Only the lower triangular part of A
is to be referenced.
N
N is INTEGER
On entry, N specifies the order of the matrix A.
N must be at least zero.
ALPHA
ALPHA is REAL
On entry, ALPHA specifies the scalar alpha.
X
X is COMPLEX array, dimension at least
( 1 + ( n - 1 )*abs( INCX ) ).
Before entry, the incremented array X must contain the n
element vector x.
INCX
INCX is INTEGER
On entry, INCX specifies the increment for the elements of
X. INCX must not be zero.
A
A is COMPLEX array, dimension ( LDA, N )
Before entry with UPLO = 'U' or 'u', the leading n by n
upper triangular part of the array A must contain the upper
triangular part of the hermitian matrix and the strictly
lower triangular part of A is not referenced. On exit, the
upper triangular part of the array A is overwritten by the
upper triangular part of the updated matrix.
Before entry with UPLO = 'L' or 'l', the leading n by n
lower triangular part of the array A must contain the lower
triangular part of the hermitian matrix and the strictly
upper triangular part of A is not referenced. On exit, the
lower triangular part of the array A is overwritten by the
lower triangular part of the updated matrix.
Note that the imaginary parts of the diagonal elements need
not be set, they are assumed to be zero, and on exit they
are set to zero.
LDA
LDA is INTEGER
On entry, LDA specifies the first dimension of A as declared
in the calling (sub) program. LDA must be at least
max( 1, n ).
date:December 2016
FURTHER DETAILS
Level 2 Blas routine.
– Written on 22-October-1986. Jack Dongarra, Argonne National Lab. Jeremy Du Croz, Nag Central Office. Sven Hammarling, Nag Central Office. Richard Hanson, Sandia National Labs.
Online html documentation available at
http://www.netlib.org/lapack/explore-html/
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
character(len=1), | intent(in) | :: | uplo | |||
integer, | intent(in) | :: | n | |||
real, | intent(in) | :: | alpha | |||
complex, | intent(in) | :: | x(*) | |||
integer, | intent(in) | :: | incx | |||
complex, | intent(inout) | :: | a(lda,*) | |||
integer, | intent(in) | :: | lda |
Type | Visibility | Attributes | Name | Initial | |||
---|---|---|---|---|---|---|---|
integer, | public | :: | i | ||||
integer, | public | :: | info | ||||
integer, | public | :: | ix | ||||
integer, | public | :: | j | ||||
integer, | public | :: | jx | ||||
integer, | public | :: | kx | ||||
complex, | public | :: | temp | ||||
complex, | public, | parameter | :: | zero | = | (0.0e+0,0.0e+0) |
subroutine cher(uplo,n,alpha,x,incx,a,lda)
implicit none
!
! -- Reference BLAS level2 routine (version 3.7.0) --
! -- Reference BLAS is a software package provided by Univ. of Tennessee, --
! -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
! December 2016
!
! .. Scalar Arguments ..
real,intent(in) :: alpha
integer,intent(in) :: incx,lda,n
character,intent(in) :: uplo
! ..
! .. Array Arguments ..
complex,intent(inout) :: a(lda,*)
complex,intent(in) :: x(*)
! ..
!
! =====================================================================
!
! .. Parameters ..
complex zero
parameter (zero= (0.0e+0,0.0e+0))
! ..
! .. Local Scalars ..
complex temp
integer i,info,ix,j,jx,kx
! ..
! .. External Functions ..
! ..
! .. External Subroutines ..
! ..
! .. Intrinsic Functions ..
intrinsic conjg,max,real
! ..
!
! Test the input parameters.
!
info = 0
if (.not.lsame(uplo,'U') .and. .not.lsame(uplo,'L')) then
info = 1
elseif (n.lt.0) then
info = 2
elseif (incx.eq.0) then
info = 5
elseif (lda.lt.max(1,n)) then
info = 7
endif
if (info.ne.0) then
call xerbla('CHER ',info)
return
endif
!
! Quick return if possible.
!
if ((n.eq.0) .or. (alpha.eq.real(zero))) return
!
! Set the start point in X if the increment is not unity.
!
if (incx.le.0) then
kx = 1 - (n-1)*incx
elseif (incx.ne.1) then
kx = 1
endif
!
! Start the operations. In this version the elements of A are
! accessed sequentially with one pass through the triangular part
! of A.
!
if (lsame(uplo,'U')) then
!
! Form A when A is stored in upper triangle.
!
if (incx.eq.1) then
do j = 1,n
if (x(j).ne.zero) then
temp = alpha*conjg(x(j))
do i = 1,j - 1
a(i,j) = a(i,j) + x(i)*temp
enddo
a(j,j) = real(a(j,j)) + real(x(j)*temp)
else
a(j,j) = real(a(j,j))
endif
enddo
else
jx = kx
do j = 1,n
if (x(jx).ne.zero) then
temp = alpha*conjg(x(jx))
ix = kx
do i = 1,j - 1
a(i,j) = a(i,j) + x(ix)*temp
ix = ix + incx
enddo
a(j,j) = real(a(j,j)) + real(x(jx)*temp)
else
a(j,j) = real(a(j,j))
endif
jx = jx + incx
enddo
endif
else
!
! Form A when A is stored in lower triangle.
!
if (incx.eq.1) then
do j = 1,n
if (x(j).ne.zero) then
temp = alpha*conjg(x(j))
a(j,j) = real(a(j,j)) + real(temp*x(j))
do i = j + 1,n
a(i,j) = a(i,j) + x(i)*temp
enddo
else
a(j,j) = real(a(j,j))
endif
enddo
else
jx = kx
do j = 1,n
if (x(jx).ne.zero) then
temp = alpha*conjg(x(jx))
a(j,j) = real(a(j,j)) + real(temp*x(jx))
ix = jx
do i = j + 1,n
ix = ix + incx
a(i,j) = a(i,j) + x(ix)*temp
enddo
else
a(j,j) = real(a(j,j))
endif
jx = jx + incx
enddo
endif
endif
!
end subroutine cher