poiplt(3f) - [M_datapac:LINE_PLOT] generate a Poisson probability plot
(line printer graph)
SUBROUTINE POIPLT(X,N,Alamba)
poiplt(3f) generates a poisson probability plot (with REAL
tail length parameter = alamba).
the prototype poisson distribution used herein has mean = alamba and
standard deviation = sqrt(alamba).
this distribution is defined for all discrete non-negative integer
x--x = 0, 1, 2, ... .
this distribution has the probability function
f(x) = exp(-alamba) * alamba**x / x!.
the poisson distribution is the distribution of the number of events
in the interval (0,alamba) when the waiting time between events is
exponentially distributed with mean = 1 and standard deviation = 1.
the prototype distribution restrictions of discreteness and
non-negativeness mentioned above do not carry over to the input vector
x of observations to be analyzed.
the input observations in x may be discrete, continuous, non-negative,
or negative.
as used herein, a probability plot for a distribution is a plot of
the ordered observations versus the order statistic medians for that
distribution. the poisson probability plot is useful in graphically
testing the composite (that is, location and scale parameters need
not be specified) hypothesis that the underlying distribution from
which the data have been randomly drawn is the poisson distribution
with tail length parameter value = alamba.
if the hypothesis is true, the probability plot should be near-linear.
a measure of such linearity is given by the calculated probability
plot correlation coefficient.
X description of parameter
Y description of parameter
Sample program:
program demo_poiplt
use M_datapac, only : poiplt
implicit none
! call poiplt(x,y)
end program demo_poiplt
Results:
The original DATAPAC library was written by James Filliben of the
Statistical Engineering Division, National Institute of Standards
and Technology.
John Urban, 2022.05.31
CC0-1.0
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
real(kind=wp), | dimension(:) | :: | X | |||
integer | :: | N | ||||
real(kind=wp) | :: | Alamba |
Type | Attributes | Name | Initial | |||
---|---|---|---|---|---|---|
real | :: | WS(15000) |
SUBROUTINE POIPLT(X,N,Alamba) REAL(kind=wp) :: Alamba , an , arg1 , cc , cdf , cutoff , hold , sqalam , & & sum1 , sum2 , sum3 , W , wbar , WS , X , Y , ybar , yint , & & yslope , Z INTEGER :: i , iarg2 , ilamba , imax , irev , iupper , j , & & jm1 , k , N ! ! INPUT ARGUMENTS--X = THE VECTOR OF ! (UNSORTED OR SORTED) OBSERVATIONS. ! --N = THE INTEGER NUMBER OF OBSERVATIONS ! IN THE VECTOR X. ! --ALAMBA = THE VALUE OF THE ! TAIL LENGTH PARAMETER. ! ALAMBA SHOULD BE POSITIVE. ! OUTPUT--A ONE-page POISSON PROBABILITY PLOT. ! PRINTING--YES. ! RESTRICTIONS--THE MAXIMUM ALLOWABLE VALUE OF N ! FOR THIS SUBROUTINE IS 5000. ! --ALAMBA SHOULD BE POSITIVE. ! OTHER DATAPAC SUBROUTINES NEEDED--SORT, UNIMED, PLOT, ! CHSCDF, NORPPF. ! FORTRAN LIBRARY SUBROUTINES NEEDED--SQRT. ! MODE OF INTERNAL OPERATIONS--. ! COMMENT--FOR LARGE VALUES OF ALAMBA (IN EXCESS OF 500.) ! THIS SUBROUTINE USES THE NORMAL APPROXIMATION TO ! THE POISSON. THIS IS DONE TO SAVE EXECUTION TIME ! WHICH INCREASES AS A FUNCTION OF ALAMBA AND WOULD ! BE EXCESSIVE FOR LARGE VALUES OF ALAMBA. ! ORIGINAL VERSION--NOVEMBER 1974. ! UPDATED --AUGUST 1975. ! UPDATED --SEPTEMBER 1975. ! UPDATED --NOVEMBER 1975. ! UPDATED --FEBRUARY 1976. ! !--------------------------------------------------------------------- ! DIMENSION X(:) DIMENSION Y(5000) , W(5000) DIMENSION Z(5000) COMMON /BLOCK2_real64/ WS(15000) EQUIVALENCE (Y(1),WS(1)) EQUIVALENCE (W(1),WS(5001)) EQUIVALENCE (Z(1),WS(10001)) ! iupper = 5000 ! ! CHECK THE INPUT ARGUMENTS FOR ERRORS ! IF ( N<1 .OR. N>iupper ) THEN WRITE (G_IO,99001) iupper 99001 FORMAT (' ', & &'***** FATAL ERROR--THE SECOND INPUT ARGUMENT TO THE POIPLT SUBROU& &TINE IS OUTSIDE THE ALLOWABLE (1,',I0,') INTERVAL *****') WRITE (G_IO,99002) N 99002 FORMAT (' ','***** THE VALUE OF THE ARGUMENT IS ',I0,' *****') RETURN ELSEIF ( N==1 ) THEN WRITE (G_IO,99003) 99003 FORMAT (' ', & &'***** NON-FATAL DIAGNOSTIC--THE SECOND INPUT ARGUMENT TO THE POIP& < SUBROUTINE HAS THE VALUE 1 *****') RETURN ELSE IF ( Alamba<=0.0_wp ) THEN WRITE (G_IO,99004) 99004 FORMAT (' ', & &'***** FATAL ERROR--THE THIRD INPUT ARGUMENT TO THE POIPLT SUBROU& &TINE IS NON-POSITIVE *****') WRITE (G_IO,99005) Alamba 99005 FORMAT (' ','***** THE VALUE OF THE ARGUMENT IS ',E15.8, & & ' *****') RETURN ELSE hold = X(1) DO i = 2 , N IF ( X(i)/=hold ) GOTO 50 ENDDO WRITE (G_IO,99006) hold 99006 FORMAT (' ', & &'***** NON-FATAL DIAGNOSTIC--THE FIRST INPUT ARGUMENT (A VECTOR) & &TO THE POIPLT SUBROUTINE HAS ALL ELEMENTS = ',E15.8,' *****') RETURN ENDIF ! !-----START POINT----------------------------------------------------- ! 50 an = N cutoff = 500.0_wp ! ! SORT THE DATA ! CALL SORT(X,N,Y) ! ! GENERATE UNIFORM ORDER STATISTIC MEDIANS ! CALL UNIMED(N,W) ! ! COMPUTE POISSON ORDER STATISTIC MEDIANS. ! IF THE INPUT ALAMBA VALUE IS LARGE (IN EXCESS OF ! CUTOFF VALUE OF 500.0), THEN USE THE NORMAL APPROXIMATION ! TO THE POISSON. ! IF ( Alamba<=cutoff ) THEN ! ! DETERMINE WHICH UNIFORM ORDER STATISTIC MEDIAN IS ASSOCIATED WITH ! THE CLOSEST INTEGER TO ALAMBA. ! DO i = 1 , N Z(i) = -1.0_wp ENDDO ! ilamba = Alamba + 0.5_wp arg1 = 2.0_wp*Alamba iarg2 = 2*(ilamba+1) CALL CHSCDF(arg1,iarg2,cdf) cdf = 1.0_wp - cdf DO j = 1 , N IF ( W(j)>cdf ) EXIT ENDDO jm1 = j - 1 Z(jm1) = ilamba ! ! FILL IN THE POISSON ORDER STATISTIC MEDIANS BELOW ALAMBA ! imax = 6.0_wp*SQRT(Alamba) DO i = 1 , imax k = ilamba - i IF ( k<0 ) EXIT iarg2 = 2*(k+1) CALL CHSCDF(arg1,iarg2,cdf) cdf = 1.0_wp - cdf DO j = 1 , N IF ( W(j)>cdf ) EXIT ENDDO jm1 = j - 1 IF ( jm1<=0 ) EXIT IF ( Z(jm1)<-0.5_wp ) Z(jm1) = k ENDDO ! ! FILL IN THE POISSON ORDER STATISTIC MEDIANS ABOVE ALAMBA ! DO i = 1 , imax k = ilamba + i iarg2 = 2*(k+1) CALL CHSCDF(arg1,iarg2,cdf) cdf = 1.0_wp - cdf DO j = 1 , N IF ( W(j)>cdf ) GOTO 60 ENDDO Z(N) = k EXIT 60 jm1 = j - 1 IF ( Z(jm1)<-0.5_wp ) Z(jm1) = k ENDDO ! ! FILL IN THE EMPTY HOLES IN THE POISSON ORDER STATISTIC MEDIAN ! Z MATRIX WITH THE PROPER VALUES. ! THEN FOR SAKE OF CONSISTENCY WITH OTHER DATAPAC ! PROBABILITY PLOT SUBROUTINES, COPY THE Z VECTOR ! INTO THE W VECTOR. ! hold = Z(N) DO irev = 1 , N i = N - irev + 1 IF ( Z(i)>=-0.5_wp ) hold = Z(i) IF ( Z(i)<-0.5_wp ) Z(i) = hold ENDDO DO i = 1 , N W(i) = Z(i) ENDDO ELSE sqalam = SQRT(Alamba) DO i = 1 , N CALL NORPPF(W(i),W(i)) W(i) = Alamba + W(i)*sqalam ENDDO ENDIF ! ! PLOT THE ORDERED OBSERVATIONS VERSUS ORDER STATISTICS MEDIANS. ! WRITE OUT THE SAMPLE SIZE. ! CALL PLOT(Y,W,N) WRITE (G_IO,99007) Alamba , N ! 99007 FORMAT (' ','POISSON PROBABILITY PLOT WITH PARAMETER = ',9X, & & E17.10,1X,8X,11X,'THE SAMPLE SIZE N = ',I0) ! ! COMPUTE THE PROBABILITY PLOT CORRELATION COEFFICIENT. ! COMPUTE LOCATION AND SCALE ESTIMATES ! FROM THE INTERCEPT AND SLOPE OF THE PROBABILITY PLOT. ! THEN WRITE THEM OUT. ! sum1 = 0.0_wp sum2 = 0.0_wp DO i = 1 , N sum1 = sum1 + Y(i) sum2 = sum2 + W(i) ENDDO ybar = sum1/an wbar = sum2/an sum1 = 0.0_wp sum2 = 0.0_wp sum3 = 0.0_wp DO i = 1 , N sum1 = sum1 + (Y(i)-ybar)*(Y(i)-ybar) sum2 = sum2 + (Y(i)-ybar)*(W(i)-wbar) sum3 = sum3 + (W(i)-wbar)*(W(i)-wbar) ENDDO cc = sum2/SQRT(sum3*sum1) yslope = sum2/sum3 yint = ybar - yslope*wbar WRITE (G_IO,99008) cc , yint , yslope 99008 FORMAT (' ','PROBABILITY PLOT CORRELATION COEFFICIENT = ',F8.5,& & 5X,'ESTIMATED INTERCEPT = ',E15.8,3X, & & 'ESTIMATED SLOPE = ',E15.8) ENDIF ! END SUBROUTINE POIPLT