lamplt(3f) - [M_datapac:LINE_PLOT] generate a Tukey-Lambda probability
plot
SUBROUTINE LAMPLT(X,N,Alamba)
lamplt(3f) generates a (tukey) lambda distribution probability plot
(with tail length parameter value = alamba).
in general, the probability density function for this distribution
is not simple.
the percent point function for this distribution is
g(p) = ((p**alamba)-((1-p)**alamba)) / alamba
as used herein, a probability plot for a distribution is a plot
of the ordered observations versus the order statistic medians for
that distribution.
the lambda probability plot is useful in graphically testing the
composite (that is, location and scale parameters need not be
specified) hypothesis that the underlying distribution from which
the data have been randomly drawn is the lambda distribution with
tail length parameter value = alamba.
if the hypothesis is true, the probability plot should be near-linear.
a measure of such linearity is given by the calculated probability
plot correlation coefficient.
X description of parameter
Y description of parameter
Sample program:
program demo_lamplt
use M_datapac, only : lamplt
implicit none
! call lamplt(x,y)
end program demo_lamplt
Results:
The original DATAPAC library was written by James Filliben of the Statistical
Engineering Division, National Institute of Standards and Technology.
John Urban, 2022.05.31
CC0-1.0
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
real(kind=wp), | dimension(:) | :: | X | |||
integer | :: | N | ||||
real(kind=wp) | :: | Alamba |
Type | Attributes | Name | Initial | |||
---|---|---|---|---|---|---|
real | :: | WS(15000) |
SUBROUTINE LAMPLT(X,N,Alamba) REAL(kind=wp) :: Alamba , an , cc , hold , pp0025 , pp025 , pp975 , pp9975 , & & q , sum1 , sum2 , sum3 , tau , W , wbar , WS , X , Y , ybar ,& & yint REAL(kind=wp) :: yslope INTEGER :: i , iupper , N ! ! INPUT ARGUMENTS--X = THE VECTOR OF ! (UNSORTED OR SORTED) OBSERVATIONS. ! --N = THE INTEGER NUMBER OF OBSERVATIONS ! IN THE VECTOR X. ! --ALAMBA = THE VALUE OF LAMBDA ! (THE TAIL LENGTH PARAMETER). ! OUTPUT--A ONE-page LAMBDA PROBABILITY PLOT. ! PRINTING--YES. ! RESTRICTIONS--THE MAXIMUM ALLOWABLE VALUE OF N ! FOR THIS SUBROUTINE IS 7500. ! OTHER DATAPAC SUBROUTINES NEEDED--SORT, UNIMED, PLOT. ! FORTRAN LIBRARY SUBROUTINES NEEDED--SQRT, LOG. ! MODE OF INTERNAL OPERATIONS--. ! ORIGINAL VERSION--JUNE 1972. ! UPDATED --SEPTEMBER 1975. ! UPDATED --NOVEMBER 1975. ! UPDATED --FEBRUARY 1976. ! !--------------------------------------------------------------------- ! DIMENSION X(:) DIMENSION Y(7500) , W(7500) COMMON /BLOCK2_real64/ WS(15000) EQUIVALENCE (Y(1),WS(1)) EQUIVALENCE (W(1),WS(7501)) ! iupper = 7500 ! ! CHECK THE INPUT ARGUMENTS FOR ERRORS ! IF ( N<1 .OR. N>iupper ) THEN WRITE (G_IO,99001) iupper 99001 FORMAT (' ', & &'***** FATAL ERROR--THE SECOND INPUT ARGUMENT TO THE LAMPLT SUBROU& &TINE IS OUTSIDE THE ALLOWABLE (1,',I0,') INTERVAL *****') WRITE (G_IO,99002) N 99002 FORMAT (' ','***** THE VALUE OF THE ARGUMENT IS ',I0,' *****') RETURN ELSEIF ( N==1 ) THEN WRITE (G_IO,99003) 99003 FORMAT (' ', & &'***** NON-FATAL DIAGNOSTIC--THE SECOND INPUT ARGUMENT TO THE LAMP& < SUBROUTINE HAS THE VALUE 1 *****') RETURN ELSE hold = X(1) DO i = 2 , N IF ( X(i)/=hold ) GOTO 50 ENDDO WRITE (G_IO,99004) hold 99004 FORMAT (' ', & &'***** NON-FATAL DIAGNOSTIC--THE FIRST INPUT ARGUMENT (A VECTOR) & &TO THE LAMPLT SUBROUTINE HAS ALL ELEMENTS = ',E15.8,' *****') ! !-----START POINT----------------------------------------------------- ! 50 an = N ! ! SORT THE DATA ! CALL SORT(X,N,Y) ! ! GENERATE UNIFORM ORDER STATISTIC MEDIANS ! CALL UNIMED(N,W) ! ! COMPUTE LAMBDA DISTRIBUTION ORDER STATISTIC MEDIANS ! DO i = 1 , N q = W(i) IF ( -0.001_wp<Alamba .AND. Alamba<0.001_wp ) W(i) & & = LOG(q/(1.0_wp-q)) IF ( -0.001_wp>=Alamba .OR. Alamba>=0.001_wp ) W(i) & & = (q**Alamba-(1.0_wp-q)**Alamba)/Alamba ENDDO ! ! PLOT THE ORDERED OBSERVATIONS VERSUS ORDER STATISTICS MEDIANS. ! COMPUTE THE TAIL LENGTH MEASURE OF THE DISTRIBUTION. ! WRITE OUT THE TAIL LENGTH MEASURE OF THE DISTRIBUTION ! AND THE SAMPLE SIZE. ! CALL PLOT(Y,W,N) IF ( -0.001_wp<Alamba .AND. Alamba<0.001_wp ) tau = 1.63473745_wp IF ( -0.001_wp>=Alamba .OR. Alamba>=0.001_wp ) THEN q = .9975_wp pp9975 = (q**Alamba-(1.0_wp-q)**Alamba)/Alamba q = .0025_wp pp0025 = (q**Alamba-(1.0_wp-q)**Alamba)/Alamba q = .975_wp pp975 = (q**Alamba-(1.0_wp-q)**Alamba)/Alamba q = .025_wp pp025 = (q**Alamba-(1.0_wp-q)**Alamba)/Alamba tau = (pp9975-pp0025)/(pp975-pp025) ENDIF WRITE (G_IO,99005) Alamba , tau , N ! 99005 FORMAT (' ','LAMBDA PROBABILITY PLOT WITH LAMBDA = ',E17.10,1X,& & '(TAU = ',E15.8,')',24X,'THE SAMPLE SIZE N = ',I0) ! ! COMPUTE THE PROBABILITY PLOT CORRELATION COEFFICIENT. ! COMPUTE LOCATION AND SCALE ESTIMATES ! FROM THE INTERCEPT AND SLOPE OF THE PROBABILITY PLOT. ! THEN WRITE THEM OUT. ! sum1 = 0.0_wp DO i = 1 , N sum1 = sum1 + Y(i) ENDDO ybar = sum1/an wbar = 0.0_wp sum1 = 0.0_wp sum2 = 0.0_wp sum3 = 0.0_wp DO i = 1 , N sum1 = sum1 + (Y(i)-ybar)*(Y(i)-ybar) sum2 = sum2 + W(i)*Y(i) sum3 = sum3 + W(i)*W(i) ENDDO cc = sum2/SQRT(sum3*sum1) yslope = sum2/sum3 yint = ybar - yslope*wbar WRITE (G_IO,99006) cc , yint , yslope 99006 FORMAT (' ','PROBABILITY PLOT CORRELATION COEFFICIENT = ',F8.5,& & 5X,'ESTIMATED INTERCEPT = ',E15.8,3X, & & 'ESTIMATED SLOPE = ',E15.8) ENDIF ! END SUBROUTINE LAMPLT