gamplt(3f) - [M_datapac:LINE_PLOT] generate a gamma probability plot
SUBROUTINE GAMPLT(X,N,Gamma)
REAL(kind=wp),intent(in) :: X(:)
INTEGER,intent(in) :: N
REAL(kind=wp),intent(in) :: Gamma
GAMPLT(3f) generates a gamma probability plot (with tail length
parameter value = GAMMA).
The prototype gamma distribution used herein has mean = GAMMA and
standard deviation = sqrt(GAMMA).
This distribution is defined for all positive X, and has the
probability density function
f(X) = (1/constant) * (X**(GAMMA-1)) * exp(-X)
Where the constant = the gamma function evaluated at the value GAMMA.
As used herein, a probability plot for a distribution is a plot
of the ordered observations versus the order statistic medians for
that distribution.
The gamma probability plot is useful in graphically testing the
composite (that is, location and scale parameters need not be
specified) hypothesis that the underlying distribution from which
the data have been randomly drawn is the gamma distribution with
tail length parameter value = GAMMA.
If the hypothesis is true, the probability plot should be near-linear.
A measure of such linearity is given by the calculated probability
plot correlation coefficient.
X The vector of (unsorted or sorted) observations.
N The integer number of observations in the vector X.
The maximum allowable value of N for this subroutine is 7500.
GAMMA The value of the tail length parameter. Gamma should be positive.
A one-page gamma probability plot.
Sample program:
program demo_gamplt
use M_datapac, only : gamplt
implicit none
! call gamplt(x,y)
end program demo_gamplt
Results:
The original DATAPAC library was written by James Filliben of the
Statistical Engineering Division, National Institute of Standards
and Technology.
John Urban, 2022.05.31
CC0-1.0
THIS SECTION BELOW IS LOGICALLY SEPARATE FROM THE ABOVE.
THIS SECTION COMPUTES A CDF VALUE FOR ANY GIVEN TENTATIVE
PERCENT POINT X VALUE AS DEFINED IN EITHER OF THE 2
ITERATION LOOPS IN THE ABOVE CODE.
COMPUTE T-SUB-Q AS DEFINED ON page 4 OF THE WILK, GNANADESIKAN,
AND HUYETT REFERENCE
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
real(kind=wp), | intent(in) | :: | X(:) | |||
integer, | intent(in) | :: | N | |||
real(kind=wp), | intent(in) | :: | Gamma |
Type | Attributes | Name | Initial | |||
---|---|---|---|---|---|---|
real | :: | WS(15000) |
SUBROUTINE GAMPLT(X,N,Gamma) REAL(kind=wp),intent(in) :: X(:) INTEGER,intent(in) :: N REAL(kind=wp),intent(in) :: Gamma REAL(kind=wp) :: acount, aj, an, cc, cut1, cut2, cutoff, dgamma, dp, dx, g, hold, pcalc, pp0025, pp025, pp975, pp9975, sum, sum1 REAL(kind=wp) :: sum2, sum3, t, tau, term, u, W, wbar, WS, xdel, xlower, xmax, xmid, xmin, xmin0, xupper, Y, ybar, yint REAL(kind=wp) :: yslope INTEGER i, icount, iloop, ip1, itail, iupper, j !--------------------------------------------------------------------- DOUBLE PRECISION z, z2, z3, z4, z5, den, a, b, c, d DOUBLE PRECISION DEXP, DLOG DIMENSION d(10) DIMENSION Y(7500), W(7500) COMMON /BLOCK2_real64/ WS(15000) EQUIVALENCE (Y(1),WS(1)) EQUIVALENCE (W(1),WS(7501)) DATA c/.918938533204672741D0/ DATA d(1), d(2), d(3), d(4), d(5)/ + .833333333333333333D-1, & & -.277777777777777778D-2, +.793650793650793651D-3, & & -.595238095238095238D-3, +.841750841750841751D-3/ DATA d(6), d(7), d(8), d(9), d(10)/ - .191752691752691753D-2,& & +.641025641025641025D-2, -.295506535947712418D-1, & & +.179644372368830573D0, -.139243221690590111D1/ ! iupper = 7500 ! ! CHECK THE INPUT ARGUMENTS FOR ERRORS ! IF ( N<1 .OR. N>iupper ) THEN WRITE (G_IO,99001) iupper 99001 FORMAT (' ***** FATAL ERROR--The second input argument to GAMPLT(3f) is outside the allowable (1,',& & I0,') interval *****') WRITE (G_IO,99002) N 99002 FORMAT (' ','***** The value of the argument is ',I0,' *****') RETURN ELSEIF ( N==1 ) THEN WRITE (G_IO,99003) 99003 FORMAT (' ***** NON-FATAL DIAGNOSTIC--The second input argument to GAMPLT(3f) has the value 1 *****') RETURN ELSE IF ( Gamma<=0.0_wp ) THEN WRITE (G_IO,99004) 99004 FORMAT (' ***** FATAL ERROR--The third input argument to GAMPLT(3f) is non-positive *****') WRITE (G_IO,99005) Gamma 99005 FORMAT (' ','***** The value of the argument is ',E15.8,' *****') RETURN ELSE hold = X(1) DO i = 2 , N IF ( X(i)/=hold ) GOTO 50 ENDDO WRITE (G_IO,99006) hold 99006 FORMAT (' ***** NON-FATAL DIAGNOSTIC--The first input argument (a vector) to GAMPLT(3f) has all elements = ', & & E15.8,' *****') RETURN ENDIF ! !-----START POINT----------------------------------------------------- ! 50 an = N dgamma = Gamma ! ! COMPUTE THE GAMMA FUNCTION USING THE ALGORITHM IN THE ! NBS APPLIED MATHEMATICS SERIES REFERENCE. ! THIS GAMMA FUNCTION NEED BE CALCULATED ONLY ONCE. ! IT IS USED IN THE CALCULATION OF THE CDF BASED ON ! THE TENTATIVE VALUE OF THE PPF IN THE ITERATION. ! z = dgamma den = 1.0D0 DO WHILE ( z<10.0D0 ) den = den*z z = z + 1.0D0 ENDDO z2 = z*z z3 = z*z2 z4 = z2*z2 z5 = z2*z3 a = (z-0.5D0)*DLOG(z) - z + c b = d(1)/z + d(2)/z3 + d(3)/z5 + d(4)/(z2*z5) + d(5)/(z4*z5) & & + d(6)/(z*z5*z5) + d(7)/(z3*z5*z5) + d(8)/(z5*z5*z5) + d(9)& & /(z2*z5*z5*z5) g = DEXP(a+b)/den ! ! SORT THE DATA ! CALL SORT(X,N,Y) ! ! GENERATE UNIFORM ORDER STATISTIC MEDIANS ! CALL UNIMED(N,W) ! ! GENERATE GAMMA DISTRIBUTION ORDER STATISTIC MEDIANS ! ! DETERMINE LOWER AND UPPER BOUNDS ON THE DESIRED I-TH GAMMA ! ORDER STATISTIC MEDIAN. ! FOR EACH I, A LOWER BOUND IS GIVEN BY ! (Y(I)*GAMMA*THE GAMMA FUNCTION OF GAMMA)**(1.0/GAMMA) ! WHERE Y(I) IS THE CORRESPONDING UNIFORM (0,1) ORDER STATISIC ! MEDIAN. ! FOR EACH I EXCEPT I = N, AN UPPER BOUND IS GIVEN BY THE ! (I+1)-ST GAMMA ORDER STATISTIC MEDIAN (ASSUMEDLY ALREADY ! CALCULTATED). ! FOR I = N, AN UPPER BOUND IS DETERMINED BY COMPUTING ! MULTIPLES OF THE LOWER BOUND FOR I = N UNTIL A LARGER ! VALUE IS OBTAINED. ! DUE TO THE ABOVE CONSIDERATIONS, THE GAMMA ORDER STATISTIC ! MEDIANS WILL BE CALCULATED LARGEST TO SMALLEST, THAT IS, ! IN THE FOLLOWING SEQUENCE: W(N), W(N-1), ..., W(2), W(1). ! NOTE ALSO THAT 1) THE CODE IS COMPLICATED SLIGHTLY BY THE ! FACT THAT PERCENT POINT VALUES INVOLVED IN THE CALCULATION OF ! THE TAIL LENGTH MEASURE TAU (SEE LABEL 605) ARE GOING ON ! 'SIMULATNEOUSLY'. AND 2) THE VECTOR W WILL AT VARIOUS TIMES ! IN THE PROGRAM HAVE UNIFORM ORDER STATISTIC MEDIANS AND ! THEN LATER GRADUALLY FILL UP WITH GAMMA ORDER STATISTIC ! MEDIANS. ! i = N itail = 0 ENDIF 100 IF ( itail==0 ) u = W(i) dp = u xmin0 = (u*Gamma*g)**(1.0_wp/Gamma) xmin = xmin0 IF ( i==N .OR. itail>=1 ) THEN iloop = 1 icount = 1 ELSE ip1 = i + 1 xmax = W(ip1) GOTO 300 ENDIF 200 acount = icount xmax = acount*xmin0 dx = xmax GOTO 600 300 xmid = (xmin+xmax)/2.0_wp ! ! AT THIS STAGE WE NOW HAVE LOWER AND UPPER LIMITS ON ! THE DESIRED I-TH GAMMA ORDER STATISITC MEDIAN W(I). ! NOW ITERATE BY BISECTION UNTIL THE DESIRED ACCURACY IS ACHIEVED ! FOR THE I-TH GAMMA ORDER STATISITIC MEDIAN. ! iloop = 2 xlower = xmin xupper = xmax icount = 0 400 dx = xmid GOTO 600 500 IF ( itail<1 ) THEN W(i) = xmid IF ( i<=1 ) THEN ! ! AT THIS POINT, THE GAMMA ORDER STATISTIC MEDIANS ARE ALL COMPUTED. ! NOW PLOT OUT THE GAMMA PROBABILITY PLOT ! CALL PLOT(Y,W,N) ELSE i = i - 1 GOTO 100 ENDIF ENDIF ! ! COMPUTE THE TAIL LENGTH MEASURE OF THE DISTRIBUTION. ! WRITE OUT THE TAIL LENGTH MEASURE OF THE DISTRIBUTION ! AND THE SAMPLE SIZE. ! IF ( itail==0 ) THEN u = 0.9975_wp itail = 1 GOTO 100 ELSEIF ( itail==1 ) THEN pp9975 = xmid u = 0.0025_wp itail = 2 GOTO 100 ELSEIF ( itail==2 ) THEN pp0025 = xmid u = 0.975_wp itail = 3 GOTO 100 ELSEIF ( itail==3 ) THEN pp975 = xmid u = 0.025_wp itail = 4 GOTO 100 ELSE pp025 = xmid tau = (pp9975-pp0025)/(pp975-pp025) WRITE (G_IO,99007) Gamma , tau , N ! 99007 FORMAT (' ','Gamma probability plot with shape parameter = ', & & E17.10,1X,'(TAU = ',E15.8,')',16X,'sample size N = ', & & I0) ! ! COMPUTE THE PROBABILITY PLOT CORRELATION COEFFICIENT. ! COMPUTE LOCATION AND SCALE ESTIMATES ! FROM THE INTERCEPT AND SLOPE OF THE PROBABILITY PLOT. ! THEN WRITE THEM OUT. ! sum1 = 0.0_wp sum2 = 0.0_wp DO i = 1 , N sum1 = sum1 + Y(i) sum2 = sum2 + W(i) ENDDO ybar = sum1/an wbar = sum2/an sum1 = 0.0_wp sum2 = 0.0_wp sum3 = 0.0_wp DO i = 1 , N sum1 = sum1 + (Y(i)-ybar)*(Y(i)-ybar) sum2 = sum2 + (Y(i)-ybar)*(W(i)-wbar) sum3 = sum3 + (W(i)-wbar)*(W(i)-wbar) ENDDO cc = sum2/SQRT(sum3*sum1) yslope = sum2/sum3 yint = ybar - yslope*wbar WRITE (G_IO,99008) cc , yint , yslope 99008 FORMAT (' ','Probability plot correlation coefficient = ',F8.5,& & 5X,'estimated intercept = ',E15.8,3X, & & 'estimated slope = ',E15.8) ! RETURN ENDIF ! !******************************************************************** ! THIS SECTION BELOW IS LOGICALLY SEPARATE FROM THE ABOVE. ! THIS SECTION COMPUTES A CDF VALUE FOR ANY GIVEN TENTATIVE ! PERCENT POINT X VALUE AS DEFINED IN EITHER OF THE 2 ! ITERATION LOOPS IN THE ABOVE CODE. ! ! COMPUTE T-SUB-Q AS DEFINED ON page 4 OF THE WILK, GNANADESIKAN, ! AND HUYETT REFERENCE ! 600 sum = 1.0_wp/dgamma term = 1.0_wp/dgamma cut1 = dx - dgamma cut2 = dx*10000000.0_wp DO j = 1 , 1000 aj = j term = dx*term/(dgamma+aj) sum = sum + term cutoff = cut1 + (cut2*term/sum) IF ( aj>cutoff ) GOTO 700 ENDDO WRITE (G_IO,99009) 99009 FORMAT (' *****Error in internal operations in the GAMPLT subroutine--The number of CDF iterations exceeds 1000') WRITE (G_IO,99010) Gamma 99010 FORMAT (' The input value of GAMMA is ',E15.8) 700 t = sum pcalc = (dx**dgamma)*(EXP(-dx))*t/g IF ( iloop==1 ) THEN IF ( pcalc>=dp ) GOTO 300 xmin = xmax icount = icount + 1 IF ( icount>30000 ) GOTO 300 GOTO 200 ELSE IF ( pcalc==dp ) GOTO 500 IF ( pcalc>dp ) THEN xupper = xmid xmid = (xmid+xlower)/2.0_wp ELSE xlower = xmid xmid = (xmid+xupper)/2.0_wp ENDIF xdel = ABS(xmid-xlower) icount = icount + 1 IF ( xdel>=0.0000001_wp .AND. icount<=100 ) GOTO 400 GOTO 500 ENDIF ! END SUBROUTINE GAMPLT