parplt(3f) - [M_datapac:LINE_PLOT] generate a Pareto probability plot
SUBROUTINE PARPLT(X,N,Gamma)
PARPLT(3f) generates a Pareto probability plot (with tail length
parameter value = GAMMA).
The prototype pareto distribution used herein is defined for all X
equal to or greater than 1, and has the probability density function
f(X) = GAMMA / (X**(GAMMA+1)).
As used herein, a probability plot for a distribution is a plot
of the ordered observations versus the order statistic medians for
that distribution.
The Pareto probability plot is useful in graphically testing the
composite (that is, location and scale parameters need not be
specified) hypothesis that the underlying distribution from which
the data have been randomly drawn is the pareto distribution with
tail length parameter value = gamma.
If the hypothesis is true, the probability plot should be near-linear.
A measure of such linearity is given by the calculated probability
plot correlation coefficient.
X description of parameter
Y description of parameter
Sample program:
program demo_parplt
use M_datapac, only : parplt
implicit none
! call parplt(x,y)
end program demo_parplt
Results:
The original DATAPAC library was written by James Filliben of the
Statistical Engineering Division, National Institute of Standards
and Technology.
John Urban, 2022.05.31
CC0-1.0
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
real(kind=wp), | dimension(:) | :: | X | |||
integer | :: | N | ||||
real(kind=wp) | :: | Gamma |
Type | Attributes | Name | Initial | |||
---|---|---|---|---|---|---|
real | :: | WS(15000) |
SUBROUTINE PARPLT(X,N,Gamma) REAL(kind=wp) :: an, cc, Gamma, hold, pp0025, pp025, pp975, pp9975, q, sum1, sum2, sum3, tau, W, wbar, WS, X, Y, ybar, yint REAL(kind=wp) :: yslope INTEGER :: i, iupper, N ! ! INPUT ARGUMENTS--X = THE VECTOR OF ! (UNSORTED OR SORTED) OBSERVATIONS. ! --N = THE INTEGER NUMBER OF OBSERVATIONS ! IN THE VECTOR X. ! --GAMMA = THE VALUE OF THE ! TAIL LENGTH PARAMETER. ! GAMMA SHOULD BE POSITIVE. ! OUTPUT--A ONE-page PARETO PROBABILITY PLOT. ! PRINTING--YES. ! RESTRICTIONS--THE MAXIMUM ALLOWABLE VALUE OF N ! FOR THIS SUBROUTINE IS 7500. ! --GAMMA SHOULD BE POSITIVE. ! OTHER DATAPAC SUBROUTINES NEEDED--SORT, UNIMED, PLOT. ! FORTRAN LIBRARY SUBROUTINES NEEDED--SQRT. ! MODE OF INTERNAL OPERATIONS--. ! ORIGINAL VERSION--NOVEMBER 1975. ! UPDATED --FEBRUARY 1976. !--------------------------------------------------------------------- DIMENSION X(:) DIMENSION Y(7500) , W(7500) COMMON /BLOCK2_real32/ WS(15000) EQUIVALENCE (Y(1),WS(1)) EQUIVALENCE (W(1),WS(7501)) ! iupper = 7500 ! ! CHECK THE INPUT ARGUMENTS FOR ERRORS ! IF ( N<1 .OR. N>iupper ) THEN WRITE (G_IO,99001) iupper 99001 FORMAT (' ', & &'***** FATAL ERROR--THE SECOND INPUT ARGUMENT TO THE PARPLT SUBROU& &TINE IS OUTSIDE THE ALLOWABLE (1,',I0,') INTERVAL *****') WRITE (G_IO,99002) N 99002 FORMAT (' ','***** THE VALUE OF THE ARGUMENT IS ',I0,' *****') RETURN ELSEIF ( N==1 ) THEN WRITE (G_IO,99003) 99003 FORMAT (' ', & &'***** NON-FATAL DIAGNOSTIC--THE SECOND INPUT ARGUMENT TO THE PARP& < SUBROUTINE HAS THE VALUE 1 *****') RETURN ELSE IF ( Gamma<=0.0_wp ) THEN WRITE (G_IO,99004) 99004 FORMAT (' ', & &'***** FATAL ERROR--THE THIRD INPUT ARGUMENT TO THE PARPLT SUBROU& &TINE IS NON-POSITIVE *****') WRITE (G_IO,99005) Gamma 99005 FORMAT (' ','***** THE VALUE OF THE ARGUMENT IS ',E15.8, & & ' *****') RETURN ELSE hold = X(1) DO i = 2 , N IF ( X(i)/=hold ) GOTO 50 ENDDO WRITE (G_IO,99006) hold 99006 FORMAT (' ', & &'***** NON-FATAL DIAGNOSTIC--THE FIRST INPUT ARGUMENT (A VECTOR) & &TO THE PARPLT SUBROUTINE HAS ALL ELEMENTS = ',E15.8,' *****') RETURN ENDIF ! !-----START POINT----------------------------------------------------- ! 50 an = N ! ! SORT THE DATA ! CALL SORT(X,N,Y) ! ! GENERATE UNIFORM ORDER STATISTIC MEDIANS ! CALL UNIMED(N,W) ! ! COMPUTE PARETO DISTRIBUTION ORDER STATISTIC MEDIANS ! DO i = 1 , N W(i) = (1.0_wp-W(i))**(-1.0_wp/Gamma) ENDDO ! ! PLOT THE ORDERED OBSERVATIONS VERSUS ORDER STATISTICS MEDIANS. ! COMPUTE THE TAIL LENGTH MEASURE OF THE DISTRIBUTION. ! WRITE OUT THE TAIL LENGTH MEASURE OF THE DISTRIBUTION ! AND THE SAMPLE SIZE. ! CALL PLOT(Y,W,N) q = 0.9975_wp pp9975 = (1.0_wp-q)**(-1.0_wp/Gamma) q = 0.0025_wp pp0025 = (1.0_wp-q)**(-1.0_wp/Gamma) q = 0.975_wp pp975 = (1.0_wp-q)**(-1.0_wp/Gamma) q = 0.025_wp pp025 = (1.0_wp-q)**(-1.0_wp/Gamma) tau = (pp9975-pp0025)/(pp975-pp025) WRITE (G_IO,99007) Gamma , tau , N ! 99007 FORMAT (' ', & & 'PARETO PROBABILITY PLOT WITH EXPONENT PARAMETER = ', & & E17.10,1X,'(TAU = ',E15.8,')',11X, & & 'THE SAMPLE SIZE N = ',I0) ! ! COMPUTE THE PROBABILITY PLOT CORRELATION COEFFICIENT. ! COMPUTE LOCATION AND SCALE ESTIMATES ! FROM THE INTERCEPT AND SLOPE OF THE PROBABILITY PLOT. ! THEN WRITE THEM OUT. ! sum1 = 0.0_wp sum2 = 0.0_wp DO i = 1 , N sum1 = sum1 + Y(i) sum2 = sum2 + W(i) ENDDO ybar = sum1/an wbar = sum2/an sum1 = 0.0_wp sum2 = 0.0_wp sum3 = 0.0_wp DO i = 1 , N sum1 = sum1 + (Y(i)-ybar)*(Y(i)-ybar) sum2 = sum2 + (Y(i)-ybar)*(W(i)-wbar) sum3 = sum3 + (W(i)-wbar)*(W(i)-wbar) ENDDO cc = sum2/SQRT(sum3*sum1) yslope = sum2/sum3 yint = ybar - yslope*wbar WRITE (G_IO,99008) cc , yint , yslope 99008 FORMAT (' ','PROBABILITY PLOT CORRELATION COEFFICIENT = ',F8.5,& & 5X,'ESTIMATED INTERCEPT = ',E15.8,3X, & & 'ESTIMATED SLOPE = ',E15.8) ENDIF ! END SUBROUTINE PARPLT