lgnplt(3f) - [M_datapac:LINE_PLOT] generates a lognormal probability
plot
SUBROUTINE LGNPLT(X,N)
lgnplt(3f) generates a lognormal probability plot.
the prototype lognormal distribution used herein has mean = sqrt(e)
= 1.64872127 and standard deviation = sqrt(e*(e-1)) = 2.16119742.
this distribution is defined for all positive x and has the probability
density function
f(x) = (1/(x*sqrt(2*pi))) * exp(-log(x)*log(x)/2)
the prototype lognormal distribution used herein is the distribution
of the variate x = exp(z) where the variate z is normally distributed
with mean = 0 and standard deviation = 1.
as used herein, a probability plot for a distribution is a plot
of the ordered observations versus the order statistic medians for
that distribution.
the lognormal probability plot is useful in graphically testing
the composite (that is, location and scale parameters need not be
specified) hypothesis that the underlying distribution from which
the data have been randomly drawn is the lognormal distribution.
if the hypothesis is true, the probability plot should be near-linear.
a measure of such linearity is given by the calculated probability
plot correlation coefficient.
X description of parameter
Y description of parameter
Sample program:
program demo_lgnplt
use M_datapac, only : lgnplt
implicit none
! call lgnplt(x,y)
end program demo_lgnplt
Results:
The original DATAPAC library was written by James Filliben of the
Statistical Engineering Division, National Institute of Standards
and Technology.
John Urban, 2022.05.31
CC0-1.0
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
real(kind=wp), | dimension(:) | :: | X | |||
integer | :: | N |
Type | Attributes | Name | Initial | |||
---|---|---|---|---|---|---|
real | :: | WS(15000) |
SUBROUTINE LGNPLT(X,N) REAL(kind=wp) :: an , cc , hold , q , sum1 , sum2 , sum3 , tau , W , wbar , WS , X , Y , ybar , yint , yslope INTEGER :: i , iupper , N ! ! INPUT ARGUMENTS--X = THE VECTOR OF ! (UNSORTED OR SORTED) OBSERVATIONS. ! --N = THE INTEGER NUMBER OF OBSERVATIONS ! IN THE VECTOR X. ! OUTPUT--A ONE-page LOGNORMAL PROBABILITY PLOT. ! PRINTING--YES. ! RESTRICTIONS--THE MAXIMUM ALLOWABLE VALUE OF N ! FOR THIS SUBROUTINE IS 7500. ! ORIGINAL VERSION--JUNE 1972. ! UPDATED --SEPTEMBER 1975. ! UPDATED --NOVEMBER 1975. ! UPDATED --FEBRUARY 1976. ! !--------------------------------------------------------------------- ! DIMENSION X(:) DIMENSION Y(7500) , W(7500) COMMON /BLOCK2_real32/ WS(15000) EQUIVALENCE (Y(1),WS(1)) EQUIVALENCE (W(1),WS(7501)) ! DATA tau/2.37134890_wp/ ! iupper = 7500 ! ! CHECK THE INPUT ARGUMENTS FOR ERRORS ! IF ( N<1 .OR. N>iupper ) THEN WRITE (G_IO,99001) iupper 99001 FORMAT (' ', & &'***** FATAL ERROR--THE SECOND INPUT ARGUMENT TO THE LGNPLT SUBROU& &TINE IS OUTSIDE THE ALLOWABLE (1,',I0,') INTERVAL *****') WRITE (G_IO,99002) N 99002 FORMAT (' ','***** THE VALUE OF THE ARGUMENT IS ',I0,' *****') RETURN ELSEIF ( N==1 ) THEN WRITE (G_IO,99003) 99003 FORMAT (' ', & &'***** NON-FATAL DIAGNOSTIC--THE SECOND INPUT ARGUMENT TO THE LGNP& < SUBROUTINE HAS THE VALUE 1 *****') RETURN ELSE hold = X(1) DO i = 2 , N IF ( X(i)/=hold ) GOTO 50 ENDDO WRITE (G_IO,99004) hold 99004 FORMAT (' ', & &'***** NON-FATAL DIAGNOSTIC--THE FIRST INPUT ARGUMENT (A VECTOR) & &TO THE LGNPLT SUBROUTINE HAS ALL ELEMENTS = ',E15.8,' *****') ! !-----START POINT----------------------------------------------------- ! 50 an = N ! ! SORT THE DATA ! CALL SORT(X,N,Y) ! ! GENERATE UNIFORM ORDER STATISTIC MEDIANS ! CALL UNIMED(N,W) ! ! COMPUTE LOGNORMAL ORDER STATISTIC MEDIANS ! DO i = 1 , N q = W(i) CALL NORPPF(q,q) W(i) = EXP(q) ENDDO ! ! PLOT THE ORDERED OBSERVATIONS VERSUS ORDER STATISTICS MEDIANS. ! WRITE OUT THE TAIL LENGTH MEASURE OF THE DISTRIBUTION ! AND THE SAMPLE SIZE. ! CALL PLOT(Y,W,N) WRITE (G_IO,99005) tau , N ! 99005 FORMAT (' ','LOGNORMAL PROBABILITY PLOT (TAU = ',E15.8,')',53X,& & 'THE SAMPLE SIZE N = ',I0) ! ! COMPUTE THE PROBABILITY PLOT CORRELATION COEFFICIENT. ! COMPUTE LOCATION AND SCALE ESTIMATES ! FROM THE INTERCEPT AND SLOPE OF THE PROBABILITY PLOT. ! THEN WRITE THEM OUT. ! sum1 = 0.0_wp sum2 = 0.0_wp DO i = 1 , N sum1 = sum1 + Y(i) sum2 = sum2 + W(i) ENDDO ybar = sum1/an wbar = sum2/an sum1 = 0.0_wp sum2 = 0.0_wp sum3 = 0.0_wp DO i = 1 , N sum1 = sum1 + (Y(i)-ybar)*(Y(i)-ybar) sum2 = sum2 + (Y(i)-ybar)*(W(i)-wbar) sum3 = sum3 + (W(i)-wbar)*(W(i)-wbar) ENDDO cc = sum2/SQRT(sum3*sum1) yslope = sum2/sum3 yint = ybar - yslope*wbar WRITE (G_IO,99006) cc , yint , yslope 99006 FORMAT (' ','PROBABILITY PLOT CORRELATION COEFFICIENT = ',F8.5,& & 5X,'ESTIMATED INTERCEPT = ',E15.8,3X, & & 'ESTIMATED SLOPE = ',E15.8) ENDIF ! END SUBROUTINE LGNPLT