grouping | page | description |
M_datapac:ANALYSIS | fourie | perform a Fourier analysis of a data set |
M_datapac:ANALYSIS | norout | Performs a normal outlier analysis on the data in the input vector X. |
M_datapac:ANALYSIS | runs | perform a runs test |
M_datapac:ANALYSIS | tail | performs a symmetric distribution tail length analysis |
M_datapac:ANALYSIS | time | perform a time series analysis (autocorrelation plot, a test for white noise, a "pilot" spectrum, and 4 other estimated spectra based on differing bandwidth) |
M_datapac:ANALYSIS | weib | perform a Weibull distribution analysis (Weibull PPCC analysis) |
M_datapac:CUMULATIVE_DISTRIBUTION | bincdf | compute the binomial cumulative distribution function |
M_datapac:CUMULATIVE_DISTRIBUTION | caucdf | compute the Cauchy cumulative distribution function |
M_datapac:CUMULATIVE_DISTRIBUTION | chscdf | compute the chi-square cumulative distribution function |
M_datapac:CUMULATIVE_DISTRIBUTION | dexcdf | compute the double exponential cumulative distribution function |
M_datapac:CUMULATIVE_DISTRIBUTION | ev1cdf | compute the extreme value type 1 (Gumbel) cumulative distribution function |
M_datapac:CUMULATIVE_DISTRIBUTION | ev2cdf | compute the extreme value type 2 (Frechet) cumulative distribution function |
M_datapac:CUMULATIVE_DISTRIBUTION | expcdf | compute the exponential cumulative distribution function |
M_datapac:CUMULATIVE_DISTRIBUTION | fcdf | compute the F cumulative distribution function |
M_datapac:CUMULATIVE_DISTRIBUTION | gamcdf | compute the gamma cumulative distribution function |
M_datapac:CUMULATIVE_DISTRIBUTION | geocdf | compute the geometric cumulative distribution function |
M_datapac:CUMULATIVE_DISTRIBUTION | hfncdf | compute the half-normal cumulative distribution function |
M_datapac:CUMULATIVE_DISTRIBUTION | lamcdf | compute the Tukey-Lambda cumulative distribution function |
M_datapac:CUMULATIVE_DISTRIBUTION | lgncdf | compute the lognormal cumulative distribution function |
M_datapac:CUMULATIVE_DISTRIBUTION | logcdf | compute the logistic cumulative distribution function |
M_datapac:CUMULATIVE_DISTRIBUTION | nbcdf | compute the negative binomial cumulative distribution function |
M_datapac:CUMULATIVE_DISTRIBUTION | norcdf | compute the normal cumulative distribution function |
M_datapac:CUMULATIVE_DISTRIBUTION | parcdf | compute the Pareto cumulative distribution function |
M_datapac:CUMULATIVE_DISTRIBUTION | poicdf | compute the Poisson cumulative distribution function |
M_datapac:CUMULATIVE_DISTRIBUTION | tcdf | computes the cumulative distribution function value for student's t distribution with integer degrees of freedom NU. |
M_datapac:CUMULATIVE_DISTRIBUTION | unicdf | trivially compute the Uniform cumulative distribution function |
M_datapac:CUMULATIVE_DISTRIBUTION | weicdf | compute the Weibull cumulative distribution function |
M_datapac:GENERIC_LINE_PLOT | plot | yields a one-page printer plot of Y(I) versus X(I) |
M_datapac:GENERIC_LINE_PLOT | plot10 | generate a line printer plot with special plot characters |
M_datapac:GENERIC_LINE_PLOT | plot6 | generate a line printer plot |
M_datapac:GENERIC_LINE_PLOT | plot7 | generate a line printer plot with special plot characters |
M_datapac:GENERIC_LINE_PLOT | plot8 | generate a line printer plot with special plot characters |
M_datapac:GENERIC_LINE_PLOT | plot9 | generate a line printer plot with special plot characters |
M_datapac:GENERIC_LINE_PLOT | plotc | generate a line printer plot with special plot characters |
M_datapac:GENERIC_LINE_PLOT | plotco | generate a line printer autocorrelation plot |
M_datapac:GENERIC_LINE_PLOT | plotct | generate a line printer plot for the terminal (71 characters wide) |
M_datapac:GENERIC_LINE_PLOT | plots | generate a line printer plot of Y vs X |
M_datapac:GENERIC_LINE_PLOT | plotsc | generate a line printer plot with special plot characters |
M_datapac:GENERIC_LINE_PLOT | plotst | generate a line printer plot of Y vs X for the terminal (71 characters wide) |
M_datapac:GENERIC_LINE_PLOT | plott | generate a line printer plot of Y vs X for the terminal (71 characters wide) |
M_datapac:GENERIC_LINE_PLOT | plotu | generate a line printer 4-plot |
M_datapac:GENERIC_LINE_PLOT | plotx | generate a line printer run sequence plot |
M_datapac:GENERIC_LINE_PLOT | pltsct | generate a line printer plot with special plot characters for the terminal (71 characters wide) |
M_datapac:LINE_PLOT | cauplt | generate a Cauchy probability plot |
M_datapac:LINE_PLOT | chsplt | generate a Chi-square probability plot |
M_datapac:LINE_PLOT | dexplt | generate a double exponential probability plot |
M_datapac:LINE_PLOT | ev1plt | generate a extreme value type 1 (Gumbel) probability plot |
M_datapac:LINE_PLOT | ev2plt | generate a extreme value type 2 (Frechet) probability plot |
M_datapac:LINE_PLOT | expplt | generate a exponential probability plot |
M_datapac:LINE_PLOT | gamplt | generate a gamma probability plot |
M_datapac:LINE_PLOT | geoplt | generate a geometric probability plot |
M_datapac:LINE_PLOT | hfnplt | generate a half-normal probability plot |
M_datapac:LINE_PLOT | lamplt | generate a Tukey-Lambda probability plot |
M_datapac:LINE_PLOT | lgnplt | generates a lognormal probability plot |
M_datapac:LINE_PLOT | logplt | generate a logistic probability plot |
M_datapac:LINE_PLOT | norplt | generate a normal probability plot |
M_datapac:LINE_PLOT | parplt | generate a Pareto probability plot |
M_datapac:LINE_PLOT | plotsp | generate a line printer spectrum plot |
M_datapac:LINE_PLOT | plotxt | generate a line printer run sequence plot for the terminal (71 characters wide) |
M_datapac:LINE_PLOT | plotxx | generate a line printer lag plot |
M_datapac:LINE_PLOT | pltxxt | generate a line printer lag plot for the terminal (71 characters wide) |
M_datapac:LINE_PLOT | poiplt | generate a Poisson probability plot (line printer graph) |
M_datapac:LINE_PLOT | tplt | generates a Student's T probability plot (with integer degrees of freedom parameter value NU). |
M_datapac:LINE_PLOT | uniplt | generate a Uniform probability plot (line printer graph) |
M_datapac:LINE_PLOT | weiplt | generate a Weibull probability plot (line printer graph) |
M_datapac:PERCENT_POINT | binppf | compute the binomial percent point function |
M_datapac:PERCENT_POINT | cauppf | compute the Cauchy percent point function |
M_datapac:PERCENT_POINT | chsppf | compute the chi-square percent point function |
M_datapac:PERCENT_POINT | dexppf | compute the double exponential percent point function |
M_datapac:PERCENT_POINT | ev1ppf | compute the extreme value type 1 (Gumbel) percent point function |
M_datapac:PERCENT_POINT | ev2ppf | compute the extreme value type 2 (Frechet) percent point function |
M_datapac:PERCENT_POINT | expppf | compute the exponential percent point function |
M_datapac:PERCENT_POINT | gamppf | compute the gamma percent point function |
M_datapac:PERCENT_POINT | geoppf | compute the geometric percent point function |
M_datapac:PERCENT_POINT | hfnppf | compute the half-normal percent point function |
M_datapac:PERCENT_POINT | lamppf | compute the Tukey-Lambda percent point function |
M_datapac:PERCENT_POINT | lgnppf | compute the lognormal percent point function |
M_datapac:PERCENT_POINT | logppf | compute the logistic percent point function |
M_datapac:PERCENT_POINT | nbppf | compute the negative binomial percent point function |
M_datapac:PERCENT_POINT | norppf | compute the normal percent point function |
M_datapac:PERCENT_POINT | parppf | compute the Pareto percent point function |
M_datapac:PERCENT_POINT | poippf | compute the Poisson percent point function |
M_datapac:PERCENT_POINT | sampp | compute the sample 100P percent point (i.e., percentile) |
M_datapac:PERCENT_POINT | tppf | computes the percent point function value for the student's T distribution |
M_datapac:PERCENT_POINT | unippf | compute the Uniform percent point function |
M_datapac:PERCENT_POINT | weippf | compute the Weibull percent point function |
M_datapac:PROBABILITY_DENSITY | caupdf | compute the Cauchy probability density function |
M_datapac:PROBABILITY_DENSITY | dexpdf | compute the double exponential probability density function |
M_datapac:PROBABILITY_DENSITY | exppdf | compute the exponential probability density function |
M_datapac:PROBABILITY_DENSITY | lampdf | compute the Tukey-Lambda probability density function |
M_datapac:PROBABILITY_DENSITY | logpdf | compute the logistic probability density function |
M_datapac:PROBABILITY_DENSITY | norpdf | compute the normal probability density function |
M_datapac:PROBABILITY_DENSITY | unipdf | trivially compute the Uniform probability density function |
M_datapac:RANDOM | betran | generate beta random numbers |
M_datapac:RANDOM | binran | generate binomial random numbers |
M_datapac:RANDOM | cauran | generate Cauchy random numbers |
M_datapac:RANDOM | chsran | generate chi-square random numbers |
M_datapac:RANDOM | dexran | generate double exponential random numbers |
M_datapac:RANDOM | ev1ran | generate extreme value type 1 (Gumbel) random numbers |
M_datapac:RANDOM | ev2ran | generate extreme value type 2 (Frechet) random numbers |
M_datapac:RANDOM | expran | generate exponential random numbers |
M_datapac:RANDOM | fran | generate F random numbers |
M_datapac:RANDOM | gamran | generate gamma random numbers |
M_datapac:RANDOM | georan | generate geometric random numbers |
M_datapac:RANDOM | hfnran | generate half-normal random numbers |
M_datapac:RANDOM | lamran | generate Tukey-Lambda random numbers |
M_datapac:RANDOM | lgnran | generate lognormal random numbers |
M_datapac:RANDOM | logran | generate logistic random numbers |
M_datapac:RANDOM | nbran | generate negative binomial random numbers |
M_datapac:RANDOM | norran | generate normal random numbers |
M_datapac:RANDOM | parran | generate Pareto random numbers |
M_datapac:RANDOM | poiran | generate Poisson random numbers |
M_datapac:RANDOM | ranper | generates a random permutation |
M_datapac:RANDOM | tran | a random sample of size n from the Student's t distribution with integer degrees of freedom parameter NU. |
M_datapac:RANDOM | uniran | generate Uniform random numbers |
M_datapac:RANDOM | weiran | generate Weibull random numbers |
M_datapac:SORT | rank | rank a vector of sample observations |
M_datapac:SORT | sort | sort a vector of sample observations, also return the positions in the original vector |
M_datapac:SORT | sortc | sort a vector of sample observations and "carry" a second vector |
M_datapac:SORT | sortp | sorts and ranks a numeric vector X |
M_datapac:SPARSITY | causf | compute the Cauchy sparsity function |
M_datapac:SPARSITY | dexsf | compute the double exponential sparsity function |
M_datapac:SPARSITY | expsf | compute the exponential sparsity function |
M_datapac:SPARSITY | lamsf | compute the Tukey-Lambda sparsity function |
M_datapac:SPARSITY | logsf | compute the logistic sparsity function |
M_datapac:SPARSITY | norsf | compute the normal sparsity function |
M_datapac:SPARSITY | unisf | compute the Uniform sparsity function |
M_datapac:STATISTICS | autoco | compute the sample autocorrelation coefficient |
M_datapac:STATISTICS | corr | compute the sample correlation coefficient |
M_datapac:STATISTICS | count | compute the number of observations between a minimum and a maximum value |
M_datapac:STATISTICS | decomp | decomposes a weighted data matrix (utility routine used by other routines) |
M_datapac:STATISTICS | demod | perform a complex demodulation |
M_datapac:STATISTICS | discr2 | bin the elements of a vector (output vector contains class midpoints) |
M_datapac:STATISTICS | discr3 | bin the elements of a vector (output vector contains 1's, 2's, 3's, and so on) |
M_datapac:STATISTICS | discre | bin the elements of a vector (like DISCR2, but allows specification of min and max class limits) |
M_datapac:STATISTICS | extrem | determine whether a type 1 or type 2 extreme value distribution better fits a given data set |
M_datapac:STATISTICS | freq | compute the sample frequency and cumulative sample frequency of a vector |
M_datapac:STATISTICS | hist | generates histograms based on two different class widths |
M_datapac:STATISTICS | loc | print the sample mean, midrange, midmean, and median |
M_datapac:STATISTICS | mean | compute the sample mean of a data vector |
M_datapac:STATISTICS | median | compute the median of a data vector |
M_datapac:STATISTICS | midm | compute the midmean of a data vector |
M_datapac:STATISTICS | midr | compute the midrange of a data vector |
M_datapac:STATISTICS | min | compute the minimum of a data vector |
M_datapac:STATISTICS | propor | compute the sample proportion |
M_datapac:STATISTICS | range | compute the sample range |
M_datapac:STATISTICS | relsd | compute the relative standard deviation of a vector of observations |
M_datapac:STATISTICS | scale | compute the sample range, sample standard deviation, sample relative standard deviation, and sample variance |
M_datapac:STATISTICS | sd | compute the standard deviation of a vector of observations |
M_datapac:STATISTICS | spcorr | compute the sample Spearman rank correlation coefficient between two vectors of observations |
M_datapac:STATISTICS | stmom3 | compute the third central moment (i.e., the skewness) of a vector of observations |
M_datapac:STATISTICS | stmom4 | compute the fourth central moment (i.e., the kurtosis) of a vector of observations |
M_datapac:STATISTICS | tol | compute normal and distribution-free tolerance limits |
M_datapac:STATISTICS | trim | computes the sample trimmed mean of the data in the input vector X. |
M_datapac:STATISTICS | unimed | generates the N order statistic medians from the uniform (rectangular) distribution on the unit interval (0, 1). |
M_datapac:STATISTICS | var | compute the sample variance of a vector of observations |
M_datapac:STATISTICS | wind | compute the sample Winsorized mean of a vector of observations |
M_datapac:VECTOR_OPERATIONS | code | code the elements of a vector (1 for the minimum, 2 for the next larger value, and so on) |
M_datapac:VECTOR_OPERATION | copy | copy the elements of one vector into another vector |
M_datapac:VECTOR_OPERATION | define | set all elements of a vector equal to a specified constant |
M_datapac:VECTOR_OPERATION | delete | delete all elements of a vector within some specified interval |
M_datapac:VECTOR_OPERATION | dot | compute a dot product of two vectors |
M_datapac:VECTOR_OPERATION | max | MAX compute the maximum of a data vector |
M_datapac:VECTOR_OPERATION | move | move selected elements of one vector into another vector |
M_datapac:VECTOR_OPERATION | replac | replace all observations in a vector within a given interval with a user-specified constant |
M_datapac:VECTOR_OPERATION | retain | retain all observations in a vector within a user-specified interval |
M_datapac:VECTOR_OPERATION | subse1 | extract the elements of a vector which fall into a user-specified subset (one subset variable) |
M_datapac:VECTOR_OPERATION | subse2 | extract the elements of a vector which fall into a user-specified subset (two subset variables) |
M_datapac:VECTOR_OPERATION | subset | extract the elements of a vector which fall into a user-specified subset (one subset variable) |