lamcdf(3f) - [M_datapac:CUMULATIVE_DISTRIBUTION] compute the Tukey-Lambda cumulative distribution function
Synopsis
Description
Input Arguments
Output Arguments
Examples
Author
Maintainer
License
References
SUBROUTINE LAMCDF(X,Alamba,Cdf)
REAL(kind=wp),intent(in) :: X REAL(kind=wp),intent(in) :: Alamba REAL(kind=wp),intent(out) :: Cdf
LAMCDF(3f) computes the cumulative distribution function value for the (Tukey) lambda distribution with tail length parameter value = ALAMBA. In general, the probability density function for this distribution is not simple.The percent point function for this distribution is
g(P) = ((P**ALAMBA)-((1-P)**ALAMBA))/ALAMBA
X The value at which the cumulative distribution function is to be evaluated. For ALAMBA non-positive, no restrictions on X. For ALAMBA positive, X should be between (-1/ALAMBA) and (+1/ALAMBA), inclusively.
ALAMBA The value of lambda (the tail length parameter).
CDF The cumulative distribution function value for the Tukey lambda distribution.
Sample program:
program demo_lamcdf
!@(#) line plotter graph of cumulative distribution function
use M_datapac, only : lamcdf, plott, label
implicit none
real,allocatable :: x(:), y(:)
real :: alamba
integer :: i
call label(lamcdf)
alamba=4.0
x=[(real(i)/100.0/alamba,i=-100,100,1)]
if(allocated(y))deallocate(y)
allocate(y(size(x)))
do i=1,size(x)
call lamcdf(X(i),Alamba,y(i))
enddo
call plott(x,y,size(x))
end program demo_lamcdf
Results:
The following is a plot of Y(I) (vertically) versus X(I) (horizontally)
I-----------I-----------I-----------I-----------I
0.2500000E+00 - X
0.2291667E+00 I XX
0.2083333E+00 I XX
0.1875000E+00 I XX
0.1666667E+00 I XX
0.1458333E+00 I XXX
0.1250000E+00 - XX
0.1041667E+00 I XX
0.8333333E-01 I XX
0.6250000E-01 I XXX
0.4166666E-01 I XXXX
0.2083333E-01 I XXXX
0.0000000E+00 - XXXXX
-0.2083334E-01 I XXXX
-0.4166669E-01 I XXXX
-0.6250000E-01 I XXX
-0.8333334E-01 I XX
-0.1041667E+00 I XX
-0.1250000E+00 - XX
-0.1458333E+00 I XXX
-0.1666667E+00 I XX
-0.1875000E+00 I XX
-0.2083333E+00 I XX
-0.2291667E+00 I XX
-0.2500000E+00 - X
I-----------I-----------I-----------I-----------I
0.0000E+00 0.2500E+00 0.5000E+00 0.7500E+00 0.1000E+01
The original DATAPAC library was written by James Filliben of the Statistical Engineering Division, National Institute of Standards and Technology.
John Urban, 2022.05.31
CC0-1.0
o Hastings, Mosteller, Tukey, and windsor, Low MOments for Small
Samples: A Comparative Study of Order Statistics, Annals of Mathematical Statistics, 18, 1947, pages 413-426. o Filliben, Simple and Robust Linear Estimation of the Location Parameter of a Symmetric Distribution (Unpublished PH.D. Dissertation, Princeton University), 1969, pages 42-44, 53-58.
| Nemo Release 3.1 | lamcdf (3m_datapac) | July 20, 2023 |
