expsf(3f) - [M_datapac:SPARSITY] compute the exponential sparsity function
SUBROUTINE EXPSF(P,Sf)
REAL(kind=wp),intent(in) :: P
REAL(kind=wp),intent(out) :: Sf
EXPSF(3f) computes the sparsity function value for the exponential
distribution with mean = 1 and standard deviation = 1.
This distribution is defined for all non-negative X, and has the
probability density function
f(X) = exp(-X)
Note that the sparsity function of a distribution is the derivative
of the percent point function, and also is the reciprocal of the
probability density function (but in units of P rather than X).
P The value at which the sparsity function is to be evaluated.
P should be between 0.0 (inclusively) and 1.0 (exclusively).
SF The sparsity function value.
Sample program:
program demo_expsf
use M_datapac, only : expsf
implicit none
! call expsf(x,y)
end program demo_expsf
Results:
The original DATAPAC library was written by James Filliben of the
Statistical Engineering Division, National Institute of Standards
and Technology.
John Urban, 2022.05.31
CC0-1.0
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
real(kind=wp), | intent(in) | :: | P | |||
real(kind=wp), | intent(out) | :: | Sf |
SUBROUTINE EXPSF(P,Sf) REAL(kind=wp),intent(in) :: P REAL(kind=wp),intent(out) :: Sf !--------------------------------------------------------------------- ! ! CHECK THE INPUT ARGUMENTS FOR ERRORS ! IF ( P<0.0_wp .OR. P>=1.0_wp ) THEN WRITE (G_IO,99001) 99001 FORMAT (' ***** FATAL ERROR--The first input argument to EXPSF(3f) is outside the allowable (0,1) interval *****') WRITE (G_IO,99002) P 99002 FORMAT (' ','***** The value of the argument is ',E15.8,' *****') RETURN ELSE Sf = 1.0_wp/(1.0_wp-P) ENDIF ! END SUBROUTINE EXPSF