zrotg(3f) - [BLAS:COMPLEX16_BLAS_LEVEL1] constructs a plane rotation
Synopsis
Definition
Options
A
Authors
Further Details
See Also
subroutine zrotg( a, b, c, s )
.. Scalar Arguments .. real(wp),intent(out) :: c complex(wp),intent(in) :: b complex(wp),intent(out) :: s complex(wp),intent(inout) :: a ..
ZROTG constructs a plane rotation
[ c s ] [ a ] = [ r ] [ -conjg(s) c ] [ b ] [ 0 ]where c is real, s ic complex, and c**2 + conjg(s)*s = 1.
The computation uses the formulas
|x| = sqrt( Re(x)**2 + Im(x)**2 ) sgn(x) = x / |x| if x /= 0 = 1 if x = 0 c = |a| / sqrt(|a|**2 + |b|**2) s = sgn(a) * conjg(b) / sqrt(|a|**2 + |b|**2)When a and b are real and r /= 0, the formulas simplify to
r = sgn(a)*sqrt(|a|**2 + |b|**2) c = a / r s = b / rthe same as in ZROTG when |a| > |b|. When |b| >= |a|, the sign of c and s will be different from those computed by ZROTG if the signs of a and b are not the same.
A is DOUBLE COMPLEX On entry, the scalar a. On exit, the scalar r.
B is DOUBLE COMPLEX The scalar b.
C is DOUBLE PRECISION The scalar c.
S is DOUBLE PRECISION The scalar s.
o Edward Anderson, Lockheed Martin \par Contributors:Weslley Pereira, University of Colorado Denver, USA
Anderson E. (2017) Algorithm 978: Safe Scaling in the Level 1 BLAS ACM Trans Math Softw 44:1--28 https://doi.org/10.1145/3061665
Online html documentation available at http://www.netlib.org/lapack/explore-html/
Nemo Release 3.1 | zrotg (3) | February 23, 2025 |