weippf(3f) - [M_datapac:PERCENT_POINT] compute the Weibull percent point function
Synopsis
Description
Input Arguments
Output Arguments
Examples
Author
Maintainer
License
References
SUBROUTINE WEIPPF(P,Gamma,Ppf)
REAL(kind=wp),intent(in) :: P REAL(kind=wp),intent(in) :: Gamma REAL(kind=wp),intent(out) :: Ppf
WEIPPf(3f) computes the percent point function value for the Weibull distribution with REAL tail length parameter = GAMMA.The Weibull distribution used herein is defined for all positive X, and has the probability density function
f(X) = GAMMA * (X**(GAMMA-1)) * exp(-(X**GAMMA))Note that the percent point function of a distribution is identically the same as the inverse cumulative distribution function of the distribution.
P The value (between 0.0 (inclusively) and 1.0 (exclusively)) at which the percent point function is to be evaluated. GAMMA The value of the tail length parameter. GAMMA should be positive.
PPF The percent point function value for the Weibull distribution
Sample program:
program demo_weippf !@(#) line plotter graph of function use M_datapac, only : weippf, plott, label implicit none integer,parameter :: n=200 real :: x(n), y(n) real :: gamma integer :: i gamma=2.0 call label(weippf) x=[(real(i)/real(n+1),i=1,n)] do i=1,n call weippf(x(i),gamma,y(i)) enddo call plott(x,y,n) end program demo_weippfResults:
The following is a plot of Y(I) (vertically) versus X(I) (horizontally) I-----------I-----------I-----------I-----------I 0.9950249E+00 - XX X X X 0.9537728E+00 I XXXXXX 0.9125207E+00 I XXXX 0.8712686E+00 I XXX 0.8300166E+00 I XXX 0.7887645E+00 I XX 0.7475125E+00 - XX 0.7062603E+00 I XX 0.6650083E+00 I XX 0.6237562E+00 I XX 0.5825042E+00 I XX 0.5412520E+00 I XX 0.5000000E+00 - XX 0.4587479E+00 I XX 0.4174958E+00 I XX 0.3762438E+00 I XX 0.3349917E+00 I XX 0.2937396E+00 I XX 0.2524875E+00 - XX 0.2112355E+00 I XX 0.1699834E+00 I XX 0.1287313E+00 I XX 0.8747923E-01 I XXX 0.4622716E-01 I XXX 0.4975124E-02 - XXX I-----------I-----------I-----------I-----------I 0.7062E-01 0.6287E+00 0.1187E+01 0.1745E+01 0.2303E+01
The original DATAPAC library was written by James Filliben of the Statistical Engineering Division, National Institute of Standards and Technology.
John Urban, 2022.05.31
CC0-1.0
o Johnson and Kotz, Continuous Univariate Distributions--1, 1970, pages 250-271. o Hastings and Peacock, Statistical Distributions--A Handbook for Students and Practitioners, 1975, page 124.
Nemo Release 3.1 | weippf (3) | February 23, 2025 |