tcdf(3f) - [M_datapac:CUMULATIVE_DISTRIBUTION] computes the cumulative distribution function value for students t distribution with integer degrees of freedom NU.
Synopsis
Description
Input Arguments
Output Arguments
Examples
Author
Maintainer
License
References
SUBROUTINE TCDF(X,Nu,Cdf)
REAL(kind=wp) :: X INTEGER :: Nu REAL(kind=wp) :: Cdf
TCDF(3f) computes the cumulative distribution function value for Students T distribution with integer degrees of freedom parameter = NU. This distribution is defined for all X.The probability density function is given in the references below.
Note the mode of internal operations is double precision.
X The value at which the cumulative distribution function is to be evaluated. X should be non-negative. NU The integer number of degrees of freedom. NU should be positive.
CDF The cumulative distribution function value for the Students T distribution
Sample program:
program demo_tcdf !@(#) line plotter graph of cumulative distribution function use M_datapac, only : tcdf, plott, label implicit none real,allocatable :: x(:), y(:) integer :: nu integer :: i call label(tcdf) x=[(real(i)/20.0,i=0,100,1)] if(allocated(y))deallocate(y) allocate(y(size(x))) nu=12 do i=1,size(x) call tcdf(X(i),Nu,y(i)) enddo call plott(x,y,size(x)) end program demo_tcdfResults:
The following is a plot of Y(I) (vertically) versus X(I) (horizontally) I-----------I-----------I-----------I-----------I 0.5000000E+01 - X 0.4791667E+01 I X 0.4583333E+01 I X 0.4375000E+01 I X 0.4166667E+01 I X 0.3958333E+01 I X 0.3750000E+01 - X 0.3541667E+01 I X 0.3333333E+01 I X 0.3125000E+01 I X 0.2916667E+01 I X 0.2708333E+01 I X 0.2500000E+01 - XX 0.2291667E+01 I X 0.2083333E+01 I X 0.1875000E+01 I XX 0.1666667E+01 I XX 0.1458333E+01 I XXX 0.1250000E+01 - XXXX 0.1041667E+01 I XXXX 0.8333335E+00 I XXXX 0.6250000E+00 I XX XX 0.4166670E+00 I X XX X 0.2083335E+00 I XX X X 0.0000000E+00 - X X X I-----------I-----------I-----------I-----------I 0.5000E+00 0.6250E+00 0.7499E+00 0.8749E+00 0.9998E+00
The original DATAPAC library was written by James Filliben of the Statistical Engineering Division, National Institute of Standards and Technology.
John Urban, 2022.05.31
CC0-1.0
o National Bureau of Standards Applied Mathematics Series 55, 1964, page 948, Formulae 26.7.3 and 26.7.4. o Johnson and Kotz, Continuous Univariate Distributions--2, 1970, pages 94-129. o Federighi, Extended Tables of the Percentage Points Of StudentS T-Distribution, Journal of the American Statistical Association, 1959, pages 683-688. o Owen, Handbook of Statistical Tables, 1962, pages 27-30. o Pearson and Hartley, Biometrika Tables for Statisticians, Volume 1, 1954, pages 132-134.
Nemo Release 3.1 | tcdf (3) | February 23, 2025 |