poicdf(3f) - [M_datapac:CUMULATIVE_DISTRIBUTION] compute the Poisson cumulative distribution function
Synopsis
Description
Input Arguments
Output Arguments
Note
Examples
Author
Maintainer
License
References
SUBROUTINE POICDF(X,Alamba,Cdf)
REAL(kind=wp),intent(in) :: X REAL(kind=wp),intent(in) :: Alamba REAL(kind=wp),intent(out) :: Cdf
POICDF(3f) computes the cumulative distribution function value at the precision value X for the Poisson distribution with precision tail length parameter = alamba.The Poisson distribution used herein has mean = ALAMBA and standard deviation = sqrt(ALAMBA).
This distribution is defined for all discrete non-negative integer X-- X = 0, 1, 2, ... .
This distribution has the probability function
f(X) = exp(-ALAMBA) * ALAMBA**X / X!The Poisson distribution is the distribution of the number of events in the interval (0,ALAMBA) when the waiting time between events is exponentially distributed with mean = 1 and standard deviation = 1.
X The value at which the cumulative distribution function is to be evaluated. x should be non-negative and integral-valued. ALAMBA The value of the tail length parameter. alamba should be positive. The tail length parameter alamba is not restricted to only integer values. ALAMBA can be set to any positive real value --integer or non-integer.
CDF The cumulative distribution function value. For the Poisson distribution
Even though the input to this cumulative distribution function subroutine for this discrete distribution should (under normal circumstances) be a discrete integer value, X has been specified as REAL so as to conform with the datapac convention that all input ****data**** (as opposed to sample size, for example) variables to all datapac subroutines are real. this convention is based on the belief that
1) a mixture of modes (floating point versus integer) is inconsistent and an unnecessary complication in a data analysis; and 2) floating point machine arithmetic (as opposed to integer arithmetic) is the more natural mode for doing data analysis.
Sample program:
program demo_poicdf !@(#) line plotter graph of cumulative distribution function use M_datapac, only : poicdf, plott, label implicit none real,allocatable :: x(:), y(:) real :: alamba integer :: i call label(poicdf) x=[(real(i),i=0,100,1)] if(allocated(y))deallocate(y) allocate(y(size(x))) alamba=29.5 do i=1,size(x) call poicdf(X(i),Alamba,y(i)) enddo call plott(x,y,size(x)) end program demo_poicdfResults:
The following is a plot of Y(I) (vertically) versus X(I) (horizontally) I-----------I-----------I-----------I-----------I 0.1000000E+03 - X 0.9583334E+02 I X 0.9166666E+02 I X 0.8750000E+02 I X 0.8333334E+02 I X 0.7916667E+02 I X 0.7500000E+02 - X 0.7083334E+02 I X 0.6666667E+02 I X 0.6250000E+02 I X 0.5833334E+02 I X 0.5416667E+02 I X 0.5000000E+02 - X 0.4583334E+02 I X 0.4166667E+02 I XX 0.3750000E+02 I XXXX 0.3333334E+02 I X X X X 0.2916667E+02 I X X X X 0.2500000E+02 - X X X X X 0.2083334E+02 I XXX X 0.1666667E+02 I XX 0.1250000E+02 I X 0.8333336E+01 I X 0.4166672E+01 I X 0.0000000E+00 - X I-----------I-----------I-----------I-----------I 0.1543E-12 0.2500E+00 0.5000E+00 0.7500E+00 0.1000E+01
The original DATAPAC library was written by James Filliben of the Statistical Engineering Division, National Institute of Standards and Technology.
John Urban, 2022.05.31
CC0-1.0
o Johnson and Kotz, Discrete Distributions, 1969, pages 87-121, especially page 114, Formula 93. o Hastings and Peacock, Statistical Distributions--A Handbook for Students and Practitioners, 1975, page 112. o National Bureau of Standards Applied Mathematics Series 55, 1964, page 941, Formulae 26.4.4 and 26.4.5, and page 929. o Feller, An Introduction to Probability Theory and Its Applications, Volume 1, Edition 2, 1957, pages 146-154. o Cox and Miller, The Theory of Stochastic Processes, 1965, page 7. o General Electric Company, Tables of the Individual and Cumulative Terms of Poisson Distribution, 1962. o Owen, Handbook of Statistical Tables, 1962, pages 259-261.
Nemo Release 3.1 | poicdf (3) | February 23, 2025 |