parcdf(3f) - [M_datapac:CUMULATIVE_DISTRIBUTION] compute the Pareto cumulative distribution function
Synopsis
Description
Input Arguments
Output Arguments
Examples
Author
Maintainer
License
References
SUBROUTINE PARCDF(X,Gamma,Cdf)
REAL(kind=wp),intent(in) :: X REAL(kind=wp),intent(in) :: Gamma REAL(kind=wp),intent(out) :: Cdf
PARCDF(3f) computes the cumulative distribution function value for the Pareto distribution with REAL tail length parameter = GAMMA.
The Pareto distribution used herein is defined for all X greater than or equal to 1, and has the probability density function
f(X) = GAMMA / (X**(GAMMA+1))
X The value at which the cumulative distribution function is to be evaluated. X should be greater than or equal to 1. GAMMA The value of the tail length parameter. GAMMA should be positive.
CDF The cumulative distribution function value for the Pareto distribution
Sample program:
program demo_parcdf !@(#) line plotter graph of cumulative distribution function use M_datapac, only : parcdf, plott, label implicit none real,allocatable :: x(:), y(:) real :: gamma integer :: i call label(parcdf) x=[(real(i)/10.0+1.0,i=1,100,1)] if(allocated(y))deallocate(y) allocate(y(size(x))) gamma=0.3 do i=1,size(x) call parcdf(X(i),Gamma,y(i)) enddo call plott(x,y,size(x)) end program demo_parcdfResults:
The following is a plot of Y(I) (vertically) versus X(I) (horizontally) I-----------I-----------I-----------I-----------I 0.1100000E+02 - X 0.1058750E+02 I XX 0.1017500E+02 I X 0.9762500E+01 I X 0.9350000E+01 I XX 0.8937500E+01 I X 0.8525000E+01 - X 0.8112500E+01 I XX 0.7700000E+01 I XX 0.7287500E+01 I XX 0.6875000E+01 I XX 0.6462500E+01 I XX 0.6050000E+01 - XX 0.5637500E+01 I XX 0.5225000E+01 I XXX 0.4812500E+01 I XX 0.4400000E+01 I XXX 0.3987500E+01 I XX 0.3575000E+01 - XX 0.3162500E+01 I XXX 0.2750000E+01 I XXX 0.2337501E+01 I XXXX 0.1925000E+01 I X XXX 0.1512500E+01 I X XX X 0.1100000E+01 - X X X I-----------I-----------I-----------I-----------I 0.2819E-01 0.1494E+00 0.2706E+00 0.3918E+00 0.5129E+00
The original DATAPAC library was written by James Filliben of the Statistical Engineering Division, National Institute of Standards and Technology.
John Urban, 2022.05.31
CC0-1.0
o Johnson and Kotz, Continuous Univariate Distributions--1, 1970, pages 233-249. o hastings and Peacock, Statistical Distributions--A Handbook for Students and Practitioners, 1975, page 102.
Nemo Release 3.1 | parcdf (3) | February 23, 2025 |