logppf(3f) - [M_datapac:PERCENT_POINT] compute the logistic percent point function
Synopsis
Description
Input Arguments
Output Arguments
Examples
Author
Maintainer
License
References
SUBROUTINE LOGPPF(P,Ppf)
REAL(kind=wp),intent(in) :: P REAL(kind=wp),intent(out) :: Ppf
LOGPPF(3f) computes the percent point function value for the logistic distribution with mean = 0 and standard deviation = pi/sqrt(3).This distribution is defined for all X and has the probability density function
f(X) = exp(X)/(1+exp(X))Note that the percent point function of a distribution is identically the same as the inverse cumulative distribution function of the distribution.
P The value at which the percent point function is to be evaluated. P should be between 0.0 and 1.0, exclusively.
PPF The percent point function value.
Sample program:
program demo_logppf use M_datapac, only : logppf, plott, label implicit none integer,parameter :: n=40 real :: x(n), y(n) integer :: i call label(logppf) x=[(real(i)/real(n+1),i=1,n)] do i=1,n call logppf(x(i),y(i)) enddo call plott(x,y,n) end program demo_logppfResults:
The following is a plot of Y(I) (vertically) versus X(I) (horizontally) I-----------I-----------I-----------I-----------I 0.9756098E+00 - X 0.9359756E+00 I X X 0.8963415E+00 I XX 0.8567073E+00 I X 0.8170732E+00 I XX 0.7774390E+00 I X 0.7378049E+00 - X 0.6981707E+00 I XX 0.6585366E+00 I X 0.6189024E+00 I XX 0.5792683E+00 I X 0.5396341E+00 I X 0.5000000E+00 - X 0.4603658E+00 I X 0.4207317E+00 I X 0.3810976E+00 I XX 0.3414634E+00 I X 0.3018292E+00 I XX 0.2621951E+00 - X 0.2225609E+00 I X 0.1829268E+00 I XX 0.1432927E+00 I X 0.1036585E+00 I XX 0.6402433E-01 I X X 0.2439024E-01 - X I-----------I-----------I-----------I-----------I -0.3689E+01 -0.1844E+01 0.4768E-06 0.1844E+01 0.3689E+01
The original DATAPAC library was written by James Filliben of the Statistical Engineering Division, National Institute of Standards and Technology.
John Urban, 2022.05.31
CC0-1.0
o Filliben, Simple and Robust Linear Estimation of the Location Parameter of a Symmetric Distribution (Unpublished PH.D. Dissertation, Princeton University), 1969, pages 21-44, 229-231. o Filliben, The Percent Point Function, (Unpublished Manuscript), 1970, pages 28-31. o Johnson and Kotz, Continuous Univariate Distributions--2, 1970, pages 1-21.
Nemo Release 3.1 | logppf (3) | February 23, 2025 |