lgnppf(3f) - [M_datapac:PERCENT_POINT] compute the lognormal percent point function
Synopsis
Description
Input Arguments
Output Arguments
Examples
Author
Maintainer
License
References
SUBROUTINE LGNPPF(P,Ppf)
REAL(kind=wp),intent(in) :: P REAL(kind=wp),intent(out) :: Ppf
LGNPPF(3f) computes the percent point function value for the lognormal distribution.The lognormal distribution used herein has mean = sqrt(e) = 1.64872127 and standard deviation = sqrt(e*(e-1)) = 2.16119742. This distribution is defined for all positive X and has the probability density function
f(X) = (1/(X*sqrt(2*pi))) * exp(-log(X)*log(X)/2)The lognormal distribution used herein is the distribution of the variate x = exp(z) where the variate z is normally distributed with mean = 0 and standard deviation = 1.
Note that the percent point function of a distribution is identically the same as the inverse cumulative distribution function of the distribution.
P The value (between 0.0 (exclusively) and 1.0 (exclusively)) at which the percent point function is to be evaluated.
PPF The percent point function value for the lognormal distribution
Sample program:
program demo_lgnppf !@(#) line plotter graph of function use M_datapac, only : lgnppf, plott, label implicit none integer,parameter :: n=200 real :: x(n), y(n) integer :: i call label(lgnppf) x=[(real(i)/real(n+1),i=1,n)] do i=1,n call lgnppf(x(i),y(i)) enddo call plott(x,y,n) end program demo_lgnppfResults:
The following is a plot of Y(I) (vertically) versus X(I) (horizontally) I-----------I-----------I-----------I-----------I 0.9950249E+00 - X X X X X 0.9537728E+00 I XXXXXXX X 0.9125207E+00 I XXXX 0.8712686E+00 I XXX 0.8300166E+00 I XX 0.7887645E+00 I XX 0.7475125E+00 - X 0.7062603E+00 I X 0.6650083E+00 I XX 0.6237562E+00 I X 0.5825042E+00 I X 0.5412520E+00 I X 0.5000000E+00 - XX 0.4587479E+00 I X 0.4174958E+00 I X 0.3762438E+00 I XX 0.3349917E+00 I X 0.2937396E+00 I X 0.2524875E+00 - XX 0.2112355E+00 I X 0.1699834E+00 I X 0.1287313E+00 I X 0.8747923E-01 I X 0.4622716E-01 I XX 0.4975124E-02 - X I-----------I-----------I-----------I-----------I 0.7596E-01 0.3348E+01 0.6620E+01 0.9893E+01 0.1316E+02
The original DATAPAC library was written by James Filliben of the Statistical Engineering Division, National Institute of Standards and Technology.
John Urban, 2022.05.31
CC0-1.0
o Johnson and Kotz, Continuous Univariate Distributions--1, 1970, pages 112-136. o Cramer, Mathematical Methods of Statistics, 1946, pages 219-220.
Nemo Release 3.1 | lgnppf (3) | February 23, 2025 |