lamppf(3f) - [M_datapac:PERCENT_POINT] compute the Tukey-Lambda percent point function
Synopsis
Description
Input Arguments
Output Arguments
Examples
Author
Maintainer
License
References
SUBROUTINE LAMPPF(P,Alamba,Ppf)
REAL(kind=wp),intent(in) :: Alamba REAL(kind=wp),intent(in) :: P REAL(kind=wp),intent(out) :: Ppf
LAMPPF(3f) computes the percent point function value for the (Tukey) lambda distribution with tail length parameter value = ALAMBA.In general, the probability density function for this distribution is not simple.
The percent point function for this distribution is
g(P) = ((P**ALAMBA)-((1-P)**ALAMBA))/ALAMBANote that the percent point function of a distribution is identically the same as the inverse cumulative distribution function of the distribution.
P The value (between 0.0 and 1.0) at which the percent point function is to be evaluated. If ALAMBA is positive, then P should be between 0.0 and 1.0, inclusively.
If ALAMBA is non-positive, then P should be between 0.0 and 1.0, exclusively.
ALAMBA The value of lambda (the tail length parameter).
PPF The percent point function value ppf for the Tukey lambda distribution
Sample program:
program demo_lamppf !@(#) line plotter graph of function use M_datapac, only : lamppf, plott, label implicit none integer,parameter :: n=200 real :: x(n), y(n) real :: alamba integer :: i alamba=3.3333 call label(lamppf) x=[(real(i)/real(n+1),i=1,n)] do i=1,n call lamppf(x(i),alamba,y(i)) enddo call plott(x,y,n) end program demo_lamppfResults:
The following is a plot of Y(I) (vertically) versus X(I) (horizontally) I-----------I-----------I-----------I-----------I 0.9950249E+00 - XXX 0.9537728E+00 I XXX 0.9125207E+00 I XXX 0.8712686E+00 I XXXX 0.8300166E+00 I XXX 0.7887645E+00 I XXX 0.7475125E+00 - XXX 0.7062603E+00 I XXX 0.6650083E+00 I XX 0.6237562E+00 I XX 0.5825042E+00 I XX 0.5412520E+00 I XX 0.5000000E+00 - XXX 0.4587479E+00 I XX 0.4174958E+00 I XX 0.3762438E+00 I XX 0.3349917E+00 I XX 0.2937396E+00 I XXX 0.2524875E+00 - XXX 0.2112355E+00 I XXX 0.1699834E+00 I XXX 0.1287313E+00 I XXXX 0.8747923E-01 I XXX 0.4622716E-01 I XXX 0.4975124E-02 - XXX I-----------I-----------I-----------I-----------I -0.2951E+00 -0.1475E+00 0.0000E+00 0.1475E+00 0.2951E+00
The original DATAPAC library was written by James Filliben of the Statistical Engineering Division, National Institute of Standards and Technology.
John Urban, 2022.05.31
CC0-1.0
o Filliben, Simple and Robust Linear Estimation of the Location Parameter of a Symmetric Distribution (Unpublished PH.D. Dissertation, Princeton University), 1969, pages 21-44, 229-231, pages 53-58. o Filliben, The Percent Point Function, (Unpublished Manuscript), 1970, pages 28-31. o Hastings, Mosteller, Tukey, and Windsor, Low Moments for Small
Samples: A Comparative Study of Order Statistics, Annals of Mathematical Statistics, 18, 1947, pages 413-426.
Nemo Release 3.1 | lamppf (3) | February 23, 2025 |