lampdf(3f) - [M_datapac:PROBABILITY_DENSITY] compute the Tukey-Lambda probability density function
Synopsis
Description
Input Arguments
Output Arguments
Output
Examples
Author
Maintainer
License
References
SUBROUTINE LAMPDF(X,Alamba,Pdf)
REAL(kind=wp) :: X REAL(kind=wp) :: Alamba
LAMPDF(3f) computes the probability density function value for the (tukey) lambda distribution with tail length parameter value = alamba.In general, the probability density function for this distribution is not simple.
The percent point function for this distribution is
g(p) = ((p**alamba)-((1-p)**alamba))/alamba
X The REAL value at which the probability density function is to be evaluated. For ALAMBA non-positive, no restrictions on X.
For ALAMBA positive, X should be between (-1/ALAMBA) and (+1/ALAMBA), inclusively.
ALAMBA The REAL value of lambda (the tail length parameter).
The probability density function value for the Tukey Lambda distribution
Sample program:
program demo_lampdf !@(#) line plotter graph of probability density function use M_datapac, only : lampdf, plott, label implicit none real,allocatable :: x(:), y(:) real :: alamba integer :: i call label(lampdf) alamba=0.0 x=[(real(i),i=-100,100,1)] if(allocated(y))deallocate(y) allocate(y(size(x))) do i=1,size(x) call LAMPDF(X(i)/100.0,Alamba,y(i)) enddo call plott(x,y,size(x)) end program demo_lampdfResults:
The following is a plot of Y(I) (vertically) versus X(I) (horizontally) I-----------I-----------I-----------I-----------I 0.1000000E+03 - XXXX 0.9166666E+02 I XXXXXXX 0.8333334E+02 I XXXXXXX 0.7500000E+02 I XXXXXXX 0.6666667E+02 I XXXXX 0.5833334E+02 I XXXXX 0.5000000E+02 - XXXXXX 0.4166667E+02 I XXXX 0.3333334E+02 I XXXX 0.2500000E+02 I XXXX 0.1666667E+02 I XX 0.8333336E+01 I XX 0.0000000E+00 - X -0.8333328E+01 I XX -0.1666666E+02 I XX -0.2499999E+02 I XXXX -0.3333333E+02 I XXXX -0.4166666E+02 I XXXX -0.5000000E+02 - XXXXXX -0.5833333E+02 I XXXXX -0.6666666E+02 I XXXXX -0.7500000E+02 I XXXXXXX -0.8333333E+02 I XXXXXXX -0.9166666E+02 I XXXXXXX -0.1000000E+03 - XXXX I-----------I-----------I-----------I-----------I 0.1966E+00 0.2100E+00 0.2233E+00 0.2367E+00 0.2500E+00
The original DATAPAC library was written by James Filliben of the Statistical Engineering Division, National Institute of Standards and Technology.
John Urban, 2022.05.31
CC0-1.0
o Hastings, Mosteller, Tukey, and Windsor, Low Moments for Small
Samples: A Comparative Study of Order Statistics, Annals of Mathematical Statistics, 18, 1947, pages 413-426. o Filliben, Simple and Robust Linear Estimation of the Location Parameter of a Symmetric Distribution (Unpublished PH.D. Dissertation, Princeton University), 1969, pages 42-44, 53-58.
Nemo Release 3.1 | lampdf (3) | February 23, 2025 |