lamcdf(3f) - [M_datapac:CUMULATIVE_DISTRIBUTION] compute the Tukey-Lambda cumulative distribution function
Synopsis
Description
Input Arguments
Output Arguments
Examples
Author
Maintainer
License
References
SUBROUTINE LAMCDF(X,Alamba,Cdf)
REAL(kind=wp),intent(in) :: X REAL(kind=wp),intent(in) :: Alamba REAL(kind=wp),intent(out) :: Cdf
LAMCDF(3f) computes the cumulative distribution function value for the (Tukey) lambda distribution with tail length parameter value = ALAMBA. In general, the probability density function for this distribution is not simple.The percent point function for this distribution is
g(P) = ((P**ALAMBA)-((1-P)**ALAMBA))/ALAMBA
X The value at which the cumulative distribution function is to be evaluated. For ALAMBA non-positive, no restrictions on X. For ALAMBA positive, X should be between (-1/ALAMBA) and (+1/ALAMBA), inclusively.
ALAMBA The value of lambda (the tail length parameter).
CDF The cumulative distribution function value for the Tukey lambda distribution.
Sample program:
program demo_lamcdf !@(#) line plotter graph of cumulative distribution function use M_datapac, only : lamcdf, plott, label implicit none real,allocatable :: x(:), y(:) real :: alamba integer :: i call label(lamcdf) alamba=4.0 x=[(real(i)/100.0/alamba,i=-100,100,1)] if(allocated(y))deallocate(y) allocate(y(size(x))) do i=1,size(x) call lamcdf(X(i),Alamba,y(i)) enddo call plott(x,y,size(x)) end program demo_lamcdfResults:
The following is a plot of Y(I) (vertically) versus X(I) (horizontally) I-----------I-----------I-----------I-----------I 0.2500000E+00 - X 0.2291667E+00 I XX 0.2083333E+00 I XX 0.1875000E+00 I XX 0.1666667E+00 I XX 0.1458333E+00 I XXX 0.1250000E+00 - XX 0.1041667E+00 I XX 0.8333333E-01 I XX 0.6250000E-01 I XXX 0.4166666E-01 I XXXX 0.2083333E-01 I XXXX 0.0000000E+00 - XXXXX -0.2083334E-01 I XXXX -0.4166669E-01 I XXXX -0.6250000E-01 I XXX -0.8333334E-01 I XX -0.1041667E+00 I XX -0.1250000E+00 - XX -0.1458333E+00 I XXX -0.1666667E+00 I XX -0.1875000E+00 I XX -0.2083333E+00 I XX -0.2291667E+00 I XX -0.2500000E+00 - X I-----------I-----------I-----------I-----------I 0.0000E+00 0.2500E+00 0.5000E+00 0.7500E+00 0.1000E+01
The original DATAPAC library was written by James Filliben of the Statistical Engineering Division, National Institute of Standards and Technology.
John Urban, 2022.05.31
CC0-1.0
o Hastings, Mosteller, Tukey, and Windsor, Low Moments for Small
Samples: A Comparative Study of Order Statistics, Annals of Mathematical Statistics, 18, 1947, pages 413-426. o Filliben, Simple and Robust Linear Estimation of the Location Parameter of a Symmetric Distribution (Unpublished PH.D. Dissertation, Princeton University), 1969, pages 42-44, 53-58.
Nemo Release 3.1 | lamcdf (3) | February 23, 2025 |