exppdf(3f) - [M_datapac:PROBABILITY_DENSITY] compute the exponential probability density function
Synopsis
Description
Input Arguments
Output Arguments
Examples
Author
Maintainer
License
References
SUBROUTINE EXPPDF(X,Pdf)
REAL(kind=wp),intent(in) :: X REAL(kind=wp),intent(out) :: Pdf
EXPPDF(3f) computes the probability density function value for the exponential distribution with mean = 1 and standard deviation = 1.This distribution is defined for all non-negative X, and has the probability density function
f(X) = exp(-X)
X The value at which the probability density function is to be evaluated. Values should be non-negative.
The probability density function value.
Sample program:
program demo_exppdf !@(#) line plotter graph of probability density function use M_datapac, only : exppdf, plott, label implicit none real,allocatable :: x(:), y(:) integer :: i call label(exppdf) x=[(real(i),i=0,100,1)] if(allocated(y))deallocate(y) allocate(y(size(x))) do i=1,size(x) call exppdf(x(i)/10.0,y(i)) enddo call plott(x,y,size(x)) end program demo_exppdf Results:
The following is a plot of Y(I) (vertically) versus X(I) (horizontally) I-----------I-----------I-----------I-----------I 0.1000000E+03 - X 0.9583334E+02 I X 0.9166666E+02 I X 0.8750000E+02 I X 0.8333334E+02 I X 0.7916667E+02 I X 0.7500000E+02 - X 0.7083334E+02 I X 0.6666667E+02 I X 0.6250000E+02 I X 0.5833334E+02 I X 0.5416667E+02 I X 0.5000000E+02 - X 0.4583334E+02 I XX 0.4166667E+02 I X 0.3750000E+02 I X 0.3333334E+02 I XX 0.2916667E+02 I XX 0.2500000E+02 - XXX 0.2083334E+02 I XXX 0.1666667E+02 I XXXX 0.1250000E+02 I XXX X 0.8333336E+01 I X X X X 0.4166672E+01 I X X X X 0.0000000E+00 - X X X I-----------I-----------I-----------I-----------I 0.4540E-04 0.2500E+00 0.5000E+00 0.7500E+00 0.1000E+01
The original DATAPAC library was written by James Filliben of the Statistical Engineering Division, National Institute of Standards and Technology.
John Urban, 2022.05.31
CC0-1.0
o Johnson and Kotz, Continuous Univariate Distributions--1, 1970, pages 207-232.
Nemo Release 3.1 | exppdf (3) | February 23, 2025 |