besk(3f) - [M_bessel] compute the K Bessel function for a given argument and order
Synopsis
Description
Options
Subroutines And Function Subprograms Required
Example
subroutine besk(x,n,bk,ier)
Computes zero order and first order Bessel functions using series approximations and then computes Nth order function using recurrence relation. Recurrence relation and polynomial approximation technique as described by A.J.M.Hitchcock,"Polynomial Approximations to Bessel Functions of Order Zero and One and to Related Functions", M.T.A.C., V.11,1957,PP.86-88, and G.N. Watson, "A Treatise on the Theory of Bessel Functions", Cambridge University Press, 1958, P. 62
X The argument of the K Bessel function desired N The order of the K Bessel function desired BK The resultant K Bessel function IER resultant error code where IER=0 No error IER=1 N is negative IER=2 X is zero or negative IER=3 X .GT. 170, Machine range exceeded IER=4 BK .GT. 10**70
N must be greater than or equal to zero
none
Nemo Release 3.1 | besk (3) | February 23, 2025 |