Fortran Intrinsics

abs

Name

abs(3) - [NUMERIC] Absolute value

Synopsis

    result = abs(a)
     elemental TYPE(kind=KIND) function abs(a)

      TYPE(kind=KIND),intent(in) :: a

Characteristics

Description

abs(3) computes the absolute value of numeric argument a.

In mathematics, the absolute value or modulus of a real number x, denoted |x|, is the magnitude of x without regard to its sign.

The absolute value of a number may be thought of as its distance from zero. So for a complex value the absolute value is a real number with magnitude sqrt(x%re**2,x%im**2), as if the real component is the x value and the imaginary value is the y value for the point <x,y>.

Options

Result

If a is of type integer or real, the value of the result is the absolute value |a| and of the same type and kind as the input argument.

If a is complex with value (x, y), the result is a real equal to a processor-dependent approximation to

        sqrt(x**2 + y**2)

computed without undue overflow or underflow (that means the computation of the result can overflow the allowed magnitude of the real value returned, and that very small values can produce underflows if they are squared while calculating the returned value, for example).

That is, if you think of non-complex values as being complex values on the x-axis and complex values as being x-y points <x%re,x%im> the result of abs(3) is the (positive) magnitude of the distance of the value from the origin.

Examples

Sample program:

program demo_abs
   implicit none
   integer,parameter :: dp=kind(0.0d0)

! some values to use with ABS(3)
   integer           :: i = -1
   real              :: x = -1.0
   complex           :: z = (-3.0,-4.0)
   doubleprecision   :: rr = -45.78_dp

! some formats for pretty-printing some information
   character(len=*),parameter :: &
      frmt  =  '(1x,a15,1x," In: ",g0,            T51," Out: ",g0)', &
      frmtc = '(1x,a15,1x," In: (",g0,",",g0,")",T51," Out: ",g0)',  &
      gen   = '(*(g0,1x))'

   ! the basics
   print gen,  'basic usage:'
   ! any integer, real, or complex type
   write(*, frmt)  'integer         ',  i, abs(i)
   write(*, frmt)  'real            ',  x, abs(x)
   write(*, frmt)  'doubleprecision ', rr, abs(rr)
   write(*, frmtc) 'complex         ',  z, abs(z)

   ! elemental
   print gen, 'abs is elemental:', abs([20,  0,  -1,  -3,  100])

   ! the returned value for complex input can be thought of as the
   ! distance from the origin <0,0>
   print gen, 'distance of (', z, ') from zero is', abs( z )

   call DUSTY_CORNERS_1("beware of abs(-huge(0)-1)")
   call DUSTY_CORNERS_2("beware of losing precision using CMPLX(3)")
   call DUSTY_CORNERS_3("beware of overflow of complex values")
   call DUSTY_CORNERS_4("custom meaning for absolute value of COMPLEX")

contains

   subroutine DUSTY_CORNERS_1(message)
      character(len=*),intent(in) :: message

      ! A dusty corner is that abs(-huge(0)-1) of an integer would be
      ! a representable negative value on most machines but result in a
      ! positive value out of range.

      print gen,  message
      ! By definition:
      !   You can take the absolute value of any value whose POSITIVE value
      !   is representable with the same type and kind.

      print gen, 'abs range test : ', abs(huge(0)), abs(-huge(0))
      print gen, 'abs range test : ', abs(huge(0.0)), abs(-huge(0.0))
      print gen, 'abs range test : ', abs(tiny(0.0)), abs(-tiny(0.0))

   end subroutine DUSTY_CORNERS_1

   subroutine DUSTY_CORNERS_2(message)
      character(len=*),intent(in) :: message

      ! dusty corner: "kind=dp" is required or the value returned by
      ! CMPLX() is a default real instead of double precision.

      ! Working with complex values you often encounter the CMPLX(3)
      ! function. CMPLX(3) defaults to returning a default REAL regardless
      ! of input type. Not really a direct problem with ABS(2f) per-se,
      ! but a common error when working with doubleprecision complex values

      print gen,  message
      print gen, 'real result versus doubleprecision result', &
      & abs(cmplx(30.0_dp,40.0_dp)), &
      & abs(cmplx(30.0_dp,40.0_dp,kind=dp))

   end subroutine DUSTY_CORNERS_2

   subroutine DUSTY_CORNERS_3(message)
      character(len=*),intent(in) :: message
      print gen, message

      ! this will probably cause an overflow error, or
      !print gen,  abs(cmplx( huge(0.0), huge(0.0) ))

      print gen, 'because the biggest default real is',huge(0.0)
      print gen, 'because returning magnitude of sqrt(x%re**2,x%im**2)'

   end subroutine DUSTY_CORNERS_3

   subroutine DUSTY_CORNERS_4(message)
      character(len=*),intent(in) :: message
      print gen, message

      ! if you do not want the distance for a complex value you
      ! might want something like returning a complex value with
      ! both the imaginary and real parts. One way to do that is

      print gen, cmplx(abs(z%re),abs(z%im),kind=kind(z))

   end subroutine DUSTY_CORNERS_4

end program demo_abs

Results:

 >  integer          In: -1                        Out: 1
 >  real             In: -1.00000000               Out: 1.00000000
 >  doubleprecision  In: -45.780000000000001       Out: 45.780000000000001
 >  complex          In: (-3.00000000,-4.00000000) Out: 5.00000000
 > abs is elemental: 20 0 1 3 100
 > distance of ( -3.00000000 -4.00000000 ) from zero is 5.00000000
 > beware of abs(-huge(0)-1)
 > abs range test :  2147483647 2147483647
 > abs range test :  0.340282347E+39 0.340282347E+39
 > abs range test :  0.117549435E-37 0.117549435E-37
 > beware of losing precision using CMPLX(3)
 > real result versus doubleprecision result 50.0000000 50.000000000000000
 > beware of overflow of complex values
 > because the biggest default real is 0.340282347E+39
 > because returning magnitude of sqrt(x%re**2,x%im**2)
 > making your own meaning for ABS(COMPLEX_VALUE)
 > 3.00000000 4.00000000

Standard

FORTRAN 77

See Also

sign(3)

Fortran intrinsic descriptions (license: MIT) @urbanjost

achar

Name

achar(3) - [CHARACTER:CONVERSION] Returns a character in a specified position in the ASCII collating sequence

Synopsis

    result = achar(i [,kind])
     elemental character(len=1,kind=KIND) function achar(i,KIND)

      integer(kind=**),intent(in) :: i
      integer(kind=**),intent(in),optional :: KIND

Characteristics

Description

achar(3) returns the character located at position i (commonly called the ADE or ASCII Decimal Equivalent) in the ASCII collating sequence.

The achar(3) function is often used for generating in-band escape sequences to control terminal attributes, as it makes it easy to print unprintable characters such as escape and tab. For example:

   write(*,'(*(a))')achar(27),'[2J'

will clear the screen on an ANSI-compatible terminal display,

Note

The ADEs (ASCII Decimal Equivalents) for ASCII are

*-------*-------*-------*-------*-------*-------*-------*-------*
| 00 nul| 01 soh| 02 stx| 03 etx| 04 eot| 05 enq| 06 ack| 07 bel|
| 08 bs | 09 ht | 10 nl | 11 vt | 12 np | 13 cr | 14 so | 15 si |
| 16 dle| 17 dc1| 18 dc2| 19 dc3| 20 dc4| 21 nak| 22 syn| 23 etb|
| 24 can| 25 em | 26 sub| 27 esc| 28 fs | 29 gs | 30 rs | 31 us |
| 32 sp | 33  ! | 34  " | 35  # | 36  $ | 37  % | 38  & | 39  ' |
| 40  ( | 41  ) | 42  * | 43  + | 44  , | 45  - | 46  . | 47  / |
| 48  0 | 49  1 | 50  2 | 51  3 | 52  4 | 53  5 | 54  6 | 55  7 |
| 56  8 | 57  9 | 58  : | 59  ; | 60  < | 61  = | 62  > | 63  ? |
| 64  @ | 65  A | 66  B | 67  C | 68  D | 69  E | 70  F | 71  G |
| 72  H | 73  I | 74  J | 75  K | 76  L | 77  M | 78  N | 79  O |
| 80  P | 81  Q | 82  R | 83  S | 84  T | 85  U | 86  V | 87  W |
| 88  X | 89  Y | 90  Z | 91  [ | 92  \ | 93  ] | 94  ^ | 95  _ |
| 96  ` | 97  a | 98  b | 99  c |100  d |101  e |102  f |103  g |
|104  h |105  i |106  j |107  k |108  l |109  m |110  n |111  o |
|112  p |113  q |114  r |115  s |116  t |117  u |118  v |119  w |
|120  x |121  y |122  z |123  { |124  | |125  } |126  ~ |127 del|
*-------*-------*-------*-------*-------*-------*-------*-------*

Options

Result

Assuming i has a value in the range 0 <= I <= 127, the result is the character in position i of the ASCII collating sequence, provided the processor is capable of representing that character in the character kind of the result; otherwise, the result is processor dependent.

Examples

Sample program:

program demo_achar
use,intrinsic::iso_fortran_env,only:int8,int16,int32,int64
implicit none
integer :: i
   i=65
   write(*,'("decimal     =",i0)')i
   write(*,'("character   =",a1)')achar(i)
   write(*,'("binary      =",b0)')achar(i)
   write(*,'("octal       =",o0)')achar(i)
   write(*,'("hexadecimal =",z0)')achar(i)

   write(*,'(8(i3,1x,a,1x))')(i,achar(i), i=32,126)

   write(*,'(a)')upper('Mixed Case')
contains
! a classic use of achar(3) is to convert the case of a string

pure elemental function upper(str) result (string)
!
!$@(#) upper(3): function to return a trimmed uppercase-only string
!
! input string to convert to all uppercase
character(*), intent(in)      :: str
! output string that contains no miniscule letters
character(len(str))           :: string
integer                       :: i, iend
integer,parameter             :: toupper = iachar('A')-iachar('a')
   iend=len_trim(str)
   ! initialize output string to trimmed input string
   string = str(:iend)
   ! process each letter in the string
   do concurrent (i = 1:iend)
       select case (str(i:i))
       ! located miniscule letter
       case ('a':'z')
          ! change miniscule to majuscule letter
          string(i:i) = achar(iachar(str(i:i))+toupper)
       end select
   enddo
end function upper
end program demo_achar

Results:

 > decimal     =65
 > character   =A
 > binary      =1000001
 > octal       =101
 > hexadecimal =41
 >  32    33 !  34 "  35 #  36 $  37 %  38 &  39 '
 >  40 (  41 )  42 *  43 +  44 ,  45 -  46 .  47 /
 >  48 0  49 1  50 2  51 3  52 4  53 5  54 6  55 7
 >  56 8  57 9  58 :  59 ;  60 <  61 =  62 >  63 ?
 >  64 @  65 A  66 B  67 C  68 D  69 E  70 F  71 G
 >  72 H  73 I  74 J  75 K  76 L  77 M  78 N  79 O
 >  80 P  81 Q  82 R  83 S  84 T  85 U  86 V  87 W
 >  88 X  89 Y  90 Z  91 [  92 \  93 ]  94 ^  95 _
 >  96 `  97 a  98 b  99 c 100 d 101 e 102 f 103 g
 > 104 h 105 i 106 j 107 k 108 l 109 m 110 n 111 o
 > 112 p 113 q 114 r 115 s 116 t 117 u 118 v 119 w
 > 120 x 121 y 122 z 123 { 124 | 125 } 126 ~
 > MIXED CASE

Standard

FORTRAN 77. KIND argument added Fortran 2003

See Also

char(3), iachar(3), ichar(3)

Resources

Fortran intrinsic descriptions (license: MIT) @urbanjost

acosd

Name

acosd(3) - [MATHEMATICS:TRIGONOMETRIC] Arccosine (inverse cosine) function in degrees

Synopsis

    result = acosd(x)
     elemental real(kind=KIND) function acosd(x)

      real(kind=KIND),intent(in) :: x

Characteristics

Description

acosd(3) computes the arccosine of x in degrees (inverse of cosd(x)). For example, ACOSD(-1.0) has the value 180.0 (approximately).

Options

Result

The return value is of the same type and kind as x. The result has a value equal to a processor-dependent approximation to the arc cosine of X. It is expressed in degrees and lies in the range

0 <= ACOSD (X) <= 180

Examples

Sample program:

program demo_acosd
use, intrinsic :: iso_fortran_env, only : real32,real64,real128
implicit none
character(len=*),parameter :: all='(*(g0,1x))'
real(kind=real64) :: x , d2r

   ! basics
    print *,'acosd(-1.0) -->',acosd( -1.0 )
    print *,'acosd( 0.0) -->',acosd( -1.0 )
    print *,'acosd( 1.0) -->',acosd(  0.0 )
    x = 0.866_real64
    print all,'acosd(',x,') is ', acosd(x)
   ! any real kind
    write(*,*) acosd(-1.0_real64)
   ! elemental
    print all,'elemental',acosd([-1.0,-0.5,0.0,0.50,1.0])
   !
end program demo_acosd

Results:

 >  acosd(-1.0) -->   180.000000
 >  acosd( 0.0) -->   180.000000
 >  acosd( 1.0) -->   90.0000000
 > acosd( 0.86599999999999999 ) is  30.002910931188026
 >    180.00000000000000
 > elemental 180.000000 120.000000 90.0000000 60.0000000 0.00000000

Standard

FORTRAN 2023

See Also

Inverse function: cosd(3)

Resources

Fortran intrinsic descriptions (license: MIT) @urbanjost

acosh

Name

acosh(3) - [MATHEMATICS:TRIGONOMETRIC] Inverse hyperbolic cosine function

Synopsis

    result = acosh(x)
     elemental TYPE(kind=KIND) function acosh(x)

      TYPE(kind=KIND),intent(in) :: x

Characteristics

Description

acosh(3) computes the inverse hyperbolic cosine of x in radians.

Options

Result

The result has a value equal to a processor-dependent approximation to the inverse hyperbolic cosine function of X.

If x is complex, the imaginary part of the result is in radians and lies between

 0 <= aimag(acosh(x)) <= PI

Examples

Sample program:

program demo_acosh
use,intrinsic :: iso_fortran_env, only : dp=>real64,sp=>real32
implicit none
real(kind=dp), dimension(3) :: x = [ 1.0_dp, 2.0_dp, 3.0_dp ]
   if( any(x.lt.1) )then
      write (*,*) ' warning: values < 1 are present'
   endif
   write (*,*) acosh(x)
end program demo_acosh

Results:

 >    0.0000000000000000 1.3169578969248166 1.7627471740390861

Standard

Fortran 2008

See Also

Inverse function: cosh(3)

Resources

Fortran intrinsic descriptions (license: MIT) @urbanjost

acos

Name

acos(3) - [MATHEMATICS:TRIGONOMETRIC] Arccosine (inverse cosine) function

Synopsis

    result = acos(x)
     elemental TYPE(kind=KIND) function acos(x)

      TYPE(kind=KIND),intent(in) :: x

Characteristics

Description

acos(3) computes the arccosine of x (inverse of cos(x)).

Options

Result

The return value is of the same type and kind as x. The real part of the result is in radians and lies in the range 0 <= acos(x%re) <= PI .

Examples

Sample program:

program demo_acos
use, intrinsic :: iso_fortran_env, only : real32,real64,real128
implicit none
character(len=*),parameter :: all='(*(g0,1x))'
real(kind=real64) :: x , d2r

   ! basics
    x = 0.866_real64
    print all,'acos(',x,') is ', acos(x)

   ! acos(-1) should be PI
    print all,'for reference', new_line('a'), &
    &'PI ~= 3.14159265358979323846264338327950288419716939937510'
    write(*,*) acos(-1.0_real64)
    d2r=acos(-1.0_real64)/180.0_real64
    print all,'90 degrees is ', d2r*90.0_real64, ' radians'
   ! elemental
    print all,'elemental',acos([-1.0,-0.5,0.0,0.50,1.0])
   ! complex
    print *,'complex',acos( (-1.0,  0.0) )
    print *,'complex',acos( (-1.0, -1.0) )
    print *,'complex',acos( ( 0.0, -0.0) )
    print *,'complex',acos( ( 1.0,  0.0) )

end program demo_acos

Results:

 > acos( 0.86599999999999999 ) is  0.52364958093182890
 > for reference
 >  PI ~= 3.14159265358979323846264338327950288419716939937510
 >    3.1415926535897931
 > 90 degrees is  1.5707963267948966  radians
 > elemental 3.14159274 2.09439516 1.57079637 1.04719758 0.00000000
 >  complex            (3.14159274,-0.00000000)
 >  complex             (2.23703575,1.06127501)
 >  complex             (1.57079637,0.00000000)
 >  complex            (0.00000000,-0.00000000)

Standard

FORTRAN 77 ; for a complex argument - Fortran 2008

See Also

Inverse function: cos(3)

Resources

Fortran intrinsic descriptions (license: MIT) @urbanjost

acospi

Name

acospi(3) - [MATHEMATICS:TRIGONOMETRIC] Circular Arccosine (inverse circular cosine) function

Synopsis

    result = acospi(x)
     elemental real(kind=KIND) function acospi(x)

      real(kind=KIND),intent(in) :: x

Characteristics

Description

acospi(3) computes the circular arccosine of x (inverse of cospi(x)). The result is expressed in half-revolutions (ie. PI’s) and lies in the range

    0 <= ACOSPI (X) <= 1.

Options

Result

The result has a value equal to a processor-dependent approximation to the arc cosine of X.

The return value is of the same type and kind as x.

It is expressed in half-revolutions and lies in the range 0 <= ACOSPI (X) <= 1.

Examples

Sample program:

program demo_acospi
use, intrinsic :: iso_fortran_env, only : real32,real64,real128
implicit none
character(len=*),parameter :: all='(*(g0,1x))'
real(kind=real64) :: x , d2r
real(kind=real64),parameter :: &
& PI = 3.14159265358979323846264338327950288419716939937510_real64

   ! basics
    x = PI/4.0_real64
    print all,'acospi(',x,') is ', acospi(x)

   ! acospi(-1) should be PI
    write(*,*) acospi(-1.0_real64)
    d2r=acospi(-1.0_real64)/180.0_real64
    print all,'90 degrees is ', d2r*90.0_real64, ' radians'
   ! elemental
    print all,'elemental',acospi([-1.0,-0.5,0.0,0.50,1.0])
   !
    print *,'-1.0',acospi( -1.0 )
    print *,' 0.0',acospi(  0.0 )
    print *,' 1.0',acospi(  1.0 )

end program demo_acospi

Results:

 > acospi( 0.78539816339744828 ) is  0.21245823046654463
 >    1.0000000000000000
 > 90 degrees is  0.50000000000000000  radians
 > elemental 1.00000000 0.666666687 0.500000000 0.333333343 0.00000000
 >  -1.0   1.00000000
 >   0.0  0.500000000
 >   1.0   0.00000000

Standard

Fortran 2023

See Also

Resources

Fortran intrinsic descriptions (license: MIT) @urbanjost

adjustl

Name

adjustl(3) - [CHARACTER:WHITESPACE] Left-justified a string

Synopsis

  result = adjustl(string)
   elemental character(len=len(string),kind=KIND) function adjustl(string)

    character(len=*,kind=KIND),intent(in) :: string

Characteristics

Description

adjustl(3) will left-justify a string by removing leading spaces. Spaces are inserted at the end of the string as needed.

Options

Result

A copy of string where leading spaces are removed and the same number of spaces are inserted on the end of string.

Examples

Sample program:

program demo_adjustl
implicit none
character(len=20) :: str = '   sample string'
character(len=:),allocatable :: astr
integer :: length

   ! basic use
    write(*,'(a,"[",a,"]")') 'original: ',str
    str=adjustl(str)
    write(*,'(a,"[",a,"]")') 'adjusted: ',str

    ! a fixed-length string can be printed
    ! trimmed using trim(3) or len_trim(3)
    write(*,'(a,"[",a,"]")') 'trimmed:  ',trim(str)
    length=len_trim(str)
    write(*,'(a,"[",a,"]")') 'substring:',str(:length)

    ! note an allocatable string stays the same length too
    ! and is not trimmed by just an adjustl(3) call.
    astr='    allocatable string   '
    write(*,'(a,"[",a,"]")') 'original:',astr
    astr = adjustl(astr)
    write(*,'(a,"[",a,"]")') 'adjusted:',astr
    ! trim(3) can be used to change the length
    astr = trim(astr)
    write(*,'(a,"[",a,"]")') 'trimmed: ',astr

end program demo_adjustl

Results:

   > original: [   sample string    ]
   > adjusted: [sample string       ]
   > trimmed:  [sample string]
   > substring:[sample string]
   > original:[    allocatable string   ]
   > adjusted:[allocatable string       ]
   > trimmed: [allocatable string]

Standard

Fortran 95

See Also

adjustr(3), trim(3)

Fortran intrinsic descriptions (license: MIT) @urbanjost

adjustr

Name

adjustr(3) - [CHARACTER:WHITESPACE] Right-justify a string

Synopsis

  result = adjustr(string)
   elemental character(len=len(string),kind=KIND) function adjustr(string)

    character(len=*,kind=KIND),intent(in) :: string

Characteristics

Description

adjustr(3) right-justifies a string by removing trailing spaces. Spaces are inserted at the start of the string as needed to retain the original length.

Options

Result

Trailing spaces are removed and the same number of spaces are inserted at the start of string.

Examples

Sample program:

program demo_adjustr
implicit none
character(len=20) :: str
   ! print a short number line
   write(*,'(a)')repeat('1234567890',2)

  ! basic usage
   str = '  sample string '
   write(*,'(a)') str
   str = adjustr(str)
   write(*,'(a)') str

   !
   ! elemental
   !
   write(*,'(a)')repeat('1234567890',5)
   write(*,'(a)')adjustr([character(len=50) :: &
   '  first           ', &
   '     second       ', &
   '         third    ' ])
   write(*,'(a)')repeat('1234567890',5)

end program demo_adjustr

Results:

   > 12345678901234567890
   >   sample string
   >        sample string
   > 12345678901234567890123456789012345678901234567890
   >                                              first
   >                                             second
   >                                              third
   > 12345678901234567890123456789012345678901234567890

Standard

Fortran 95

See Also

adjustl(3), trim(3)

Fortran intrinsic descriptions (license: MIT) @urbanjost

aimag

Name

aimag(3) - [TYPE:CONVERSION] Imaginary part of complex number

Synopsis

    result = aimag(z)
     elemental complex(kind=KIND) function aimag(z)

      complex(kind=KIND),intent(in) :: z

Characteristics

Description

aimag(3) yields the imaginary part of the complex argument z.

This is similar to the modern complex-part-designator %IM which also designates the imaginary part of a value, accept a designator can appear on the left-hand side of an assignment as well, as in val%im=10.0.

Options

Result

The return value is a real value with the magnitude and sign of the imaginary component of the argument z.

That is, If z has the value (x,y), the result has the value y.

Examples

Sample program:

program demo_aimag
use, intrinsic :: iso_fortran_env, only : real32, real64, real128
implicit none
character(len=*),parameter :: g='(*(1x,g0))'
integer              :: i
complex              :: z4
complex              :: arr(3)
complex(kind=real64) :: z8

    print g, 'basics:'
    z4 = cmplx(1.e0, 2.e0)
    print *, 'value=',z4
    print g, 'imaginary part=',aimag(z4),'or', z4%im

    print g, 'kinds other than the default may be supported'
    z8 = cmplx(3.e0_real64, 4.e0_real64,kind=real64)
    print *, 'value=',z8
    print g, 'imaginary part=',aimag(z8),'or', z8%im

    print g, 'an elemental function can be passed an array'
    print g,'given a complex array:'
    arr=[z4,z4/2.0,z4+z4]
    print *, (arr(i),new_line('a'),i=1,size(arr))
    print g,'the imaginary component is:'
    print g, aimag( arr )

end program demo_aimag

Results:

 >  basics:
 >  value=             (1.00000000,2.00000000)
 >  imaginary part= 2.00000000 or 2.00000000
 >  kinds other than the default may be supported
 >  value=               (3.0000000000000000,4.0000000000000000)
 >  imaginary part= 4.0000000000000000 or 4.0000000000000000
 >  an elemental function can be passed an array
 >  given a complex array:
 >              (1.00000000,2.00000000)
 >             (0.500000000,1.00000000)
 >              (2.00000000,4.00000000)
 >
 >  the imaginary component is:
 >  2.00000000 1.00000000 4.00000000

Standard

FORTRAN 77

See Also

Fortran has strong support for complex values, including many intrinsics that take or produce complex values in addition to algebraic and logical expressions:

abs(3), acosh(3), acos(3), asinh(3), asin(3), atan2(3), atanh(3), atan(3), cosh(3), cos(3), co_sum(3), dble(3), dot_product(3), exp(3), int(3), is_contiguous(3), kind(3), log(3), matmul(3), precision(3), product(3), range(3), rank(3), sinh(3), sin(3), sqrt(3), storage_size(3), sum(3), tanh(3), tan(3), unpack(3),

Fortran intrinsic descriptions (license: MIT) @urbanjost

aint

Name

aint(3) - [NUMERIC] Truncate toward zero to a whole number

Synopsis

    result = aint(x [,kind])
     elemental real(kind=KIND) function iaint(x,KIND)

      real(kind=**),intent(in)   :: x
      integer(kind=**),intent(in),optional :: KIND

Characteristics

Description

aint(3) truncates its argument toward zero to a whole number.

Options

Result

The sign is the same as the sign of x unless the magnitude of x is less than one, in which case zero is returned.

Otherwise aint(3) returns the largest whole number that does not exceed the magnitude of x with the same sign as the input.

That is, it truncates the value towards zero.

Examples

Sample program:

program demo_aint
use, intrinsic :: iso_fortran_env, only : sp=>real32, dp=>real64
implicit none
real(kind=dp) :: x8
   print *,'basics:'
   print *,' just chops off the fractional part'
   print *,  aint(-2.999), aint(-2.1111)
   print *,' if |x| < 1 a positive zero is returned'
   print *,  aint(-0.999), aint( 0.9999)
   print *,' input may be of any real kind'
   x8 = 4.3210_dp
   print *, aint(-x8), aint(x8)
   print *,'elemental:'
   print *,aint([ &
    &  -2.7,  -2.5, -2.2, -2.0, -1.5, -1.0, -0.5, &
    &  0.0,   &
    &  +0.5,  +1.0, +1.5, +2.0, +2.2, +2.5, +2.7  ])
end program demo_aint

Results:

 > basics:
 >  just chops off the fractional part
 >  -2.000000      -2.000000
 >  if |x| < 1 a positive zero is returned
 >  0.0000000E+00  0.0000000E+00
 >  input may be of any real kind
 >  -4.00000000000000        4.00000000000000
 > elemental:
 >  -2.000000      -2.000000      -2.000000      -2.000000      -1.000000
 >  -1.000000      0.0000000E+00  0.0000000E+00  0.0000000E+00   1.000000
 >   1.000000       2.000000       2.000000       2.000000       2.000000

Standard

FORTRAN 77

See Also

anint(3), int(3), nint(3), selected_int_kind(3), ceiling(3), floor(3)

Fortran intrinsic descriptions (license: MIT) @urbanjost

all

Name

all(3) - [ARRAY:REDUCTION] Determines if all the values are true

Synopsis

   result = all(mask [,dim])
     function all(mask ,dim)

      logical(kind=KIND),intent(in) :: mask(..)
      integer,intent(in),optional   :: dim
      logical(kind=KIND)            :: all(..)

Characteristics

Description

all(3) determines if all the values are true in mask in the array along dimension dim if dim is specified; otherwise all elements are tested together.

This testing type is called a logical conjunction of elements of mask along dimension dim.

The mask is generally a logical expression, allowing for comparing arrays and many other common operations.

Options

Result

  1. If dim is not present all(mask) is .true. if all elements of mask are .true.. It also is .true. if mask has zero size; otherwise, it is .false. .

  2. If the rank of mask is one, then all(mask, dim) is equivalent to all(mask).

  3. If the rank of mask is greater than one and dim is present then all(mask,dim) returns an array with the rank (number of dimensions) of mask minus 1. The shape is determined from the shape of mask where the dim dimension is elided. A value is returned for each set of elements along the dim dimension.

Examples

Sample program:

program demo_all
implicit none
logical,parameter :: T=.true., F=.false.
logical bool

  ! basic usage
   ! is everything true?
   bool = all([ T,T,T ])
   print *, 'are all values true?', bool
   bool = all([ T,F,T ])
   print *, 'are all values true now?', bool

  ! compare matrices, even by a dimension
   ARRAYS: block
   integer :: a(2,3), b(2,3)
    ! set everything to one except one value in b
    a = 1
    b = 1
    b(2,2) = 2
    ! now compare those two arrays
    print *,'entire array :', all(a ==  b )
    print *,'compare columns:', all(a ==  b, dim=1)
    print *,'compare rows:', all(a ==  b, dim=2)
  end block ARRAYS

end program demo_all

Results:

 >  T
 >  F
 >  entire array : F
 >  compare columns: T F T
 >  compare rows: T F

Standard

Fortran 95

See Also

any(3)

Fortran intrinsic descriptions (license: MIT) @urbanjost

allocated

Name

allocated(3) - [ARRAY:INQUIRY] Allocation status of an allocatable entity

Synopsis

    result = allocated(array|scalar)
     logical function allocated(array,scalar)

      type(TYPE(kind=**)),allocatable,optional :: array(..)
      type(TYPE(kind=**)),allocatable,optional :: scalar

Characteristics

Description

allocated(3) checks the allocation status of both arrays and scalars.

At least one and only one of array or scalar must be specified.

Options

Result

If the argument is allocated then the result is .true.; otherwise, it returns .false..

Examples

Sample program:

program demo_allocated
use,intrinsic :: iso_fortran_env, only : dp=>real64,sp=>real32
implicit none
real(kind=sp), allocatable :: x(:)
character(len=256) :: message
integer :: istat
  ! basics
   if( allocated(x)) then
       write(*,*)'do things if allocated'
   else
       write(*,*)'do things if not allocated'
   endif

   ! if already allocated, deallocate
   if ( allocated(x) ) deallocate(x,STAT=istat, ERRMSG=message )
   if(istat.ne.0)then
      write(*,*)trim(message)
      stop
   endif

   ! only if not allocated, allocate
   if ( .not. allocated(x) ) allocate(x(20))

  ! allocation and intent(out)
   call intentout(x)
   write(*,*)'note it is deallocated!',allocated(x)

   contains

   subroutine intentout(arr)
   ! note that if arr has intent(out) and is allocatable,
   ! arr is deallocated on entry
   real(kind=sp),intent(out),allocatable :: arr(:)
       write(*,*)'note it was allocated in calling program',allocated(arr)
   end subroutine intentout

end program demo_allocated

Results:

 >  do things if not allocated
 >  note it was allocated in calling program F
 >  note it is deallocated! F

Standard

Fortran 95. allocatable scalar entities were added in Fortran 2003.

See Also

move_alloc(3)

Fortran intrinsic descriptions (license: MIT) @urbanjost

anint

Name

anint(3) - [NUMERIC] Real nearest whole number

Synopsis

    result = anint(a [,kind])
     elemental real(kind=KIND) function anint(x,KIND)

      real(kind=**),intent(in)   :: x
      integer,intent(in),optional :: KIND

Characteristics

Description

anint(3) rounds its argument to the nearest whole number.

Unlike nint(3) which returns an integer the full range or real values can be returned (integer types typically have a smaller range of values than real types).

Options

Result

The return value is the real whole number nearest a.

If a is greater than zero, anint(a)(3) returns aint(a + 0.5).

If a is less than or equal to zero then it returns aint(a - 0.5), except aint specifies that for |a| < 1 the result is zero (0).

It is processor-dependent whether anint(a) returns negative zero when -0.5 < a <= -0.0. Compiler switches are often available which enable or disable support of negative zero.

Examples

Sample program:

program demo_anint
use, intrinsic :: iso_fortran_env, only : real32, real64, real128
implicit none
real,allocatable :: arr(:)

  ! basics
   print *, 'ANINT (2.783) has the value 3.0 =>', anint(2.783)
   print *, 'ANINT (-2.783) has the value -3.0 =>', anint(-2.783)

   print *, 'by default the kind of the output is the kind of the input'
   print *, anint(1234567890.1234567890e0)
   print *, anint(1234567890.1234567890d0)

   print *, 'sometimes specifying the result kind is useful when passing'
   print *, 'results as an argument, for example.'
   print *, 'do you know why the results are different?'
   print *, anint(1234567890.1234567890,kind=real64)
   print *, anint(1234567890.1234567890d0,kind=real64)

  ! elemental
   print *, 'numbers on a cusp are always the most troublesome'
   print *, anint([ -2.7, -2.5, -2.2, -2.0, -1.5, -1.0, -0.5, 0.0 ])

   print *, 'negative zero is processor dependent'
   arr=[ 0.0, 0.1, 0.5, 1.0, 1.5, 2.0, 2.2, 2.5, 2.7 ]
   print *, anint(arr)
   arr=[ -0.0, -0.1, -0.5, -1.0, -1.5, -2.0, -2.2, -2.5, -2.7 ]
   print *, anint(arr)

end program demo_anint

Results:

 >  ANINT (2.783) has the value 3.0 =>   3.000000
 >  ANINT (-2.783) has the value -3.0 =>  -3.000000
 >  by default the kind of the output is the kind of the input
 >   1.2345679E+09
 >    1234567890.00000
 >  sometimes specifying the result kind is useful when passing
 >  results as an argument, for example.
 >  do you know why the results are different?
 >    1234567936.00000
 >    1234567890.00000
 >  numbers on a cusp are always the most troublesome
 >   -3.000000      -3.000000      -2.000000      -2.000000      -2.000000
 >   -1.000000      -1.000000      0.0000000E+00
 >  negative zero is processor dependent
 >   0.0000000E+00  0.0000000E+00   1.000000       1.000000       2.000000
 >    2.000000       2.000000       3.000000       3.000000
 >   0.0000000E+00  0.0000000E+00  -1.000000      -1.000000      -2.000000
 >   -2.000000      -2.000000      -3.000000      -3.000000

Standard

FORTRAN 77

See Also

aint(3), int(3), nint(3), selected_int_kind(3), ceiling(3), floor(3)

Fortran intrinsic descriptions (license: MIT) @urbanjost

any

Name

any(3) - [ARRAY:REDUCTION] Determines if any of the values in the logical array are .true.

Synopsis

    result = any(mask [,dim])
     function any(mask, dim)

      logical(kind=KIND),intent(in) :: mask(..)
      integer,intent(in),optional   :: dim
      logical(kind=KIND)            :: any(..)

Characteristics

Description

any(3) determines if any of the values in the logical array mask along dimension dim are .true..

Options

Result

any(mask) returns a scalar value of type logical where the kind type parameter is the same as the kind type parameter of mask. If dim is present, then any(mask, dim) returns an array with the rank of mask minus 1. The shape is determined from the shape of mask where the dim dimension is elided.

  1. any(mask) is .true. if any element of mask is .true.; otherwise, it is .false.. It also is .false. if mask has zero size.

  2. If the rank of mask is one, then any(mask, dim) is equivalent to any(mask). If the rank is greater than one, then any(mask, dim) is determined by applying any(mask) to the array sections.

Examples

Sample program:

program demo_any
implicit none
logical,parameter :: T=.true., F=.false.
integer           :: a(2,3), b(2,3)
logical           :: bool
  ! basic usage
   bool = any([F,F,T,F])
   print *,bool
   bool = any([F,F,F,F])
   print *,bool
  ! fill two integer arrays with values for testing
   a = 1
   b = 1
   b(:,2) = 2
   b(:,3) = 3
  ! using any(3) with logical expressions you can compare two arrays
  ! in a myriad of ways
   ! first, print where elements of b are bigger than in a
   call printl( 'first print b > a             ', b > a         )
   ! now use any() to test
   call printl( 'any true values?  any(b > a)  ', any(b > a )   )
   call printl( 'again by columns? any(b > a,1)', any(b > a, 1) )
   call printl( 'again by rows?    any(b > a,2)', any(b > a, 2) )
contains
! CONVENIENCE ROUTINE. this is not specific to ANY()
subroutine printl(title,a)
use, intrinsic :: iso_fortran_env, only : &
 & stderr=>ERROR_UNIT,&
 & stdin=>INPUT_UNIT,&
 & stdout=>OUTPUT_UNIT
implicit none

!@(#) print small 2d logical scalar, vector, or matrix

character(len=*),parameter   :: all='(*(g0,1x))'
character(len=*),parameter   :: row='(" > [ ",*(l1:,","))'
character(len=*),intent(in)  :: title
logical,intent(in)           :: a(..)
integer                      :: i
   write(*,*)
   write(*,all,advance='no')trim(title),&
    & ' : shape=',shape(a),',rank=',rank(a),',size=',size(a)
   ! get size and shape of input
   select rank(a)
   rank (0); write(*,'(a)')'(a scalar)'
      write(*,fmt=row,advance='no')a
      write(*,'(" ]")')
   rank (1); write(*,'(a)')'(a vector)'
      do i=1,size(a)
         write(*,fmt=row,advance='no')a(i)
         write(*,'(" ]")')
      enddo
   rank (2); write(*,'(a)')'(a matrix) '
      do i=1,size(a,dim=1)
         write(*,fmt=row,advance='no')a(i,:)
         write(*,'(" ]")')
      enddo
   rank default
      write(stderr,*)'*printl* did not expect rank=', rank(a), &
       & 'shape=', shape(a),'size=',size(a)
      stop '*printl* unexpected rank'
   end select

end subroutine printl

end program demo_any

Results:

 >  T
 >  F
 >
 > first print b > a : shape=23,rank=2,size=6(a matrix)
 >  > [ F,T,T ]
 >  > [ F,T,T ]
 >
 > any true values?  any(b > a) : shape=,rank=0,size=1(a scalar)
 >  > [ T ]
 >
 > again by columns? any(b > a,1) : shape=3,rank=1,size=3(a vector)
 >  > [ F ]
 >  > [ T ]
 >  > [ T ]
 >
 > again by rows?    any(b > a,2) : shape=2,rank=1,size=2(a vector)
 >  > [ T ]
 >  > [ T ]

Standard

Fortran 95

See Also

all(3)

Fortran intrinsic descriptions (license: MIT) @urbanjost

asind

Name

asind(3) - [MATHEMATICS:TRIGONOMETRIC] Arcsine function in degrees

Synopsis

    result = asind(x)
     elemental real(kind=KIND) function asind(x)

      real(kind=KIND) :: x

Characteristics

Description

asind(3) computes the arc sine of its argument x in degrees

The arcsine is the inverse function of the sine function. It is commonly used in trigonometry when trying to find the angle when the lengths of the hypotenuse and the opposite side of a right triangle are known.

Example: asind(1.0) has the value 90.0 (approximately).

Options

Result

The result has a value equal to a processor-dependent approximation to arcsin(x).

If x is real the result is real and it is expressed in radians and lies in the range

        PI/2 <= asind (X) <= PI/2.

If the argument (and therefore the result) is imaginary the real part of the result is in radians and lies in the range

    -PI/2 <= real(asind(x)) <= PI/2

Examples

The arcsine will allow you to find the measure of a right angle when you know the ratio of the side opposite the angle to the hypotenuse.

So if you knew that a train track rose 1.25 vertical miles on a track that was 50 miles long, you could determine the average angle of incline of the track using the arcsine. Given

 sin(theta) = 1.25 miles/50 miles (opposite/hypotenuse)

Sample program:

program demo_asind
use, intrinsic :: iso_fortran_env, only : dp=>real64
implicit none
! value to convert degrees to radians
real(kind=dp),parameter :: R2D=180.0_dp/acos(-1.0_dp)
real(kind=dp)           :: angle, rise, run
character(len=*),parameter :: all='(*(g0,1x))'
  ! given sine(theta) = 1.25 miles/50 miles (opposite/hypotenuse)
  ! then taking the arcsine of both sides of the equality yields
  ! theta = arcsine(1.25 miles/50 miles) ie. arcsine(opposite/hypotenuse)
  rise=1.250_dp
  run=50.00_dp
  angle = asind(rise/run)
  print all, 'angle of incline(degrees) = ', angle
  angle = angle/R2D
  print all, 'angle of incline(radians) = ', angle

  print all, 'percent grade=',rise/run*100.0_dp
contains
subroutine sub1()
! notice the (incidently empty) type is defined below
! the implicit statement
implicit type(nil) (a)
type nil
end type nil
type(nil) :: anull
end subroutine sub1
end program demo_asind

Results:

 > angle of incline(degrees) =  1.4325437375665075
 > angle of incline(radians) =  0.25002604899361135E-1
 > percent grade= 2.5000000000000000

The percentage grade is the slope, written as a percent. To calculate the slope you divide the rise by the run. In the example the rise is 1.25 mile over a run of 50 miles so the slope is 1.25/50 = 0.025. Written as a percent this is 2.5 %.

For the US, two and 1/2 percent is generally thought of as the upper limit. This means a rise of 2.5 feet when going 100 feet forward. In the US this was the maximum grade on the first major US railroad, the Baltimore and Ohio. Note curves increase the frictional drag on a train reducing the allowable grade.

Standard

Fortran 2023

See Also

Inverse function: sin(3)

Resources

Fortran intrinsic descriptions (license: MIT) @urbanjost

asinh

Name

asinh(3) - [MATHEMATICS:TRIGONOMETRIC] Inverse hyperbolic sine function

Synopsis

    result = asinh(x)
     elemental TYPE(kind=KIND) function asinh(x)

      TYPE(kind=KIND) :: x

Characteristics

Description

asinh(3) computes the inverse hyperbolic sine of x.

Options

Result

The result has a value equal to a processor-dependent approximation to the inverse hyperbolic sine function of x.

If x is complex, the imaginary part of the result is in radians and lies between

       -PI/2 <= aimag(asinh(x)) <= PI/2

Examples

Sample program:

program demo_asinh
use,intrinsic :: iso_fortran_env, only : dp=>real64,sp=>real32
implicit none
real(kind=dp), dimension(3) :: x = [ -1.0d0, 0.0d0, 1.0d0 ]

   ! elemental
    write (*,*) asinh(x)

end program demo_asinh

Results:

  >  -0.88137358701954305  0.0000000000000000  0.88137358701954305

Standard

Fortran 2008

See Also

Inverse function: sinh(3)

Resources

Fortran intrinsic descriptions (license: MIT) @urbanjost

asin

Name

asin(3) - [MATHEMATICS:TRIGONOMETRIC] Arcsine function

Synopsis

    result = asin(x)
     elemental TYPE(kind=KIND) function asin(x)

      TYPE(kind=KIND) :: x

Characteristics

Description

asin(3) computes the arcsine of its argument x.

The arcsine is the inverse function of the sine function. It is commonly used in trigonometry when trying to find the angle when the lengths of the hypotenuse and the opposite side of a right triangle are known.

Options

Result

The result has a value equal to a processor-dependent approximation to arcsin(x).

If x is real the result is real and it is expressed in radians and lies in the range

        PI/2 <= ASIN (X) <= PI/2.

If the argument (and therefore the result) is imaginary the real part of the result is in radians and lies in the range

    -PI/2 <= real(asin(x)) <= PI/2

Examples

The arcsine will allow you to find the measure of a right angle when you know the ratio of the side opposite the angle to the hypotenuse.

So if you knew that a train track rose 1.25 vertical miles on a track that was 50 miles long, you could determine the average angle of incline of the track using the arcsine. Given

 sin(theta) = 1.25 miles/50 miles (opposite/hypotenuse)

Sample program:

program demo_asin
use, intrinsic :: iso_fortran_env, only : dp=>real64
implicit none
! value to convert degrees to radians
real(kind=dp),parameter :: D2R=acos(-1.0_dp)/180.0_dp
real(kind=dp)           :: angle, rise, run
character(len=*),parameter :: all='(*(g0,1x))'
  ! given sine(theta) = 1.25 miles/50 miles (opposite/hypotenuse)
  ! then taking the arcsine of both sides of the equality yields
  ! theta = arcsine(1.25 miles/50 miles) ie. arcsine(opposite/hypotenuse)
  rise=1.250_dp
  run=50.00_dp
  angle = asin(rise/run)
  print all, 'angle of incline(radians) = ', angle
  angle = angle/D2R
  print all, 'angle of incline(degrees) = ', angle

  print all, 'percent grade=',rise/run*100.0_dp
end program demo_asin

Results:

 >  angle of incline(radians) =    2.5002604899361139E-002
 >  angle of incline(degrees) =    1.4325437375665075
 >  percent grade=   2.5000000000000000

The percentage grade is the slope, written as a percent. To calculate the slope you divide the rise by the run. In the example the rise is 1.25 mile over a run of 50 miles so the slope is 1.25/50 = 0.025. Written as a percent this is 2.5 %.

For the US, two and 1/2 percent is generally thought of as the upper limit. This means a rise of 2.5 feet when going 100 feet forward. In the US this was the maximum grade on the first major US railroad, the Baltimore and Ohio. Note curves increase the frictional drag on a train reducing the allowable grade.

Standard

FORTRAN 77 , for a complex argument Fortran 2008

See Also

Inverse function: sin(3)

Resources

Fortran intrinsic descriptions (license: MIT) @urbanjost

asinpi

Name

asinpi(3) - [MATHEMATICS:TRIGONOMETRIC] Circular arc sine function

Synopsis

    result = asinpi(x)
     elemental real(kind=KIND) function asinpi(x)

      real(kind=KIND),intent(in) :: x

Characteristics

Description

asinpi(3) computes the arcsine of its argument x.

The arcsine is the inverse function of the sine function. It is commonly used in trigonometry when trying to find the angle when the lengths of the hypotenuse and the opposite side of a right triangle are known.

The returned value is in half-revolutions (ie. in multiples of PI).

Example: ASINPI(1:0) has the value 0:5 (approximately).

Options

Result

The result has a value equal to a processor-dependent approximation to the arc sine of X. The result is real and it is expressed in half-revolutions and lies in the range

        -1 <= asinpi (X) <= 1

and is the same kind as the input.

Examples

The arcsine will allow you to find the measure of a right angle when you know the ratio of the side opposite the angle to the hypotenuse.

So if you knew that a train track rose 1.25 vertical miles on a track that was 50 miles long, you could determine the average angle of incline of the track using the arcsine. Given

 sin(theta) = 1.25 miles/50 miles (opposite/hypotenuse)

Sample program:

program demo_asinpi
use, intrinsic :: iso_fortran_env, only : dp=>real64
implicit none
! value to convert degrees to half-revolutions
real(kind=dp),parameter :: D2HR=1/180.0_dp
real(kind=dp)           :: angle, rise, run
character(len=*),parameter :: all='(*(g0,1x))'
  ! basics
  ! elemental
  print all, asinpi( [0.0d0, 0.5d0, -0.5d0, 1.0d0, -1.0d0 ])
  !
  ! sample application
  ! given sine(theta) = 1.25 miles/50 miles (opposite/hypotenuse)
  ! then taking the arcsine of both sides of the equality yields
  ! theta = arcsine(1.25 miles/50 miles) ie. arcsine(opposite/hypotenuse)
  rise=1.250_dp
  run=50.00_dp
  angle = asinpi(rise/run)
  print all, 'angle of incline(half-revolutions) = ', angle
  angle = angle/D2HR
  print all, 'angle of incline(degrees) = ', angle
  print all, 'percent grade=',rise/run*100.0_dp
contains
elemental function asinpi(x)
real(kind=dp),parameter  :: PI=acos(-1.0_dp)
real(kind=dp),intent(in) :: x
real(kind=dp)            :: asinpi
   asinpi=asin(x)/PI
end function asinpi
end program demo_asinpi

Results:

 > 0.00, 0.166667, -0.166667, 0.50, -0.50
 > angle of incline(half-revolutions) =  0.79585763198139307E-2
 > angle of incline(degrees) =  1.4325437375665075
 > percent grade= 2.5000000000000000

The percentage grade is the slope, written as a percent. To calculate the slope you divide the rise by the run. In the example the rise is 1.25 mile over a run of 50 miles so the slope is 1.25/50 = 0.025. Written as a percent this is 2.5 %.

For the US, two and 1/2 percent is generally thought of as the upper limit. This means a rise of 2.5 feet when going 100 feet forward. In the US this was the maximum grade on the first major US railroad, the Baltimore and Ohio. Note curves increase the frictional drag on a train reducing the allowable grade.

Standard

Fortran 2023

See Also

Resources

Fortran intrinsic descriptions (license: MIT) @urbanjost

associated

Name

associated(3) - [STATE:INQUIRY] Association status of a pointer or pointer/target pair

Synopsis

    result = associated(pointer [,target])
     logical function associated(pointer,target)

      type(TYPE(kind=KIND)),pointer :: pointer
      type(TYPE(kind=KIND)),pointer,optional :: target

Characteristics

Description

associated(3) determines the status of the pointer pointer or if pointer is associated with the target target.

Options

Result

associated(3) returns a scalar value of type logical. There are several cases:

  1. When the optional target is not present then associated(pointer) is .true. if pointer is associated with a target; otherwise, it returns .false..

  2. If target is present and a scalar target, the result is .true. if target is not a zero-sized storage sequence and the target associated with pointer occupies the same storage units. If pointer is disassociated, the result is .false..

  3. If target is present and an array target, the result is .true. if target and pointer have the same shape, are not zero-sized arrays, are arrays whose elements are not zero-sized storage sequences, and target and pointer occupy the same storage units in array element order.

    As in case 2, the result is .false., if pointer is disassociated.

  4. If target is present and an scalar pointer, the result is .true. if target is associated with pointer, the target associated with target are not zero-sized storage sequences and occupy the same storage units.

    The result is .false., if either target or pointer is disassociated.

  5. If target is present and an array pointer, the result is .true. if target associated with pointer and the target associated with target have the same shape, are not zero-sized arrays, are arrays whose elements are not zero-sized storage sequences, and target and pointer occupy the same storage units in array element order.

  6. If target is present and is a procedure, the result is true if and only if pointer is associated with target and, if target is an internal procedure, they have the same host instance.

  7. If target is present and is a procedure pointer, the result is true if and only if pointer and target are associated with the same procedure and, if the procedure is an internal procedure, they have the same host instance.

Examples

Sample program:

program demo_associated
implicit none
real, target  :: tgt(2) = [1., 2.]
real, pointer :: ptr(:)
   ptr => tgt
   if (associated(ptr)     .eqv. .false.) &
   & stop 'POINTER NOT ASSOCIATED'
   if (associated(ptr,tgt) .eqv. .false.) &
   & stop 'POINTER NOT ASSOCIATED TO TARGET'
   if (associated(ptr) ) &
   & print *, 'POINTER ASSOCIATED'
   if (associated(ptr,tgt) ) &
   & print *, 'POINTER ASSOCIATED TO TARGET'
end program demo_associated

Results:

 >  POINTER ASSOCIATED
 >  POINTER ASSOCIATED TO TARGET

Standard

Fortran 95

See Also

null(3)

Fortran intrinsic descriptions (license: MIT) @urbanjost

atan2d

Name

atan2d(3) - [MATHEMATICS:TRIGONOMETRIC] Arc tangent function in degrees (inverse tangent)

Synopsis

    result = atan2d(y, x)
     elemental real(kind=KIND) function atan2d(y, x)

      real,kind=KIND) :: atan2d
      real,kind=KIND),intent(in) :: y, x

Characteristics

Description

atan2d(3) computes in degrees a processor-dependent approximation of the arctangent of the principal value of the arctangent of the value y/x (which determines a unique angle).

If y has the value zero, x shall not have the value zero.

The resulting phase lies in the range -180 <= atan2d (Y,X) <= 180 and is equal to a processor-dependent approximation to a value of arctan(Y/X) expressed in degrees.

It is equivalent to ATAN2(Y, X)*180/PI but limited to real values.

Options

Result

The result is in degrees, not radians.

The radian value is by definition the principal value of the complex number (x, y), or in other terms, the phase of the phasor x+i*y.

The principal value is simply what we get when we adjust the value to lie between -180 and 180 degrees inclusive,

The classic definition of the arctangent is the angle that is formed in Cartesian coordinates of the line from the origin point <0,0> to the point <x,y> .

Pictured as a vector it is easy to see that if x and y are both zero the angle is indeterminate because it sits directly over the origin, so atan2d(0.0,0.0) will produce an error.

Range of returned values by quadrant:

>                   +90
>                     |
>                     |
>     90 < z < 180    |   0 > z < 90
>                     |
>   +-180 ------------+---------------- +-0
>                     |
>     90 < -z < 180   |   0 < -z < 90
>                     |
>                     |
>                   -90
>
     NOTES:

     If the processor distinguishes -0 and +0 then the sign of the
     returned value is that of Y when Y is zero, else when Y is zero
     the returned value is always positive.

Examples

Sample program:

program demo_atan2d
implicit none
integer,parameter  :: wp=kind(0.0)
real(wp),parameter :: d2r=acos(-1.0_wp)/180.0_wp
real :: z
complex :: c
 !
 ! basic usage
  ! atan2d (1.5574077, 1.0) has the value 1.0 radian (approximately).
  z=atan2d(1.5574077, 1.0)
  write(*,*) 'degrees=',z,'radians=',d2r*z
 !
 ! elemental arrays
  write(*,*)'elemental',atan2d( [10.0, 20.0], [30.0,40.0] )
 !
 ! elemental arrays and scalars
  write(*,*)'elemental',atan2d( [10.0, 20.0], 50.0 )
 !
 ! multi-dimensional returns multi-dimensional
 write(*,*) atan2(reshape([1.0,1.0,1.0,1.0],[2,2]),&
 & reshape([1.0,1.0,1.0,1.0],[2,2]) )
 !
 ! break complex values into real and imaginary components
  c=(0.0,1.0)
  write(*,*)'complex value treated as components', &
  & c,atan2d( x=c%re, y=c%im )
 !
 ! extended sample
  COMPLEX_VALS: block
  real                :: ang
  complex,allocatable :: vals(:)
  integer             :: i
 !
  vals=[ &
    ( 1.0, 0.0 ), & ! 0
    ( 1.0, 1.0 ), & ! 45
    ( 0.0, 1.0 ), & ! 90
    (-1.0, 1.0 ), & ! 135
    (-1.0, 0.0 ), & ! 180
    (-1.0,-1.0 ), & ! 225
    ( 0.0,-1.0 )]   ! 270
  do i=1,size(vals)
     ang=atan2d(vals(i)%im, vals(i)%re)
     write(*,101)vals(i),ang,d2r*ang
  enddo
  101 format(             &
  & 'X= ',f5.2,           &
  & ' Y= ',f5.2,          &
  & ' ANGLE= ',g0,        &
  & T38,'RADIANS= ',g0.4)
 endblock COMPLEX_VALS
!
end program demo_atan2d

Results:

 >  degrees=   57.2957802     radians=   1.00000000
 >  elemental   18.4349480       26.5650520
 >  elemental   11.3099327       21.8014107
 >   0.785398185  0.785398185 0.785398185  0.785398185
 >  complex value treated as components (0.0000,1.0000) 90.000
 > X=  1.00 Y=  0.00 ANGLE= 0.00000000  RADIANS= 0.000
 > X=  1.00 Y=  1.00 ANGLE= 45.0000000  RADIANS= 0.7854
 > X=  0.00 Y=  1.00 ANGLE= 90.0000000  RADIANS= 1.571
 > X= -1.00 Y=  1.00 ANGLE= 135.000000  RADIANS= 2.356
 > X= -1.00 Y=  0.00 ANGLE= 180.000000  RADIANS= 3.142
 > X= -1.00 Y= -1.00 ANGLE= -135.000000 RADIANS= -2.356
 > X=  0.00 Y= -1.00 ANGLE= -90.0000000 RADIANS= -1.571

Standard

Fortran 2023

See Also

Resources

Fortran intrinsic descriptions (license: MIT) @urbanjost

atan2

Name

atan2(3) - [MATHEMATICS:TRIGONOMETRIC] Arctangent (inverse tangent) function

Synopsis

    result = atan2(y, x)
     elemental real(kind=KIND) function atan2(y, x)

      real,kind=KIND) :: atan2
      real,kind=KIND),intent(in) :: y, x

Characteristics

Description

atan2(3) computes in radians a processor-dependent approximation of the arctangent of the complex number ( x, y ) or equivalently the principal value of the arctangent of the value y/x (which determines a unique angle).

If y has the value zero, x shall not have the value zero.

The resulting phase lies in the range -PI <= ATAN2 (Y,X) <= PI and is equal to a processor-dependent approximation to a value of arctan(Y/X).

Options

Result

The value returned is by definition the principal value of the complex number (x, y), or in other terms, the phase of the phasor x+i*y.

The principal value is simply what we get when we adjust a radian value to lie between -PI and PI inclusive,

The classic definition of the arctangent is the angle that is formed in Cartesian coordinates of the line from the origin point <0,0> to the point <x,y> .

Pictured as a vector it is easy to see that if x and y are both zero the angle is indeterminate because it sits directly over the origin, so atan(0.0,0.0) will produce an error.

Range of returned values by quadrant:

>                   +PI/2
>                     |
>                     |
>     PI/2 < z < PI   |   0 > z < PI/2
>                     |
>   +-PI -------------+---------------- +-0
>                     |
>     PI/2 < -z < PI  |   0 < -z < PI/2
>                     |
>                     |
>                   -PI/2
>
     NOTES:

     If the processor distinguishes -0 and +0 then the sign of the
     returned value is that of Y when Y is zero, else when Y is zero
     the returned value is always positive.

Examples

Sample program:

program demo_atan2
real :: z
complex :: c
 !
 ! basic usage
  ! ATAN2 (1.5574077, 1.0) has the value 1.0 (approximately).
  z=atan2(1.5574077, 1.0)
  write(*,*) 'radians=',z,'degrees=',r2d(z)
 !
 ! elemental arrays
  write(*,*)'elemental',atan2( [10.0, 20.0], [30.0,40.0] )
 !
 ! elemental arrays and scalars
  write(*,*)'elemental',atan2( [10.0, 20.0], 50.0 )
 !
 ! break complex values into real and imaginary components
 ! (note TAN2() can take a complex type value )
  c=(0.0,1.0)
  write(*,*)'complex',c,atan2( x=c%re, y=c%im )
 !
 ! extended sample converting cartesian coordinates to polar
  COMPLEX_VALS: block
  real                :: ang, radius
  complex,allocatable :: vals(:)
  integer             :: i
 !
  vals=[ &
    ( 1.0, 0.0 ), & ! 0
    ( 1.0, 1.0 ), & ! 45
    ( 0.0, 1.0 ), & ! 90
    (-1.0, 1.0 ), & ! 135
    (-1.0, 0.0 ), & ! 180
    (-1.0,-1.0 ), & ! 225
    ( 0.0,-1.0 )]   ! 270
  do i=1,size(vals)
     call cartesian_to_polar(vals(i)%re, vals(i)%im, radius,ang)
     write(*,101)vals(i),ang,r2d(ang),radius
  enddo
  101 format(             &
  & 'X= ',f5.2,           &
  & ' Y= ',f5.2,          &
  & ' ANGLE= ',g0,        &
  & T38,'DEGREES= ',g0.4, &
  & T54,'DISTANCE=',g0)
 endblock COMPLEX_VALS
!
contains
!
elemental real function r2d(radians)
! input radians to convert to degrees
doubleprecision,parameter :: DEGREE=0.017453292519943d0 ! radians
real,intent(in)           :: radians
   r2d=radians / DEGREE ! do the conversion
end function r2d
!
subroutine cartesian_to_polar(x,y,radius,inclination)
! return angle in radians in range 0 to 2*PI
implicit none
real,intent(in)  :: x,y
real,intent(out) :: radius,inclination
   radius=sqrt(x**2+y**2)
   if(radius.eq.0)then
      inclination=0.0
   else
      inclination=atan2(y,x)
      if(inclination < 0.0)inclination=inclination+2*atan2(0.0d0,-1.0d0)
   endif
end subroutine cartesian_to_polar
!
end program demo_atan2

Results:

 >  radians=   1.000000     degrees=   57.29578
 >  elemental  0.3217506      0.4636476
 >  elemental  0.1973956      0.3805064
 >  complex (0.0000000E+00,1.000000)   1.570796
 > X=  1.00 Y=  0.00 ANGLE= .000000     DEGREES= .000   DISTANCE=1.000000
 > X=  1.00 Y=  1.00 ANGLE= .7853982    DEGREES= 45.00  DISTANCE=1.414214
 > X=  0.00 Y=  1.00 ANGLE= 1.570796    DEGREES= 90.00  DISTANCE=1.000000
 > X= -1.00 Y=  1.00 ANGLE= 2.356194    DEGREES= 135.0  DISTANCE=1.414214
 > X= -1.00 Y=  0.00 ANGLE= 3.141593    DEGREES= 180.0  DISTANCE=1.000000
 > X= -1.00 Y= -1.00 ANGLE= 3.926991    DEGREES= 225.0  DISTANCE=1.414214
 > X=  0.00 Y= -1.00 ANGLE= 4.712389    DEGREES= 270.0  DISTANCE=1.000000

Standard

FORTRAN 77

See Also

Resources

atan2pi

Name

atan2pi(3) - [MATHEMATICS:TRIGONOMETRIC] Circular Arc tangent (inverse tangent) function

Synopsis

    result = atan2pi(y, x)
     elemental real(kind=KIND) function atan2pi(y, x)

      real,kind=KIND) :: atan2pi
      real,kind=KIND),intent(in) :: y, x

Characteristics

Description

atan2pi(3) computes in half-revolutions a processor-dependent approximation of the arctangent of the components of the complex number ( x, y ) or equivalently the principal value of the arctangent of the value y/x (which determines a unique angle).

If y has the value zero, x shall not have the value zero.

The resulting phase lies in the range -1 <= atan2pi (Y,X) <= 1 and is equal to a processor-dependent approximation to a value of arctan(Y/X).

Options

Result

The value returned is by definition the principal value of the complex number (x, y), or in other terms, the phase of the phasor x+i*y.

The principal value is simply what we get when we adjust an angular half-revolution value to lie between -1 and 1 inclusive,

The classic definition of the arctangent is the angle that is formed in Cartesian coordinates of the line from the origin point <0,0> to the point <x,y> .

Pictured as a vector it is easy to see that if x and y are both zero the angle is indeterminate because it sits directly over the origin, so atan(0.0,0.0) will produce an error.

Range of returned values by quadrant:

>                   +1/2
>                     |
>                     |
>       1/2 < z < 1   |   0 > z < 1/2
>                     |
>    +-1 -------------+---------------- +-0
>                     |
>       1/2 < -z < 1  |   0 < -z < 1/2
>                     |
>                     |
>                   -1/2
>
     NOTES:

     If the processor distinguishes -0 and +0 then the sign of the
     returned value is that of Y when Y is zero, else when Y is zero
     the returned value is always positive.

Examples

Sample program:

program demo_atan2pi
real :: z
complex :: c
real, parameter :: h2d = 180.0
 !
 ! basic usage
  ! atan2pi (1.5574077, 1.0) has the value 1.0 (approximately).
  z=atan2pi(1.5574077, 1.0)
  write(*,*) 'half-revolutions=',z,'degrees=',h2d*z
 !
 ! elemental arrays
  write(*,*)'elemental',atan2pi( [10.0, 20.0], [30.0,40.0] )
 !
 ! elemental arrays and scalars
  write(*,*)'elemental',atan2pi( [10.0, 20.0], 50.0 )
 !
 ! break complex values into real and imaginary components
 ! (note TAN2() can take a complex type value )
  c=(0.0,1.0)
  write(*,*)'complex',c,atan2pi( x=c%re, y=c%im )
 !
 ! extended sample converting cartesian coordinates to polar
  COMPLEX_VALS: block
  real                :: ang
  complex,allocatable :: vals(:)
  integer             :: i
 !
  vals=[ &
    ( 1.0, 0.0 ), & ! 0
    ( 1.0, 1.0 ), & ! 45
    ( 0.0, 1.0 ), & ! 90
    (-1.0, 1.0 ), & ! 135
    (-1.0, 0.0 ), & ! 180
    (-1.0,-1.0 ), & ! 225
    ( 0.0,-1.0 )]   ! 270
    write(*,'(a)')repeat('1234567890',8)
  do i=1,size(vals)
     ang=atan2pi(vals(i)%im,vals(i)%re)
     write(*,101)vals(i),ang,h2d*ang
  enddo
  101 format(             &
  & 'X= ',f5.2,           &
  & ' Y= ',f5.2,          &
  & ' HALF-REVOLUTIONS= ',f7.3,        &
  & T50,' DEGREES= ',g0.4)
 endblock COMPLEX_VALS
!
end program demo_atan2pi

Results:

 >  half-revolutions=  0.318309873     degrees=   57.2957764
 >  elemental  0.102416381      0.147583619
 >  elemental   6.28329590E-02  0.121118948
 >  complex             (0.00000000,1.00000000)  0.500000000
 > X=  1.00 Y=  0.00 HALF-REVOLUTIONS=   0.000       DEGREES= 0.000
 > X=  1.00 Y=  1.00 HALF-REVOLUTIONS=   0.250       DEGREES= 45.00
 > X=  0.00 Y=  1.00 HALF-REVOLUTIONS=   0.500       DEGREES= 90.00
 > X= -1.00 Y=  1.00 HALF-REVOLUTIONS=   0.750       DEGREES= 135.0
 > X= -1.00 Y=  0.00 HALF-REVOLUTIONS=   1.000       DEGREES= 180.0
 > X= -1.00 Y= -1.00 HALF-REVOLUTIONS=  -0.750       DEGREES= -135.0
 > X=  0.00 Y= -1.00 HALF-REVOLUTIONS=  -0.500       DEGREES= -90.00

Standard

Fortran 2023

See Also

Resources

atand

Name

atand(3) - [MATHEMATICS:TRIGONOMETRIC] Arc tangent AKA inverse tangent function in degrees

Synopsis

    result = atand(x) | atand(y, x)
     elemental real(kind=KIND) function atand(y,x)

      real(kind=KIND),intent(in) :: x
      real(kind=**),intent(in),optional :: y

Characteristics

Description

atand(3) calculates the Arc Tangent function in degrees.

Options

Result

The returned value is a real type of the same kind as x that approximates the arc tangent of x expressed in degrees. If y is present, the result is identical to atan2d(y,x). The result lies in the range -90 <= atand(x) <= 90 .

Examples

atand(1.0) has the value 45.0 (approximately).

Sample program:

program demo_atand
use, intrinsic :: iso_fortran_env, only : real32, real64, real128
implicit none
character(len=*),parameter :: all='(*(g0,1x))'
real(kind=real64),parameter :: &
 Deg_Per_Rad = 57.2957795130823208767981548_real64
real(kind=real64) :: x
    x=2.866_real64
    print all, atand(x)

    print all, atand( 2.0d0, 2.0d0),atand( 2.0d0, 2.0d0)/Deg_Per_Rad
    print all, atand( 2.0d0,-2.0d0),atand( 2.0d0,-2.0d0)/Deg_Per_Rad
    print all, atand(-2.0d0, 2.0d0),atand(-2.0d0, 2.0d0)/Deg_Per_Rad
    print all, atand(-2.0d0,-2.0d0),atand(-2.0d0,-2.0d0)/Deg_Per_Rad

end program demo_atand

Results:

 > 70.765182904405478
 > 45.000000000000000 0.78539816339744828
 > 135.00000000000000 2.3561944901923448
 > -45.000000000000000 -0.78539816339744828
 > -135.00000000000000 -2.3561944901923448

Standard

Fortran 2023

See Also

atan2d(3), tand(3), atan2(3), tan(3), atan2pi(3), tanpi(3)

Resources

Fortran intrinsic descriptions (license: MIT) @urbanjost

atanh

Name

atanh(3) - [MATHEMATICS:TRIGONOMETRIC] Inverse hyperbolic tangent function

Synopsis

    result = atanh(x)
     elemental TYPE(kind=KIND) function atanh(x)

      TYPE(kind=KIND),intent(in) :: x

Characteristics

Description

atanh(3) computes the inverse hyperbolic tangent of x.

Options

Result

The return value has same type and kind as x. If x is complex, the imaginary part of the result is in radians and lies between

       -PI/2 <= aimag(atanh(x)) <= PI/2

Examples

Sample program:

program demo_atanh
implicit none
real, dimension(3) :: x = [ -1.0, 0.0, 1.0 ]

   write (*,*) atanh(x)

end program demo_atanh

Results:

 >       -Infinity  0.0000000E+00       Infinity

Standard

Fortran 2008

See Also

Inverse function: tanh(3)

Resources

Fortran intrinsic descriptions (license: MIT) @urbanjost

atan

Name

atan(3) - [MATHEMATICS:TRIGONOMETRIC] Arctangent AKA inverse tangent function

Synopsis

    result = atan([x) | atan(y, x)
     elemental TYPE(kind=KIND) function atan(y,x)

      TYPE(kind=KIND),intent(in) :: x
      TYPE(kind=**),intent(in),optional :: y

Characteristics

Description

atan(3) computes the arctangent of x.

Options

Result

The returned value is of the same type and kind as x. If y is present, the result is identical to atan2(y,x). Otherwise, it is the arc tangent of x, where the real part of the result is in radians and lies in the range -PI/2 <= atan(x) <= PI/2

Examples

Sample program:

program demo_atan
use, intrinsic :: iso_fortran_env, only : real32, real64, real128
implicit none
character(len=*),parameter :: all='(*(g0,1x))'
real(kind=real64),parameter :: &
 Deg_Per_Rad = 57.2957795130823208767981548_real64
real(kind=real64) :: x
    x=2.866_real64
    print all, atan(x)

    print all, atan( 2.0d0, 2.0d0),atan( 2.0d0, 2.0d0)*Deg_Per_Rad
    print all, atan( 2.0d0,-2.0d0),atan( 2.0d0,-2.0d0)*Deg_Per_Rad
    print all, atan(-2.0d0, 2.0d0),atan(-2.0d0, 2.0d0)*Deg_Per_Rad
    print all, atan(-2.0d0,-2.0d0),atan(-2.0d0,-2.0d0)*Deg_Per_Rad

end program demo_atan

Results:

 > 1.235085437457879
 > .7853981633974483 45.00000000000000
 > 2.356194490192345 135.0000000000000
 > -.7853981633974483 -45.00000000000000
 > -2.356194490192345 -135.0000000000000

Standard

FORTRAN 77 for a complex argument; and for two arguments Fortran 2008

See Also

atan2(3), tan(3)

Resources

Fortran intrinsic descriptions (license: MIT) @urbanjost

atanpi

Name

atanpi(3) - [MATHEMATICS:TRIGONOMETRIC] Circular Arctangent AKA inverse tangent function

Synopsis

    result = atanpi([x) | atanpi(y, x)
     elemental real(kind=KIND) function atanpi(y,x)

      real(kind=KIND),intent(in) :: x
      real(kind=KIND),intent(in),optional :: y

Characteristics

Description

atan(3) computes the circular arctangent of x in half-revolutions.

If y appears, the result is the same as the result of atan2pi(y,x). If y does not appear, the result has a value equal to a processor-dependent approximation to the arc tangent of x; it is expressed in half-revolutions and lies in the range -0.5 <= atanpi(x) <= 0.5.

Example. atanpi(1.0) has the value 0.25 (approximately).

Options

Result

The returned value is of the same type and kind as x. If y is present, the result is identical to atan2pi(y,x). Otherwise, it is the arc tangent of x, where the result is in half-revolutions and lies in the range -1 <= atan(x) <= 1

Examples

Sample program:

program demo_atanpi
use, intrinsic :: iso_fortran_env, only : real32, real64
implicit none
character(len=*),parameter :: all='(*(g0,1x))'
real(kind=real64) :: x, y
    x=2.866_real64
    print all, atanpi(x)

    print all, atanpi( 2.0d0, 2.0d0),atanpi( 2.0d0, 2.0d0)*180
    print all, atanpi( 2.0d0,-2.0d0),atanpi( 2.0d0,-2.0d0)*180
    print all, atanpi(-2.0d0, 2.0d0),atanpi(-2.0d0, 2.0d0)*180
    print all, atanpi(-2.0d0,-2.0d0),atanpi(-2.0d0,-2.0d0)*180

end program demo_atanpi

Results:

 > 0.39313990502447488
 > 0.25000000000000000 45.000000000000000
 > 0.75000000000000000 135.00000000000000
 > -0.25000000000000000 -45.000000000000000
 > -0.75000000000000000 -135.00000000000000

Standard

Fortran 2023

See Also

atan2d(3), tan2d(3), atan2pi(3), tan2pi(3)

Resources

atomic_add

Name

atomic_add(3) - [ATOMIC] Atomic ADD operation

Synopsis

    call atomic_add (atom, value [,stat] )
     subroutine atomic_add(atom,value,stat)

      integer(atomic_int_kind)            :: atom[*]
      integer(atomic_int_kind),intent(in) :: value
      integer,intent(out),intent(out)     :: stat

Characteristics

Description

atomic_add(3) atomically adds the value of VAR to the variable atom. When stat is present and the invocation was successful, it is assigned the value 0. If it is present and the invocation has failed, it is assigned a positive value; in particular, for a coindexed ATOM, if the remote image has stopped, it is assigned the value of iso_fortran_env’s STAT_STOPPED_IMAGE and if the remote image has failed, the value STAT_FAILED_IMAGE.

Options

Examples

Sample program:

program demo_atomic_add
use iso_fortran_env
implicit none
integer(atomic_int_kind) :: atom[*]
   call atomic_add (atom[1], this_image())
end program demo_atomic_add

Standard

TS 18508

See Also

atomic_define(3), atomic_fetch_add(3), atomic_and(3), atomic_or(3), atomic_xor(3) iso_fortran_env(3),

Fortran intrinsic descriptions

atomic_and

Name

atomic_and(3) - [ATOMIC:BIT MANIPULATION] Atomic bitwise AND operation

Synopsis

    call atomic_and(atom, value [,stat])
     subroutine atomic_and(atom,value,stat)

      integer(atomic_int_kind)            :: atom[*]
      integer(atomic_int_kind),intent(in) :: value
      integer,intent(out),intent(out)     :: stat

Characteristics

Description

atomic_and(3) atomically defines atom with the bitwise and between the values of atom and value. When stat is present and the invocation was successful, it is assigned the value 0. If it is present and the invocation has failed, it is assigned a positive value; in particular, for a coindexed atom, if the remote image has stopped, it is assigned the value of iso_fortran_env’s stat_stopped_image and if the remote image has failed, the value stat_failed_image.

Options

Examples

Sample program:

program demo_atomic_and
use iso_fortran_env
implicit none
integer(atomic_int_kind) :: atom[*]
   call atomic_and(atom[1], int(b'10100011101'))
end program demo_atomic_and

Standard

TS 18508

See Also

atomic_fetch_and(3), atomic_define(3), atomic_ref(3), atomic_cas(3), iso_fortran_env(3), atomic_add(3), atomic_or(3), atomic_xor(3)

Fortran intrinsic descriptions

atomic_cas

Name

atomic_cas(3) - [ATOMIC] Atomic compare and swap

Synopsis

    call atomic_cas (atom, old, compare, new [,stat] )
     subroutine atomic_cas (atom, old, compare, new, stat)

Characteristics

Description

atomic_cas(3) compares the variable atom with the value of compare; if the value is the same, atom is set to the value of new. Additionally, old is set to the value of atom that was used for the comparison. When stat is present and the invocation was successful, it is assigned the value 0. If it is present and the invocation has failed, it is assigned a positive value; in particular, for a coindexed atom, if the remote image has stopped, it is assigned the value of iso_fortran_env’s stat_stopped_image and if the remote image has failed, the value stat_failed_image.

Options

Examples

Sample program:

program demo_atomic_cas
use iso_fortran_env
implicit none
logical(atomic_logical_kind) :: atom[*], prev
   call atomic_cas(atom[1], prev, .false., .true.)
end program demo_atomic_cas

Standard

TS 18508

See Also

atomic_define(3), atomic_ref(3), iso_fortran_env(3)

Fortran intrinsic descriptions

atomic_define

Name

atomic_define(3) - [ATOMIC] Setting a variable atomically

Synopsis

    call atomic_define (atom, value [,stat] )
     subroutine atomic_define(atom, value, stat)

      TYPE(kind=atomic_KIND_kind) :: atom[*]
      TYPE(kind=KIND) :: value
      integer,intent(out),optional :: stat

Characteristics

Description

atomic_define(3) defines the variable atom with the value value atomically.

Options

Examples

Sample program:

program demo_atomic_define
use iso_fortran_env
implicit none
integer(atomic_int_kind) :: atom[*]
    call atomic_define(atom[1], this_image())
end program demo_atomic_define

Standard

Fortran 2008 ; with stat, TS 18508

See Also

atomic_ref(3), atomic_cas(3), iso_fortran_env(3), atomic_add(3), atomic_and(3), atomic_or(3), atomic_xor(3)

Fortran intrinsic descriptions

atomic_fetch_add

Name

atomic_fetch_add(3) - [ATOMIC] Atomic ADD operation with prior fetch

Synopsis

    call atomic_fetch_add(atom, value, old [,stat] )
     subroutine atomic_fetch_add(atom, value, old, stat)

Characteristics

Description

atomic_fetch_add(3) atomically stores the value of atom in old and adds the value of var to the variable atom. When stat is present and the invocation was successful, it is assigned the value 0. If it is present and the invocation has failed, it is assigned a positive value; in particular, for a coindexed atom, if the remote image has stopped, it is assigned the value of iso_fortran_env’s stat_stopped_image and if the remote image has failed, the value stat_failed_image.

Options

Examples

Sample program:

program demo_atomic_fetch_add
use iso_fortran_env
implicit none
integer(atomic_int_kind) :: atom[*], old
   call atomic_add(atom[1], this_image(), old)
end program demo_atomic_fetch_add

Standard

TS 18508

See Also

atomic_define(3), atomic_add(3), iso_fortran_env(3),

atomic_fetch_and(3), atomic_fetch_or(3),

atomic_fetch_xor(3)

Fortran intrinsic descriptions

atomic_fetch_and

Name

atomic_fetch_and(3) - [ATOMIC:BIT MANIPULATION] Atomic bitwise AND operation with prior fetch

Synopsis

    call atomic_fetch_and(atom, value, old [,stat] )
     subroutine atomic_fetch_and(atom, value, old, stat)

Characteristics

Description

atomic_fetch_and(3) atomically stores the value of atom in old and defines atom with the bitwise AND between the values of atom and value. When stat is present and the invocation was successful, it is assigned the value 0. If it is present and the invocation has failed, it is assigned a positive value; in particular, for a coindexed atom, if the remote image has stopped, it is assigned the value of iso_fortran_env’s stat_stopped_image and if the remote image has failed, the value stat_failed_image.

Options

Examples

Sample program:

program demo_atomic_fetch_and
use iso_fortran_env
implicit none
integer(atomic_int_kind) :: atom[*], old
   call atomic_fetch_and (atom[1], int(b'10100011101'), old)
end program demo_atomic_fetch_and

Standard

TS 18508

See Also

atomic_define(3), atomic_and(3), iso_fortran_env(3),

atomic_fetch_add(3), atomic_fetch_or(3),

atomic_fetch_xor(3)

Fortran intrinsic descriptions

atomic_fetch_or

Name

atomic_fetch_or(3) - [ATOMIC:BIT MANIPULATION] Atomic bitwise OR operation with prior fetch

Synopsis

    call atomic_fetch_or(atom, value, old [,stat] )
     subroutine atomic_fetch_or(atom, value, old, stat)

Characteristics

Description

atomic_fetch_or(3) atomically stores the value of atom in old and defines atom with the bitwise OR between the values of atom and value. When stat is present and the invocation was successful, it is assigned the value 0. If it is present and the invocation has failed, it is assigned a positive value; in particular, for a coindexed atom, if the remote image has stopped, it is assigned the value of iso_fortran_env’s stat_stopped_image and if the remote image has failed, the value stat_failed_image.

Options

Examples

Sample program:

program demo_atomic_fetch_or
use iso_fortran_env
implicit none
integer(atomic_int_kind) :: atom[*], old
   call atomic_fetch_or(atom[1], int(b'10100011101'), old)
end program demo_atomic_fetch_or

Standard

TS 18508

See Also

atomic_define(3), atomic_or(3), iso_fortran_env(3),

atomic_fetch_add(3), atomic_fetch_and(3),

atomic_fetch_xor(3)

Fortran intrinsic descriptions

atomic_fetch_xor

Name

atomic_fetch_xor(3) - [ATOMIC:BIT MANIPULATION] Atomic bitwise XOR operation with prior fetch

Synopsis

    call atomic_fetch_xor (atom, value, old [,stat] )
     subroutine atomic_fetch_xor (atom, value, old, stat)

Characteristics

Description

atomic_fetch_xor(3) atomically stores the value of atom in old and defines atom with the bitwise xor between the values of atom and value. When stat is present and the invocation was successful, it is assigned the value 0. If it is present and the invocation has failed, it is assigned a positive value; in particular, for a coindexed atom, if the remote image has stopped, it is assigned the value of iso_fortran_env’s stat_stopped_image and if the remote image has failed, the value stat_failed_image.

Options

Examples

Sample program:

program demo_atomic_fetch_xor
use iso_fortran_env
implicit none
integer(atomic_int_kind) :: atom[*], old
   call atomic_fetch_xor (atom[1], int(b'10100011101'), old)
end program demo_atomic_fetch_xor

Standard

TS 18508

See Also

atomic_define(3), atomic_xor(3), iso_fortran_env(3),

atomic_fetch_add(3), atomic_fetch_and(3),

atomic_fetch_or(3)

Fortran intrinsic descriptions

atomic_or

Name

atomic_or(3) - [ATOMIC:BIT MANIPULATION] Atomic bitwise OR operation

Synopsis

    call atomic_or(atom, value [,stat] )
     subroutine atomic_or(atom,value,stat)

      integer(atomic_int_kind)            :: atom[*]
      integer(atomic_int_kind),intent(in) :: value
      integer,intent(out),intent(out)     :: stat

Characteristics

Description

atomic_or(3) atomically defines atom with the bitwise or between the values of atom and value. When stat is present and the invocation was successful, it is assigned the value 0. If it is present and the invocation has failed, it is assigned a positive value; in particular, for a coindexed atom, if the remote image has stopped, it is assigned the value of iso_fortran_env’s stat_stopped_image and if the remote image has failed, the value stat_failed_image.

Options

Examples

Sample program:

program demo_atomic_or
use iso_fortran_env
implicit none
integer(atomic_int_kind) :: atom[*]
   call atomic_or(atom[1], int(b'10100011101'))
end program demo_atomic_or

Standard

TS 18508

See Also

atomic_define(3), atomic_fetch_or(3),

iso_fortran_env(3), atomic_add(3), atomic_or(3),

atomic_xor(3)

Fortran intrinsic descriptions

atomic_ref

Name

atomic_ref(3) - [ATOMIC] Obtaining the value of a variable atomically

Synopsis

    call atomic_ref(value, atom [,stat] )
     subroutine atomic_ref(value,atom,stat)

      integer(atomic_int_kind),intent(in) :: value
      integer(atomic_int_kind)            :: atom[*]
      integer,intent(out),intent(out)     :: stat

Characteristics

Description

atomic_ref(3) atomically assigns the value of the variable atom to value. When stat is present and the invocation was successful, it is assigned the value 0. If it is present and the invocation has failed, it is assigned a positive value; in particular, for a coindexed atom, if the remote image has stopped, it is assigned the value of iso_fortran_env’s stat_stopped_image and if the remote image has failed, the value stat_failed_image.

Options

Examples

Sample program:

program demo_atomic_ref
use iso_fortran_env
implicit none
logical(atomic_logical_kind) :: atom[*]
logical :: val
   call atomic_ref( val, atom[1] )
   if (val) then
      print *, "Obtained"
   endif
end program demo_atomic_ref

Standard

Fortran 2008 ; with STAT, TS 18508

See Also

atomic_define(3), atomic_cas(3), iso_fortran_env(3),

atomic_fetch_add(3), atomic_fetch_and(3),

atomic_fetch_or(3), atomic_fetch_xor(3)

Fortran intrinsic descriptions

atomic_xor

Name

atomic_xor(3) - [ATOMIC:BIT MANIPULATION] Atomic bitwise OR operation

Synopsis

    call atomic_xor(atom, value [,stat] )
     subroutine atomic_xor(atom,value,stat)

      integer(atomic_int_kind)            :: atom[*]
      integer(atomic_int_kind),intent(in) :: value
      integer,intent(out),intent(out)     :: stat

Characteristics

Characteristics

Description

atomic_xor(3) atomically defines atom with the bitwise xor between the values of atom and value. When stat is present and the invocation was successful, it is assigned the value 0. If it is present and the invocation has failed, it is assigned a positive value; in particular, for a coindexed atom, if the remote image has stopped, it is assigned the value of iso_fortran_env’s stat_stopped_image and if the remote image has failed, the value stat_failed_image.

Options

Examples

Sample program:

program demo_atomic_xor
use iso_fortran_env
implicit none
integer(atomic_int_kind) :: atom[*]
   call atomic_xor(atom[1], int(b'10100011101'))
end program demo_atomic_xor

Standard

TS 18508

See Also

atomic_define(3), atomic_fetch_xor(3), iso_fortran_env(3), atomic_add(3), atomic_or(3), atomic_xor(3)

Fortran intrinsic descriptions

bessel_j0

Name

bessel_j0(3) - [MATHEMATICS] Bessel function of the first kind of order 0

Synopsis

    result = bessel_j0(x)
     elemental real(kind=KIND) function bessel_j0(x)

      real(kind=KIND),intent(in) :: x

Characteristics

Description

bessel_j0(3) computes the Bessel function of the first kind of order 0 of x.

Options

Result

the Bessel function of the first kind of order 0 of x. The result lies in the range -0.4027 <= bessel(0,x) <= 1.

Examples

Sample program:

program demo_bessel_j0
use, intrinsic :: iso_fortran_env, only : real32, real64, real128
   implicit none
   real(kind=real64) :: x
   x = 0.0_real64
   x = bessel_j0(x)
   write(*,*)x
end program demo_bessel_j0

Results:

  > 1.0000000000000000

Standard

Fortran 2008

See Also

bessel_j1(3), bessel_jn(3), bessel_y0(3), bessel_y1(3), bessel_yn(3)

Fortran intrinsic descriptions

bessel_j1

Name

bessel_j1(3) - [MATHEMATICS] Bessel function of the first kind of order 1

Synopsis

    result = bessel_j1(x)
     elemental real(kind=KIND) function bessel_j1(x)

      real(kind=KIND),intent(in) :: x

Characteristics

Description

bessel_j1(3) computes the Bessel function of the first kind of order 1 of x.

Options

Result

The return value is of type real and lies in the range -0.5818 <= bessel(0,x) <= 0.5818 . It has the same kind as x.

Examples

Sample program:

program demo_bessel_j1
use, intrinsic :: iso_fortran_env, only : real32, real64, real128
implicit none
real(kind=real64) :: x = 1.0_real64
   x = bessel_j1(x)
   write(*,*)x
end program demo_bessel_j1

Results:

  > 0.44005058574493350

Standard

Fortran 2008

See Also

bessel_j0(3), bessel_jn(3), bessel_y0(3), bessel_y1(3), bessel_yn(3)

Fortran intrinsic descriptions

bessel_jn

Name

bessel_jn(3) - [MATHEMATICS] Bessel function of the first kind

Synopsis

    result = bessel_jn(n, x)
     elemental real(kind=KIND) function bessel_jn(n,x)

      integer(kind=**),intent(in) :: n
      real(kind=KIND),intent(in) :: x
    result = bessel_jn(n1, n2, x)
     real(kind=KIND) function bessel_jn(n1, n2, ,x)

     integer(kind=**),intent(in) :: n1
     integer(kind=**),intent(in) :: n2
     real(kind=KIND),intent(in) :: x

Description

bessel_jn( n, x ) computes the Bessel function of the first kind of order n of x.

bessel_jn(n1, n2, x) returns an array with the Bessel function|Bessel functions of the first kind of the orders n1 to n2.

Options

Result

The result value of BESSEL_JN (N, X) is a processor-dependent approximation to the Bessel function of the first kind and order N of X.

The result of BESSEL_JN (N1, N2, X) is a rank-one array with extent MAX (N2-N1+1, 0). Element i of the result value of BESSEL_JN (N1, N2, X) is a processor-dependent approximation to the Bessel function of the first kind and order N1+i-1 of X.

Examples

Sample program:

program demo_bessel_jn
use, intrinsic :: iso_fortran_env, only : real32, real64, real128
implicit none
real(kind=real64) :: x = 1.0_real64
    x = bessel_jn(5,x)
    write(*,*)x
end program demo_bessel_jn

Results:

  > 2.4975773021123450E-004

Standard

Fortran 2008

See Also

bessel_j0(3), bessel_j1(3), bessel_y0(3), bessel_y1(3), bessel_yn(3)

Fortran intrinsic descriptions

bessel_y0

Name

bessel_y0(3) - [MATHEMATICS] Bessel function of the second kind of order 0

Synopsis

    result = bessel_y0(x)
     elemental real(kind=KIND) function bessel_y0(x)

      real(kind=KIND),intent(in) :: x

Characteristics

Description

bessel_y0(3) computes the Bessel function of the second kind of order 0 of x.

Options

Result

The return value is of type real. It has the same kind as x.

Examples

Sample program:

program demo_bessel_y0
use, intrinsic :: iso_fortran_env, only : real32, real64, real128
implicit none
  real(kind=real64) :: x = 0.0_real64
  x = bessel_y0(x)
  write(*,*)x
end program demo_bessel_y0

Results:

   > -Infinity

Standard

Fortran 2008

See Also

bessel_j0(3), bessel_j1(3), bessel_jn(3), bessel_y1(3), bessel_yn(3)

Fortran intrinsic descriptions

bessel_y1

Name

bessel_y1(3) - [MATHEMATICS] Bessel function of the second kind of order 1

Synopsis

    result = bessel_y1(x)
     elemental real(kind=KIND) function bessel_y1(x)

      real(kind=KIND),intent(in) :: x

Characteristics

Description

bessel_y1(3) computes the Bessel function of the second kind of order 1 of x.

Options

Result

The return value is real. It has the same kind as x.

Examples

Sample program:

program demo_bessel_y1
use, intrinsic :: iso_fortran_env, only : real32, real64, real128
implicit none
  real(kind=real64) :: x = 1.0_real64
  write(*,*)x, bessel_y1(x)
end program demo_bessel_y1

Results:

 >    1.00000000000000      -0.781212821300289

Standard

Fortran 2008

See Also

bessel_j0(3), bessel_j1(3), bessel_jn(3), bessel_y0(3), bessel_yn(3)

Fortran intrinsic descriptions

bessel_yn

Name

bessel_yn(3) - [MATHEMATICS] Bessel function of the second kind

Synopsis

    result = bessel_yn(n, x)
     elemental real(kind=KIND) function bessel_yn(n,x)

      integer(kind=**),intent(in) :: n
      real(kind=KIND),intent(in) :: x

Characteristics

    result = bessel_yn(n1, n2, x)
     real(kind=KIND) function bessel_yn(n1, n2, ,x)

      integer(kind=**),intent(in) :: n1
      integer(kind=**),intent(in) :: n2
      real(kind=KIND),intent(in) :: x

Description

bessel_yn(n, x) computes the Bessel function of the second kind of order n of x.

bessel_yn(n1, n2, x) returns an array with the Bessel function|Bessel functions of the first kind of the orders n1 to n2.

Options

Result

The result value of BESSEL_YN (N, X) is a processor-dependent approximation to the Bessel function of the second kind and order N of X.

The result of BESSEL_YN (N1, N2, X) is a rank-one array with extent MAX (N2-N1+1, 0). Element i of the result value of BESSEL_YN (N1, N2, X) is a processor-dependent approximation to the Bessel function of the second kind and order N1+i-1 of X.

Examples

Sample program:

program demo_bessel_yn
use, intrinsic :: iso_fortran_env, only : real32, real64, real128
implicit none
real(kind=real64) :: x = 1.0_real64
  write(*,*) x,bessel_yn(5,x)
end program demo_bessel_yn

Results:

  > 1.0000000000000000       -260.40586662581222

Standard

Fortran 2008

See Also

bessel_j0(3), bessel_j1(3), bessel_jn(3), bessel_y0(3), bessel_y1(3)

Fortran intrinsic descriptions

bge

Name

bge(3) - [BIT:COMPARE] Bitwise greater than or equal to

Synopsis

    result = bge(i,j)
      elemental logical function bge(i, j)

       integer(kind=**),intent(in) :: i
       integer(kind=**),intent(in) :: j

Characteristics

Description

bge(3) Determines whether one integer is bitwise greater than or equal to another.

The bit-level representation of a value is platform dependent. The endian-ness of a system and whether the system uses a “two’s complement” representation of signs can affect the results, for example.

A BOZ constant (Binary, Octal, Hexadecimal) does not have a kind or type of its own, so be aware it is subject to truncation when transferred to an integer type. The most bits the constant may contain is limited by the most bits representable by any integer kind supported by the compilation.

Bit Sequence Comparison

When bit sequences of unequal length are compared, the shorter sequence is padded with zero bits on the left to the same length as the longer sequence (up to the largest number of bits any available integer kind supports).

Bit sequences are compared from left to right, one bit at a time, until unequal bits are found or until all bits have been compared and found to be equal.

The bits are always evaluated in this order, not necessarily from MSB to LSB (most significant bit to least significant bit).

If unequal bits are found the sequence with zero in the unequal position is considered to be less than the sequence with one in the unequal position.

Options

Result

Returns .true. if i is bit-wise greater than j and .false. otherwise.

Examples

Sample program:

program demo_bge
use,intrinsic :: iso_fortran_env, only : int8, int16, int32, int64
implicit none
integer            :: i
integer(kind=int8) :: byte
integer(kind=int8),allocatable :: arr1(:), arr2(:)

  ! BASIC USAGE
   write(*,*)'bge(-127,127)=',bge( -127, 127 )
   ! on (very common) "two's complement" machines that are
   ! little-endian -127 will be greater than 127

   ! BOZ constants
   ! BOZ constants are subject to truncation, so make sure
   ! your values are valid for the integer kind being compared to
   write(*,*)'bge(b"0001",2)=',bge( b"1", 2)

  ! ELEMENTAL
   ! an array and scalar
   write(*, *)'compare array of values [-128, -0, +0, 127] to 127'
   write(*, *)bge(int([-128, -0, +0, 127], kind=int8), 127_int8)

   ! two arrays
   write(*, *)'compare two arrays'
   arr1=int( [ -127, -0, +0,  127], kind=int8 )
   arr2=int( [  127,  0,  0, -127], kind=int8 )
   write(*,*)'arr1=',arr1
   write(*,*)'arr2=',arr2
   write(*, *)'bge(arr1,arr2)=',bge( arr1, arr2 )

  ! SHOW TESTS AND BITS
   ! actually looking at the bit patterns should clarify what affect
   ! signs have ...
   write(*,*)'Compare some one-byte values to 64.'
   write(*,*)'Notice that the values are tested as bits not as integers'
   write(*,*)'so the results are as if values are unsigned integers.'
   do i=-128,127,32
      byte=i
      write(*,'(sp,i0.4,*(1x,1l,1x,b0.8))')i,bge(byte,64_int8),byte
   enddo

  ! SIGNED ZERO
   ! are +0 and -0 the same on your platform? When comparing at the
   ! bit level this is important
   write(*,'("plus zero=",b0)')  +0
   write(*,'("minus zero=",b0)') -0

end program demo_bge

Results:

How an integer value is represented at the bit level can vary. These are just the values expected on Today’s most common platforms …

    > bge(-127,127)= T
    > bge(b"0001",2)= F
    > compare array of values [-128, -0, +0, 127] to 127
    > T F F T
    > compare two arrays
    > arr1= -127    0    0  127
    > arr2=  127    0    0 -127
    > bge(arr1,arr2)= T T T F
    > Compare some one-byte values to 64.
    > Notice that the values are tested as bits not as integers
    > so the results are as if values are unsigned integers.
    > -0128  T 10000000
    > -0096  T 10100000
    > -0064  T 11000000
    > -0032  T 11100000
    > +0000  F 00000000
    > +0032  F 00100000
    > +0064  T 01000000
    > +0096  T 01100000
    > plus zero=0
    > minus zero=0

Standard

Fortran 2008

See Also

bgt(3), ble(3), blt(3)

Fortran intrinsic descriptions (license: MIT) @urbanjost

bgt

Name

bgt(3) - [BIT:COMPARE] Bitwise greater than

Synopsis

    result = bgt(i, j)
      elemental logical function bgt(i, j)

       integer(kind=**),intent(in) :: i
       integer(kind=**),intent(in) :: j

Characteristics

Description

bgt determines whether an integer is bitwise greater than another. Bit-level representations of values are platform-dependent.

Options

Result

The return value is of type logical and of the default kind. The result is true if the sequence of bits represented by i is greater than the sequence of bits represented by j, otherwise the result is false.

Bits are compared from right to left.

Examples

Sample program:

program demo_bgt
use,intrinsic :: iso_fortran_env, only : int8, int16, int32, int64
implicit none
integer            :: i
integer(kind=int8) :: byte
  ! Compare some one-byte values to 64.
   ! Notice that the values are tested as bits not as integers
   ! so sign bits in the integer are treated just like any other
   write(*,'(a)') 'we will compare other values to 64'
   i=64
   byte=i
   write(*,'(sp,i0.4,*(1x,1l,1x,b0.8))')i,bgt(byte,64_int8),byte

   write(*,'(a)') "comparing at the bit level, not as whole numbers."
   write(*,'(a)') "so pay particular attention to the negative"
   write(*,'(a)') "values on this two's complement platform ..."
   do i=-128,127,32
      byte=i
      write(*,'(sp,i0.4,*(1x,1l,1x,b0.8))')i,bgt(byte,64_int8),byte
   enddo

   ! see the BGE() description for an extended description
   ! of related information

end program demo_bgt

Results:

 > we will compare other values to 64
 > +0064  F 01000000
 > comparing at the bit level, not as whole numbers.
 > so pay particular attention to the negative
 > values on this two's complement platform ...
 > -0128  T 10000000
 > -0096  T 10100000
 > -0064  T 11000000
 > -0032  T 11100000
 > +0000  F 00000000
 > +0032  F 00100000
 > +0064  F 01000000
 > +0096  T 01100000

Standard

Fortran 2008

See Also

bge(3), ble(3), blt(3)

Fortran intrinsic descriptions (license: MIT) @urbanjost

bit_size

Name

bit_size(3) - [BIT:INQUIRY] Bit size inquiry function

Synopsis

    result = bit_size(i)
     integer(kind=KIND) function bit_size(i)

      integer(kind=KIND),intent(in) :: i(..)

Characteristics

Description

bit_size(3) returns the number of bits (integer precision plus sign bit) represented by the type of the integer i.

Options

Result

The number of bits used to represent a value of the type and kind of i. The result is a integer scalar of the same kind as i.

Examples

Sample program:

program demo_bit_size
use,intrinsic :: iso_fortran_env, only : int8, int16, int32, int64
use,intrinsic :: iso_fortran_env, only : integer_kinds
implicit none
character(len=*),parameter   :: fmt=&
& '(a,": bit size is ",i3," which is kind=",i3," on this platform")'

    ! default integer bit size on this platform
    write(*,fmt) "default", bit_size(0), kind(0)

    write(*,fmt) "int8   ", bit_size(0_int8),   kind(0_int8)
    write(*,fmt) "int16  ", bit_size(0_int16),  kind(0_int16)
    write(*,fmt) "int32  ", bit_size(0_int32),  kind(0_int32)
    write(*,fmt) "int64  ", bit_size(0_int64),  kind(0_int64)

    write(*,'(a,*(i0:,", "))') "The available kinds are ",integer_kinds

end program demo_bit_size

Typical Results:

  > default: bit size is  32 which is kind=  4 on this platform
  > int8   : bit size is   8 which is kind=  1 on this platform
  > int16  : bit size is  16 which is kind=  2 on this platform
  > int32  : bit size is  32 which is kind=  4 on this platform
  > int64  : bit size is  64 which is kind=  8 on this platform
  > The available kinds are 1, 2, 4, 8, 16

Standard

Fortran 95

See Also

Fortran intrinsic descriptions (license: MIT) @urbanjost

ble

Name

ble(3) - [BIT:COMPARE] Bitwise less than or equal to

Synopsis

    result = ble(i,j)
     elemental logical function ble(i, j)

      integer(kind=**),intent(in) :: i
      integer(kind=**),intent(in) :: j

Characteristics

Description

ble(3) determines whether an integer is bitwise less than or equal to another, assuming any shorter value is padded on the left with zeros to the length of the longer value.

Options

Result

The return value is .true. if any bit in j is less than any bit in i starting with the rightmost bit and continuing tests leftward.

Examples

Sample program:

program demo_ble
use,intrinsic :: iso_fortran_env, only : int8, int16, int32, int64
implicit none
integer            :: i
integer(kind=int8) :: byte
  ! Compare some one-byte values to 64.
   ! Notice that the values are tested as bits not as integers
   ! so sign bits in the integer are treated just like any other
   do i=-128,127,32
      byte=i
      write(*,'(sp,i0.4,*(1x,1l,1x,b0.8))')i,ble(byte,64_int8),byte
      write(*,'(sp,i0.4,*(4x,b0.8))')64_int8,64_int8
   enddo

   ! see the BGE() description for an extended description
   ! of related information

end program demo_ble

Results:

 >  -0128  F 10000000
 >  +0064    01000000
 >  -0096  F 10100000
 >  +0064    01000000
 >  -0064  F 11000000
 >  +0064    01000000
 >  -0032  F 11100000
 >  +0064    01000000
 >  +0000  T 00000000
 >  +0064    01000000
 >  +0032  T 00100000
 >  +0064    01000000
 >  +0064  T 01000000
 >  +0064    01000000
 >  +0096  F 01100000
 >  +0064    01000000

Standard

Fortran 2008

See Also

bge(3), bgt(3), blt(3)

Fortran intrinsic descriptions (license: MIT) @urbanjost

blt

Name

blt(3) - [BIT:COMPARE] Bitwise less than

Synopsis

    result = blt(i,j)
     elemental logical function blt(i, j)

      integer(kind=**),intent(in) :: i
      integer(kind=**),intent(in) :: j

Characteristics

BOZ constants must have a value valid for the integer kind available with the most bits on the current platform.

Description

blt(3) determines whether an integer is bitwise less than another.

Options

Result

The return value is of type logical and of the default kind.

Examples

Sample program:

program demo_blt
use,intrinsic :: iso_fortran_env, only : int8, int16, int32, int64
implicit none
integer            :: i
integer(kind=int8) :: byte
  ! Compare some one-byte values to 64.
   ! Notice that the values are tested as bits not as integers
   ! so sign bits in the integer are treated just like any other
   do i=-128,127,32
      byte=i
      write(*,'(sp,i0.4,*(1x,1l,1x,b0.8))')i,blt(byte,64_int8),byte
   enddo
  ! BOZ literals
   write(*,*)blt(z'1000', z'101011010')
   ! see the BGE() description for an extended description
   ! of related information

end program demo_blt

Results:

   > -0128  F 10000000
   > -0096  F 10100000
   > -0064  F 11000000
   > -0032  F 11100000
   > +0000  T 00000000
   > +0032  T 00100000
   > +0064  F 01000000
   > +0096  F 01100000
   > T

Standard

Fortran 2008

See Also

bge(3), bgt(3), ble(3)

Fortran intrinsic descriptions (license: MIT) @urbanjost

btest

Name

btest(3) - [BIT:INQUIRY] Tests a bit of an integer value.

Synopsis

    result = btest(i,pos)
     elemental logical function btest(i,pos)

      integer(kind=**),intent(in)  :: i
      integer(kind=**),intent(in)  :: pos

Characteristics

Description

btest(3) returns logical .true. if the bit at pos in i is set to 1. Position zero is the right-most bit. Bit position increases from right to left up to bitsize(i)-1.

Options

Result

The result is a logical that has the value .true. if bit position pos of i has the value 1 and the value .false. if bit pos of i has the value 0.

Positions of bits in the sequence are numbered from right to left, with the position of the rightmost bit being zero.

Examples

Sample program:

program demo_btest
implicit none
integer :: i, j, pos, a(2,2)
logical :: bool
character(len=*),parameter :: g='(*(g0))'

     i = 32768 + 1024 + 64
    write(*,'(a,i0,"=>",b32.32,/)')'Looking at the integer: ',i

    ! looking one bit at a time from LOW BIT TO HIGH BIT
    write(*,g)'from bit 0 to bit ',bit_size(i),'==>'
    do pos=0,bit_size(i)-1
        bool = btest(i, pos)
        write(*,'(l1)',advance='no')bool
    enddo
    write(*,*)

    ! a binary format the hard way.
    ! Note going from bit_size(i) to zero.
    write(*,*)
    write(*,g)'so for ',i,' with a bit size of ',bit_size(i)
    write(*,'(b32.32)')i
    write(*,g)merge('^','_',[(btest(i,j),j=bit_size(i)-1,0,-1)])
    write(*,*)
    write(*,g)'and for ',-i,' with a bit size of ',bit_size(i)
    write(*,'(b32.32)')-i
    write(*,g)merge('^','_',[(btest(-i,j),j=bit_size(i)-1,0,-1)])

    ! elemental:
    !
    a(1,:)=[ 1, 2 ]
    a(2,:)=[ 3, 4 ]
    write(*,*)
    write(*,'(a,/,*(i2,1x,i2,/))')'given the array a ...',a
    ! the second bit of all the values in a
    write(*,'(a,/,*(l2,1x,l2,/))')'the value of btest (a, 2)',btest(a,2)
    ! bits 1,2,3,4 of the value 2
    write(*,'(a,/,*(l2,1x,l2,/))')'the value of btest (2, a)',btest(2,a)
end program demo_btest

Results:

  > Looking at the integer: 33856=>11111111111111110111101111000000
  >
  > 00000000000000001000010001000000
  > 11111111111111110111101111000000
  > 1000010001000000
  > 11111111111111110111101111000000
  > from bit 0 to bit 32==>
  > FFFFFFTFFFTFFFFTFFFFFFFFFFFFFFFF
  >
  > so for 33856 with a bit size of 32
  > 00000000000000001000010001000000
  > ________________^____^___^______
  >
  > and for -33856 with a bit size of 32
  > 11111111111111110111101111000000
  > ^^^^^^^^^^^^^^^^_^^^^_^^^^______
  >
  > given the array a ...
  >  1  3
  >  2  4
  >
  > the value of btest (a, 2)
  >  F  F
  >  F  T
  >
  > the value of btest (2, a)
  >  T  F
  >  F  F

Standard

Fortran 95

See Also

iand(3), ibclr(3), ibits(3), ibset(3), ieor(3), ior(3), mvbits(3), not(3)

Fortran intrinsic descriptions (license: MIT) @urbanjost

c_associated

Name

c_associated(3) - [ISO_C_BINDING] Status of a C pointer

Synopsis

    result = c_associated(c_prt_1, [c_ptr_2] )
     logical function c_associated(c_prt_1, cptr_2)

      TYPE,intent(in) ::c_ptr_1
      TYPE,intent(in),optional ::c_ptr_2

Characteristics

Description

c_associated(3) determines the status of the C pointer c_ptr_1 or if c_ptr_1 is associated with the target c_ptr_2.

Options

Result

The return value is of type logical; it is .false. if either c_ptr_1 is a C NULL pointer or if c_ptr1 and c_ptr_2 point to different addresses.

Examples

Sample program:

program demo_c_associated

contains

subroutine association_test(a,b)
use iso_c_binding, only: c_associated, c_loc, c_ptr
implicit none
real, pointer :: a
type(c_ptr) :: b
   if(c_associated(b, c_loc(a))) &
      stop 'b and a do not point to same target'
end subroutine association_test

end program demo_c_associated

Standard

Fortran 2003

See Also

c_loc(3), c_funloc(3), iso_c_binding(3)

Fortran intrinsic descriptions

ceiling

Name

ceiling(3) - [NUMERIC] returns the least integer greater than or equal to a.

Synopsis

    result = ceiling(a [,kind])
     elemental integer(KIND) function ceiling(a,KIND)

      real(kind=**),intent(in)  :: a
      integer,intent(in),optional :: KIND

Characteristics

Description

ceiling(3) returns the least integer greater than or equal to a.

On the number line -n <– 0 -> +n the value returned is always at or to the right of the input value.

For example, ceil(0.5) is 1.0, and ceil(-0.5) is 0.0.

The input value may be too large to store the result in an integer type. To avoid an overflow (which produces an undefined result), an application should perform a range check on the input value before using ceiling(3).

Options

Result

The result will be the integer value equal to a or the least integer greater than a if the input value is not equal to a whole number.

If a is equal to a whole number, the returned value is int(a).

The result is undefined if it cannot be represented in the specified integer type.

Examples

Sample program:

program demo_ceiling
implicit none
! just a convenient format for a list of integers
character(len=*),parameter :: gen='(1x,*(g0:,1x))'
real              :: x
real              :: y
real,parameter    :: arr(*)=[ &
   &  -2.7,  -2.5, -2.2, -2.0, -1.5, &
   &  -1.0,  -0.5,  0.0, +0.5, +1.0, &
   &  +1.5,  +2.0, +2.2, +2.5, +2.7  ]
integer           :: i
integer           :: ierr
character(len=80) :: message
   print *, 'Basic Usage'
   x = 63.29
   y = -63.59
   print gen, ceiling(x), ceiling(y)
   ! note the result was the next integer larger to the right

   print *, 'Whole Numbers' ! real values equal to whole numbers
   x = 63.0
   y = -63.0
   print gen, ceiling(x), ceiling(y)

   print *, 'Elemental' ! (so an array argument is allowed)
   print gen , ceiling(arr)

   print *, 'Advanced Usage' ! Dealing with large magnitude values
   print '(a)',[character(len=80):: &
   'Limits                                                           ',&
   'You only care about Limits if you are using values near or above ',&
   'the limits of the integer type you are using (see huge(3)).      ',&
   '',&
   'Surprised by some of the following results?                      ',&
   'What do real values clearly out of the range of integers return? ',&
   'What do values near the end of the range of integers return?     ',&
   'The standard only specifies what happens for representable values',&
   'in the range of integer values.                                  ',&
   '',&
   'It is common but not required that if the input is out of range  ',&
   'and positive the result is -huge(0) and -huge(0)-1 if negative.  ',&
   'Note you are out of range before you get to real(huge(0)).       ',&
   '' ]
   print gen , 'For reference: huge(0)=',huge(0),'-huge(0)-1=',-huge(0)-1

   x=huge(0)
   call displayx()

   x=2*x
   call displayx()

   x=-huge(0)-1
   call displayx()

   x=2*x
   call displayx()

   print gen , repeat('=',80)

contains

subroutine displayx()
use,intrinsic :: iso_fortran_env, only: int8,int16,int32,int64
   print gen , repeat('=',80)
   print gen , 'x=',x,' spacing=',spacing(x)
   print gen , ' ceiling(x):',ceiling(x)
   print gen , ' ceiling(x,kind=int64):',ceiling(x,kind=int64)
   print gen , ' ceiling_robust(x):',ceiling_robust(x,ierr,message)
   if(ierr.ne.0)then
      print gen, ierr,'=>',trim(message)
   endif
end subroutine displayx

elemental impure function ceiling_robust(x,ierr,message)
! return the least integer >= x
use,intrinsic :: iso_fortran_env, only: int8,int16,int32,int64
use,intrinsic :: iso_fortran_env, only: real32,real64,real128
real,intent(in)                       :: x
integer,intent(out),optional          :: ierr
character(len=*),intent(out),optional :: message
character(len=80)                     :: message_local
integer                               :: ceiling_robust
integer                               :: ierr_local
   ierr_local=0
   message_local=''
   ! allow -huge(0)-1 or not?
   if(spacing(x) > 128)then ! bounds checking
      if(x.ge.0)then
         write(message_local,*)'<ERROR>X=',x,' >=',anint(real(huge(0)))
         ierr_local=1
         ceiling_robust=huge(0)
      else
         ierr_local=2
         ceiling_robust=-huge(0)-1
         write(message_local,*)'<ERROR>X=',x,' <=',anint(real(-huge(0)-1))
      endif
   else
      ! used to use a computed goto to do this!
      ceiling_robust = int(x)
      if (x > 0.0) then
         if (real(ceiling_robust) < x)then
            ceiling_robust = ceiling_robust + 1
         endif
      endif
   endif
   if(present(ierr))then
      ierr=ierr_local
   elseif(ierr_local.ne.0)then
      stop message_local
   endif
   if(present(message))then
      message=message_local
   endif
end function ceiling_robust

end program demo_ceiling

Results:

 >  Basic Usage
 >  64 -63
 >  Whole Numbers
 >  63 -63
 >  Elemental
 >  -2 -2 -2 -2 -1 -1 0 0 1 1 2 2 3 3 3
 > Limits
 >
 > Surprised by some of the following results?
 > What do real values clearly out of the range of integers return?
 > What do values near the end of the range of integers return?
 > The standard only specifies what happens for representable values
 > in the range of integer values.
 >
 > It is common but not required that if the input is out of range
 > and positive the result is -huge(0) and -huge(0)-1 if negative.
 > Note you are out of range before you get to real(huge(0)).
 >
 >  For reference: huge(0)= 2147483647 -huge(0)-1= -2147483648
 >  ======================================================================
 >  x= 0.214748365E+10  spacing= 256.000000
 >   ceiling(x): -2147483647
 >   ceiling(x,kind=int64): 2147483648
 >   ceiling_robust(x): 2147483647
 >  1 =>  <ERROR>X=   2.14748365E+09  >=   2.14748365E+09
 >  ======================================================================
 >  x= 0.429496730E+10  spacing= 512.000000
 >   ceiling(x): -2147483647
 >   ceiling(x,kind=int64): 4294967296
 >   ceiling_robust(x): 2147483647
 >  1 =>  <ERROR>X=   4.29496730E+09  >=   2.14748365E+09
 >  ======================================================================
 >  x= -0.214748365E+10  spacing= 256.000000
 >   ceiling(x): -2147483648
 >   ceiling(x,kind=int64): -2147483648
 >   ceiling_robust(x): -2147483648
 >  2 =>  <ERROR>X=  -2.14748365E+09  <=  -2.14748365E+09
 >  ======================================================================
 >  x= -0.429496730E+10  spacing= 512.000000
 >   ceiling(x): -2147483648
 >   ceiling(x,kind=int64): -4294967296
 >   ceiling_robust(x): -2147483648
 >  2 =>  <ERROR>X=  -4.29496730E+09  <=  -2.14748365E+09
 >  ======================================================================

Standard

Fortran 95

See Also

floor(3), nint(3)

aint(3), anint(3), int(3), selected_int_kind(3)

nearest(3), spacing(3), epsilon(3)

Fortran intrinsic descriptions (license: MIT) @urbanjost

c_f_pointer

Name

c_f_pointer(3) - [ISO_C_BINDING] Convert C into Fortran pointer

Synopsis

    call c_f_pointer(cptr, fptr [,shape] )
     subroutine c_f_pointer(cptr, fptr ,shape )

      type(c_ptr),intent(in) :: cprt
      type(TYPE),pointer,intent(out) :: fprt
      integer,intent(in),optional :: shape(:)

Characteristics

The Fortran pointer fprt must be interoperable with cptr

shape is only specified if fptr is an array.

Description

c_f_pointer(3) assigns the target (the C pointer cptr) to the Fortran pointer fptr and specifies its shape if fptr points to an array.

Options

Examples

Sample program:

program demo_c_f_pointer
use iso_c_binding
implicit none
interface
   subroutine my_routine(p) bind(c,name='myC_func')
      import :: c_ptr
      type(c_ptr), intent(out) :: p
   end subroutine
end interface
type(c_ptr) :: cptr
real,pointer :: a(:)
   call my_routine(cptr)
   call c_f_pointer(cptr, a, [12])
end program demo_c_f_pointer

Standard

Fortran 2003

See Also

c_loc(3), c_f_procpointer(3), iso_c_binding(3)

Fortran intrinsic descriptions

c_f_procpointer

Name

c_f_procpointer(3) - [ISO_C_BINDING] Convert C into Fortran procedure pointer

Synopsis

    call c_f_procpointer(cptr, fptr)
     subroutine c_f_procpointer(cptr, fptr )

      type(c_funptr),intent(in) :: cprt
      type(TYPE),pointer,intent(out) :: fprt

Characteristics

Description

c_f_procpointer(3) assigns the target of the C function pointer cptr to the Fortran procedure pointer fptr.

Options

Examples

Sample program:

program demo_c_f_procpointer
use iso_c_binding
implicit none
abstract interface
   function func(a)
   import :: c_float
   real(c_float), intent(in) :: a
   real(c_float) :: func
   end function
end interface
interface
   function getIterFunc() bind(c,name="getIterFunc")
   import :: c_funptr
   type(c_funptr) :: getIterFunc
   end function
end interface
type(c_funptr) :: cfunptr
procedure(func), pointer :: myFunc
   cfunptr = getIterFunc()
   call c_f_procpointer(cfunptr, myFunc)
end program demo_c_f_procpointer

Standard

Fortran 2003

See Also

c_loc(3), c_f_pointer(3), iso_c_binding(3)

Fortran intrinsic descriptions

c_funloc

Name

c_funloc(3) - [ISO_C_BINDING] Obtain the C address of a procedure

Synopsis

    result = c_funloc(x)

Characteristics

Description

c_funloc(3) determines the C address of the argument.

Options

Result

The return value is of type c_funptr and contains the C address of the argument.

Examples

Sample program:

! program demo_c_funloc and module
module x
use iso_c_binding
implicit none
contains
subroutine sub(a) bind(c)
real(c_float) :: a
   a = sqrt(a)+5.0
end subroutine sub
end module x
!
program demo_c_funloc
use iso_c_binding
use x
implicit none
interface
   subroutine my_routine(p) bind(c,name='myC_func')
     import :: c_funptr
     type(c_funptr), intent(in) :: p
   end subroutine
end interface
   call my_routine(c_funloc(sub))
!
end program demo_c_funloc

Standard

Fortran 2003

See Also

c_associated(3), c_loc(3), c_f_pointer(3),

c_f_procpointer(3), iso_c_binding(3)

Fortran intrinsic descriptions

char

Name

char(3) - [CHARACTER:CONVERSION] Generate a character from a code value

Synopsis

    result = char(i [,kind])
     elemental character(kind=KIND) function char(i,KIND)

      integer(kind=**),intent(in) :: i
      integer(kind=**),intent(in),optional :: KIND

Characteristics

Description

Generates a character value given a numeric code representing the position i in the collating sequence associated with the specified kind kind.

Note that achar(3) is a similar function specifically for ASCII characters that is preferred when only ASCII is being processed, which is equivalent to char(i,kind=selected_char_kind(“ascii”) )

The ichar(3) function is the reverse of char(3), converting characters to their collating sequence value.

Options

Result

The return value is a single character of the specified kind, determined by the position of i in the collating sequence associated with the specified kind.

Examples

Sample program:

program demo_char
implicit none
integer, parameter :: ascii =  selected_char_kind ("ascii")
character(len=1, kind=ascii ) :: c, esc
integer :: i
  ! basic
   i=74
   c=char(i)
   write(*,*)'ASCII character ',i,'is ',c
   write(*,'(*(g0))')'Uppercase ASCII: ',(char(i),i=65,90)
   write(*,'(*(g0))')'lowercase ASCII: ',(char(i),i=97,122)
   esc=char(27)
   write(*,'(*(g0))')'Elemental: ',char([65,97,90,122])
  !
   print *, 'a selection of ASCII characters (shows hex if not printable)'
   do i=0,127,10
      c = char(i,kind=ascii)
      select case(i)
      case(32:126)
         write(*,'(i3,1x,a)')i,c
      case(0:31,127)
         ! print hexadecimal value for unprintable characters
         write(*,'(i3,1x,z2.2)')i,c
      case default
         write(*,'(i3,1x,a,1x,a)')i,c,'non-standard ASCII'
      end select
   enddo

end program demo_char

Results:

 >  ASCII character           74 is J
 > Uppercase ASCII: ABCDEFGHIJKLMNOPQRSTUVWXYZ
 > lowercase ASCII: abcdefghijklmnopqrstuvwxyz
 > Elemental: AaZz
 >  a selection of ASCII characters (shows hex if not printable)
 >   0 00
 >  10 0A
 >  20 14
 >  30 1E
 >  40 (
 >  50 2
 >  60 <
 >  70 F
 >  80 P
 >  90 Z
 > 100 d
 > 110 n
 > 120 x

Standard

FORTRAN 77

See Also

achar(3), iachar(3), ichar(3)

Functions that perform operations on character strings, return lengths of arguments, and search for certain arguments:

Fortran intrinsic descriptions (license: MIT) @urbanjost

c_loc

Name

c_loc(3) - [ISO_C_BINDING] Obtain the C address of an object

Synopsis

    result = c_loc(x)

Characteristics

Description

c_loc(3) determines the C address of the argument.

Options

Result

The return value is of type c_ptr and contains the C address of the argument.

Examples

Sample program:

   subroutine association_test(a,b)
   use iso_c_binding, only: c_associated, c_loc, c_ptr
   implicit none
   real, pointer :: a
   type(c_ptr) :: b
     if(c_associated(b, c_loc(a))) &
        stop 'b and a do not point to same target'
   end subroutine association_test

Standard

Fortran 2003

See Also

c_associated(3), c_funloc(3), c_f_pointer(3),

c_f_procpointer(3), iso_c_binding(3)

Fortran intrinsic descriptions

cmplx

Name

cmplx(3) - [TYPE:CONVERSION] Conversion to a complex type

Synopsis

    result = cmplx(x [,kind]) | cmplx(x [,y] [,kind])
     elemental complex(kind=KIND) function cmplx( x, y, kind )

      type(TYPE(kind=**)),intent(in)          :: x
      type(TYPE(kind=**)),intent(in),optional :: y
      integer(kind=**),intent(in),optional    :: KIND

Characteristics

The type of the arguments does not affect the kind of the result except for a complex x value.

NOTE: a kind designated as ** may be any supported kind for the type

Description

The cmplx(3) function converts numeric values to a complex value.

Even though constants can be used to define a complex variable using syntax like

      z = (1.23456789, 9.87654321)

this will not work for variables. So you cannot enter

      z = (a, b) ! NO ! (unless a and b are constants, not variables)

so to construct a complex value using non-complex values you must use the cmplx(3) function:

      z = cmplx(a, b)

or assign values separately to the imaginary and real components using the %IM and %RE designators:

      z%re = a
      z%im = b

If x is complex y is not allowed and cmplx essentially returns the input value except for an optional change of kind, which can be useful when passing a value to a procedure that requires the arguments to have a different kind (and does not return an altered value):

      call something(cmplx(z,kind=real64))

would pass a copy of a value with kind=real64 even if z had a different kind

but otherwise is equivalent to a simple assign. So if z1 and z2 were complex:

      z2 = z1        ! equivalent statements
      z2 = cmplx(z1)

If x is not complex x is only used to define the real component of the result but y is still optional – the imaginary part of the result will just be assigned a value of zero.

If y is present it is converted to the imaginary component.

cmplx(3) and double precision

Primarily in order to maintain upward compatibility you need to be careful when working with complex values of higher precision that the default.

It was necessary for Fortran to continue to specify that cmplx(3) always return a result of the default kind if the kind option is absent, since that is the behavior mandated by FORTRAN 77.

It might have been preferable to use the highest precision of the arguments for determining the return kind, but that is not the case. So with arguments with greater precision than default values you are required to use the kind argument or the greater precision values will be reduced to default precision.

This means cmplx(d1,d2), where d1 and d2 are doubleprecision, is treated as:

      cmplx(sngl(d1), sngl(d2))

which looses precision.

So Fortran 90 extends the cmplx(3) intrinsic by adding an extra argument used to specify the desired kind of the complex result.

      integer,parameter :: dp=kind(0.0d0)
      complex(kind=dp) :: z8
     ! wrong ways to specify constant values
      ! note this was stored with default real precision !
      z8 = cmplx(1.2345678901234567d0, 1.2345678901234567d0)
      print *, 'NO, Z8=',z8,real(z8),aimag(z8)

      z8 = cmplx(1.2345678901234567e0_dp, 1.2345678901234567e0_dp)
      ! again, note output components are just real
      print *, 'NO, Z8=',z8,real(z8),aimag(z8)
      !
      ! YES
      !
      ! kind= makes it work
      z8 = cmplx(1.2345678901234567d0, 1.2345678901234567d0,kind=dp)
      print *, 'YES, Z8=',z8,real(z8),aimag(z8)

A more recent alternative to using cmplx(3) is “F2018 component syntax” where real and imaginary parts of a complex entity can be accessed independently:

value%RE     ! %RE specifies the real part
or
value%IM     ! %IM specifies the imaginary part

Where the designator value is of course of complex type.

The type of a complex-part-designator is real, and its kind and shape are those of the designator. That is, you retain the precision of the complex value by default, unlike with cmplx.

The following are examples of complex part designators:

       impedance%re           !-- Same value as real(impedance)
       fft%im                 !-- Same value as AIMAG(fft)
       x%im = 0.0             !-- Sets the imaginary part of x to zero
       x(1:2)%re=[10,20]      !-- even if x is an array

NOTE for I/O

Note that if format statements are specified a complex value is treated as two real values.

For list-directed I/O (ie. using an asterisk for a format) and NAMELIST output the values are expected to be delimited by “(” and “)” and of the form “(real_part,imaginary_part)”. For NAMELIST input parenthesized values or lists of multiple real values are acceptable.

Options

Result

The return value is of complex type, with magnitudes determined by the values x and y.

The common case when x is not complex is that the real component of the result is assigned the value of x and the imaginary part is zero or the value of y if y is present.

When x is complex y is not allowed and the result is the same value as x with a possible change of kind. That is, the real part is real(x, kind) and the imaginary part is real(y, kind).

Examples

Sample program:

program demo_aimag
implicit none
integer,parameter :: dp=kind(0.0d0)
real(kind=dp)     :: precise
complex(kind=dp)  :: z8
complex           :: z4, zthree(3)
   precise=1.2345678901234567d0

  ! basic
   z4 = cmplx(-3)
   print *, 'Z4=',z4
   z4 = cmplx(1.23456789, 1.23456789)
   print *, 'Z4=',z4
   ! with a format treat a complex as two real values
   print '(1x,g0,1x,g0,1x,g0)','Z4=',z4

  ! working with higher precision values
   ! using kind=dp makes it keep DOUBLEPRECISION precision
   ! otherwise the result would be of default kind
   z8 = cmplx(precise, -precise )
   print *, 'lost precision Z8=',z8
   z8 = cmplx(precise, -precise ,kind=dp)
   print *, 'kept precision Z8=',z8

  ! assignment of constant values does not require cmplx(3)00
   ! The following is intuitive and works without calling cmplx(3)
   ! but does not work for variables just constants
   z8 = (1.1111111111111111d0, 2.2222222222222222d0 )
   print *, 'Z8 defined with constants=',z8

  ! what happens when you assign a complex to a real?
   precise=z8
   print *, 'LHS=',precise,'RHS=',z8

  ! elemental
   zthree=cmplx([10,20,30],-1)
   print *, 'zthree=',zthree

  ! descriptors are an alternative
   zthree(1:2)%re=[100,200]
   print *, 'zthree=',zthree

end program demo_aimag

Results:

  > Z4= (-3.000000,0.0000000E+00)
  > Z4= (1.234568,1.234568)
  > Z4= 1.234568 1.234568
  > lost precision Z8= (1.23456788063049,-1.23456788063049)
  > kept precision Z8= (1.23456789012346,-1.23456789012346)
  > Z8 defined with constants= (1.11111111111111,2.22222222222222)
  > LHS=   1.11111111111111      RHS= (1.11111111111111,2.22222222222222)
  > zthree= (10.00000,-1.000000) (20.00000,-1.000000) (30.00000,-1.000000)
  > zthree= (100.0000,-1.000000) (200.0000,-1.000000) (30.00000,-1.000000)

Standard

FORTRAN 77, KIND added in Fortran 90.

See Also

Fortran has strong support for complex values, including many intrinsics that take or produce complex values in addition to algebraic and logical expressions:

abs(3), acosh(3), acos(3), asinh(3), asin(3), atan2(3), atanh(3), atan(3), cosh(3), cos(3), co_sum(3), dble(3), dot_product(3), exp(3), int(3), is_contiguous(3), kind(3), log(3), matmul(3), precision(3), product(3), range(3), rank(3), sinh(3), sin(3), sqrt(3), storage_size(3), sum(3), tanh(3), tan(3), unpack(3),

Fortran intrinsic descriptions (license: MIT) @urbanjost

co_broadcast

Name

co_broadcast(3) - [COLLECTIVE] Copy a value to all images the current set of images

Synopsis

    call co_broadcast(a, source_image [,stat] [,errmsg] )

Characteristics

Description

co_broadcast(3) copies the value of argument a on the image with image index source_image to all images in the current team. a becomes defined as if by intrinsic assignment. If the execution was successful and stat is present, it is assigned the value zero. If the execution failed, stat gets assigned a nonzero value and, if present, errmsg gets assigned a value describing the occurred error.

Options

Examples

Sample program:

program demo_co_broadcast
implicit none
integer :: val(3)
   if (this_image() == 1) then
      val = [1, 5, 3]
   endif
   call co_broadcast (val, source_image=1)
   print *, this_image(), ":", val
end program demo_co_broadcast

Standard

Fortran xx

See Also

co_max(3), co_min(3), co_sum(3), co_reduce(3)

Fortran intrinsic descriptions

co_max

Name

co_max(3) - [COLLECTIVE] Maximal value on the current set of images

Synopsis

     call co_max(a, result_image [,stat] [,errmsg] )

Characteristics

Description

co_max(3) determines element-wise the maximal value of a on all images of the current team. If result_image is present, the maximum values are returned in a on the specified image only and the value of a on the other images become undefined. If result_image is not present, the value is returned on all images. If the execution was successful and stat is present, it is assigned the value zero. If the execution failed, stat gets assigned a nonzero value and, if present, errmsg gets assigned a value describing the occurred error.

Options

Examples

Sample program:

program demo_co_max
implicit none
integer :: val
   val = this_image()
   call co_max(val, result_image=1)
   if (this_image() == 1) then
     write(*,*) "Maximal value", val  ! prints num_images()
   endif
end program demo_co_max

Results:

  > Maximal value           2

Standard

TS 18508

See Also

co_min(3), co_sum(3), co_reduce(3), co_broadcast(3)

Fortran intrinsic descriptions

co_min

Name

co_min(3) - [COLLECTIVE] Minimal value on the current set of images

Synopsis

     call co_min(a, result_image [,stat] [,errmsg] )

Characteristics

Description

co_min(3) determines element-wise the minimal value of a on all images of the current team. If result_image is present, the minimal values are returned in a on the specified image only and the value of a on the other images become undefined. If result_image is not present, the value is returned on all images. If the execution was successful and stat is present, it is assigned the value zero. If the execution failed, stat gets assigned a nonzero value and, if present, errmsg gets assigned a value describing the occurred error.

Options

Examples

Sample program:

program demo_co_min
implicit none
integer :: val
   val = this_image()
   call co_min(val, result_image=1)
   if (this_image() == 1) then
     write(*,*) "Minimal value", val  ! prints 1
   endif
end program demo_co_min

Standard

TS 18508

See Also

co_max(3), co_sum(3), co_reduce(3), co_broadcast(3)

Fortran intrinsic descriptions

command_argument_count

Name

command_argument_count(3) - [SYSTEM:COMMAND LINE] Get number of command line arguments

Synopsis

    result = command_argument_count()
     integer function command_argument_count()

Characteristics

Description

command_argument_count(3) returns the number of arguments passed on the command line when the containing program was invoked.

Options

None

Result

The return value is of type default integer. It is the number of arguments passed on the command line when the program was invoked.

If there are no command arguments available or if the processor does not support command arguments, then the result has the value zero.

If the processor has a concept of a command name, the command name does not count as one of the command arguments.

Examples

Sample program:

program demo_command_argument_count
implicit none
integer :: count
   count = command_argument_count()
   print *, count
end program demo_command_argument_count

Sample output:

   # the command verb does not count
   ./test_command_argument_count
       0
   # quoted strings may count as one argument
   ./test_command_argument_count count arguments
       2
   ./test_command_argument_count 'count arguments'
       1

Standard

Fortran 2003

See Also

get_command(3), get_command_argument(3)

Fortran intrinsic descriptions (license: MIT) @urbanjost

compiler_options

Name

compiler_options(3) - [COMPILER:INQUIRY] Options passed to the compiler

Synopsis

    result = compiler_options()
     character(len=:) function compiler_options()

Characteristics

Description

compiler_options(3) returns a string with the options used for compiling.

Options

None.

Result

The result contains the compiler flags used to compile the file containing the compiler_options(3) call.

Examples

Sample program:

program demo_compiler_version
use, intrinsic :: iso_fortran_env, only : compiler_version
use, intrinsic :: iso_fortran_env, only : compiler_options
implicit none
   print '(4a)', &
      'This file was compiled by ', &
      compiler_version(),           &
      ' using the options ',        &
      compiler_options()
end program demo_compiler_version

Results:

 > This file was compiled by GCC version 10.3.0 using
 > the options -I build/gfortran_2A42023B310FA28D
 > -mtune=generic -march=x86-64 -auxbase-strip
 > build/gfortran_2A42023B310FA28D/compiler_options/app_main.f90.o
 > -g -Wall -Wextra -Wimplicit-interface -fPIC -fmax-errors=1
 > -fcheck=bounds -fcheck=array-temps -fbacktrace
 > -fcoarray=single -J build/gfortran_2A42023B310FA28D
 > -fpre-include=/usr/include/finclude/math-vector-fortran.h

 > This file was compiled by nvfortran 21.5-0 LLVM
 > using the options app/main.f90 -c -Minform=inform
 > -Mbackslash -Mbounds -Mchkptr -Mchkstk -traceback -module
 > build/nvfortran_78229DCE997517A4 -Ibuild/nvfortran_78229DCE997517A4 -o
 > build/nvfortran_78229DCE997517A4/compiler_options/app_main.f90.o

 > This file was compiled by Intel(R) Fortran Intel(R) 64 Compiler Classic
 > for applications running on Intel(R) 64, Version 2021.3.0 Build
 > 20210609_000000 using the options -Ibuild/ifort_5C58216731706F11
 > -c -warn all -check all -error-limit 1 -O0 -g -assume
 > byterecl -traceback -module build/ifort_5C58216731706F11 -o
 > build/ifort_5C58216731706F11/compiler_options/app_main.f90.o

Standard

Fortran 2008

See Also

compiler_version(3), iso_fortran_env(7)

Fortran intrinsic descriptions (license: MIT) @urbanjost

compiler_version

Name

compiler_version(3) - [COMPILER:INQUIRY] Compiler version string

Synopsis

    result = compiler_version()
     character(len=:) function compiler_version()

Characteristics

Description

compiler_version(3) returns a string containing the name and version of the compiler.

Options

None.

Result

The return value contains the name of the compiler and its version number used to compile the file containing the compiler_version(3) call.

Examples

Sample program:

program demo_compiler_version
use, intrinsic :: iso_fortran_env, only : compiler_version
implicit none
   print '(2a)', &
      'This file was compiled by ', &
      compiler_version()
end program demo_compiler_version

Results:

 > This file was compiled by GCC version 10.3.0

 > This file was compiled by Intel(R) Fortran Intel(R) 64 Compiler
 > Classic for applications running on Intel(R) 64, Version 2021.3.0 Build
 > 20210609_000000

 > This file was compiled by nvfortran 21.5-0 LLVM

Standard

Fortran 2008

See Also

compiler_options(3), iso_fortran_env(7)

Fortran intrinsic descriptions (license: MIT) @urbanjost

conjg

Name

conjg(3) - [NUMERIC] Complex conjugate of a complex value

Synopsis

    result = conjg(z)
     elemental complex(kind=KIND) function conjg(z)

      complex(kind=**),intent(in) :: z

Characteristics

Description

conjg(3) returns the complex conjugate of the complex value z.

That is, If z is the complex value (x, y) then the result is (x, -y).

In mathematics, the complex conjugate of a complex number is a value whose real and imaginary part are equal parts are equal in magnitude to each other but the y value has opposite sign.

For matrices of complex numbers, conjg(array) represents the element-by-element conjugation of array; not the conjugate transpose of the array .

Options

Result

Returns a value equal to the input value except the sign of the imaginary component is the opposite of the input value.

That is, if z has the value (x,y), the result has the value (x, -y).

Examples

Sample program:

program demo_conjg
use, intrinsic :: iso_fortran_env, only : real32, real64, real128
implicit none
complex :: z = (2.0, 3.0)
complex(kind=real64) :: dz = (   &
   &  1.2345678901234567_real64, -1.2345678901234567_real64)
complex :: arr(3,3)
integer :: i
   ! basics
    ! notice the sine of the imaginary component changes
    print *, z, conjg(z)

    ! any complex kind is supported. z is of default kind but
    ! dz is kind=real64.
    print *, dz
    dz = conjg(dz)
    print *, dz
    print *

    ! the function is elemental so it can take arrays
    arr(1,:)=[(-1.0, 2.0),( 3.0, 4.0),( 5.0,-6.0)]
    arr(2,:)=[( 7.0,-8.0),( 8.0, 9.0),( 9.0, 9.0)]
    arr(3,:)=[( 1.0, 9.0),( 2.0, 0.0),(-3.0,-7.0)]

    write(*,*)'original'
    write(*,'(3("(",g8.2,",",g8.2,")",1x))')(arr(i,:),i=1,3)
    arr = conjg(arr)
    write(*,*)'conjugate'
    write(*,'(3("(",g8.2,",",g8.2,")",1x))')(arr(i,:),i=1,3)

end program demo_conjg

Results:

 >  (2.000000,3.000000) (2.000000,-3.000000)
 >
 >  (1.23456789012346,-1.23456789012346)
 >  (1.23456789012346,1.23456789012346)
 >
 >  original
 > (-1.0    , 2.0    ) ( 3.0    , 4.0    ) ( 5.0    ,-6.0    )
 > ( 7.0    ,-8.0    ) ( 8.0    , 9.0    ) ( 9.0    , 9.0    )
 > ( 1.0    , 9.0    ) ( 2.0    , 0.0    ) (-3.0    ,-7.0    )
 >
 >  conjugate
 > (-1.0    ,-2.0    ) ( 3.0    ,-4.0    ) ( 5.0    , 6.0    )
 > ( 7.0    , 8.0    ) ( 8.0    ,-9.0    ) ( 9.0    ,-9.0    )
 > ( 1.0    ,-9.0    ) ( 2.0    , 0.0    ) (-3.0    , 7.0    )

Standard

FORTRAN 77

See Also

Fortran has strong support for complex values, including many intrinsics that take or produce complex values in addition to algebraic and logical expressions:

abs(3), acosh(3), acos(3), asinh(3), asin(3), atan2(3), atanh(3), atan(3), cosh(3), cos(3), co_sum(3), dble(3), dot_product(3), exp(3), int(3), is_contiguous(3), kind(3), log(3), matmul(3), precision(3), product(3), range(3), rank(3), sinh(3), sin(3), sqrt(3), storage_size(3), sum(3), tanh(3), tan(3), unpack(3),

Fortran intrinsic descriptions (license: MIT) @urbanjost

co_reduce

Name

co_reduce(3) - [COLLECTIVE] Reduction of values on the current set of images

Synopsis

    call co_reduce(a, operation, result_image [,stat] [,errmsg] )

Characteristics

Description

co_reduce(3) determines element-wise the reduction of the value of a on all images of the current team. The pure function passed as operation is used to pairwise reduce the values of a by passing either the value of a of different images or the result values of such a reduction as argument. If a is an array, the reduction is done element wise. If result_image is present, the result values are returned in a on the specified image only and the value of a on the other images become undefined. If result_image is not present, the value is returned on all images. If the execution was successful and stat is present, it is assigned the value zero. If the execution failed, stat gets assigned a nonzero value and, if present, errmsg gets assigned a value describing the occurred error.

Options

Examples

Sample program:

program demo_co_reduce
implicit none
integer :: val

   val = this_image()
   call co_reduce(val, myprod, 1)
   if (this_image() == 1) then
      write(*,*) "Product value", val  ! prints num_images() factorial
   endif

contains

pure function myprod(a, b)
   integer, value :: a, b
   integer :: myprod
   myprod = a * b
end function myprod

end program demo_co_reduce

Results:

 >  Product value           1

Note

While the rules permit in principle an intrinsic function, none of the intrinsics in the standard fulfill the criteria of having a specific function, which takes two arguments of the same type and returning that type as a result.

Standard

TS 18508

See Also

co_min(3), co_max(3), co_sum(3), co_broadcast(3)

Fortran intrinsic descriptions

cosd

Name

cosd(3) - [MATHEMATICS:TRIGONOMETRIC] Degree cosine function

Synopsis

    result = cosd(x)
     elemental real(kind=KIND) function cosd(x)

      real(kind=KIND),intent(in) :: x

Characteristics

Description

cosd(3) computes the cosine of an angle x given the size of the angle in degrees.

The cosine is the ratio of the adjacent side to the hypotenuse of a right-angled triangle.

Options

Result

The return value is an approximation of the cosine of x.

The return value is in degrees and lies in the range -1 <= cosd(x) <= 1 .

Examples

cosd(180.0) has the value -1.0 (approximately).

Sample program:

program demo_cosd
implicit none
character(len=*),parameter :: g2='(a,t20,g0)'
   write(*,g2)'cosd(0.0)=',cosd(0.0)
   write(*,g2)'cosd(180.0)=',cosd(180.0)
   write(*,g2)'cosd(90.0d0)=',cosd(90.0d0)
   write(*,g2)'cosd(360.0)=',cosd(360.0)
   write(*,g2)'cosd(-360.0)=',cosd(-360.0)
   write(*,g2)'cosd(-2000*180.0)=',cosd(-2000*180.0)
   write(*,g2)'cosd(3000*180.0)=',cosd(3000*180.0)
end program demo_cosd

Results:

 > cosd(0.0)=         1.00000000
 > cosd(180.0)=       -1.00000000
 > cosd(90.0d0)=      0.0000000000000000
 > cosd(360.0)=       1.00000000
 > cosd(-360.0)=      1.00000000
 > cosd(-2000*180.0)= 1.00000000
 > cosd(3000*180.0)=  1.00000000

Standard

Fortran 2023

See Also

acosd(3), acos(3), sind(3), tand(3)

Resources

Fortran intrinsic descriptions

cosh

Name

cosh(3) - [MATHEMATICS:TRIGONOMETRIC] Hyperbolic cosine function

Synopsis

    result = cosh(x)
     elemental TYPE(kind=KIND) function cosh(x)

      TYPE(kind=KIND),intent(in) :: x

Characteristics

Description

cosh(3) computes the hyperbolic cosine of x.

If x is of type complex its imaginary part is regarded as a value in radians.

Options

Result

If x is complex, the imaginary part of the result is in radians.

If x is real, the return value has a lower bound of one, cosh(x) >= 1.

Examples

Sample program:

program demo_cosh
use, intrinsic :: iso_fortran_env, only : real32, real64, real128
implicit none
real(kind=real64) :: x = 1.0_real64
    write(*,*)'X=',x,'COSH(X=)',cosh(x)
end program demo_cosh

Results:

 >  X=   1.00000000000000      COSH(X=)   1.54308063481524

Standard

FORTRAN 77 , for a complex argument - Fortran 2008

See Also

Inverse function: acosh(3)

Resources

Fortran intrinsic descriptions

cos

Name

cos(3) - [MATHEMATICS:TRIGONOMETRIC] Cosine function

Synopsis

    result = cos(x)
     elemental TYPE(kind=KIND) function cos(x)

      TYPE(kind=KIND),intent(in) :: x

Characteristics

Description

cos(3) computes the cosine of an angle x given the size of the angle in radians.

The cosine of a real value is the ratio of the adjacent side to the hypotenuse of a right-angled triangle.

Options

Result

The return value is the cosine of x.

If x is of the type real, the return value is in radians and lies in the range -1 <= cos(x) <= 1 .

If x is of type complex, its real part is regarded as a value in radians, often called the phase.

Examples

Sample program:

program demo_cos
implicit none
character(len=*),parameter :: g2='(a,t20,g0)'
doubleprecision,parameter :: PI=atan(1.0d0)*4.0d0
   write(*,g2)'COS(0.0)=',cos(0.0)
   write(*,g2)'COS(PI)=',cos(PI)
   write(*,g2)'COS(PI/2.0d0)=',cos(PI/2.0d0),'EPSILON=',epsilon(PI)
   write(*,g2)'COS(2*PI)=',cos(2*PI)
   write(*,g2)'COS(-2*PI)=',cos(-2*PI)
   write(*,g2)'COS(-2000*PI)=',cos(-2000*PI)
   write(*,g2)'COS(3000*PI)=',cos(3000*PI)
end program demo_cos

Results:

 > COS(0.0)=          1.000000
 > COS(PI)=           -1.000000000000000
 > COS(PI/2.0d0)=     .6123233995736766E-16
 > EPSILON=           .2220446049250313E-15
 > COS(2*PI)=         1.000000000000000
 > COS(-2*PI)=        1.000000000000000
 > COS(-2000*PI)=     1.000000000000000
 > COS(3000*PI)=      1.000000000000000

Standard

FORTRAN 77

See Also

acos(3), sin(3), tan(3)

Resources

Fortran intrinsic descriptions

cospi

Name

cospi(3) - [MATHEMATICS:TRIGONOMETRIC] Circular Cosine function

Synopsis

    result = cospi(x)
     elemental real(kind=KIND) function cospi(x)

      real(kind=KIND),intent(in) :: x

Characteristics

Description

cospi(3) computes the circular cosine of an angle x given the size of the angle in half-revolutions.

The cosine of a real value is the ratio of the adjacent side to the hypotenuse of a right-angled triangle.

cospi(x) is approximately equal to cos(x*PI).

Options

Result

The return value is the approximate value of the cosine of x.

The return value lies in the range -1 <= cospi(x) <= 1 .

Examples

Example: cospi(1.0) has the value -1.0 (approximately).

Sample program:

program demo_cos
implicit none
character(len=*),parameter :: g2='(a,t21,*(g0,1x))'
   write(*,g2) 'Basics:'
   write(*,g2) 'COSpi(0)=',      cospi(0.0d0)
   write(*,g2) 'COSpi(1)=',      cospi(1.0d0)
   write(*,g2) 'COSpi(1/2)=',    cospi(1.0d0/2.0d0)
   write(*,g2) 'COSpi(2)=',      cospi(2.0d0)
   write(*,g2) 'COSpi(-2)=',     cospi(-2.0d0)
   write(*,g2) 'COSpi(-2000)=',  cospi(-2000.0d0)
   write(*,g2) 'COSpi(3000)=',   cospi(3000.0d0)
   write(*,g2) 'Elemental:'
   write(*,g2) 'COSpi([0,1/4,-1/4])=',COSpi([0.0,0.25,-0.25])
end program demo_cos

Results:

 > Basics:
 > COSpi(0)=           1.0000000000000000
 > COSpi(1)=           -1.0000000000000000
 > COSpi(1/2)=         0.61232339957367660E-16
 > COSpi(2)=           1.0000000000000000
 > COSpi(-2)=          1.0000000000000000
 > COSpi(-2000)=       1.0000000000000000
 > COSpi(3000)=        1.0000000000000000
 > Elemental:
 > COSpi([0,1/4,-1/4])=1.00000000 0.707106769 0.707106769

Standard

Fortran 2023

See Also

acos(3), sin(3), tan(3)

Resources

Fortran intrinsic descriptions

co_sum

Name

co_sum(3) - [COLLECTIVE] Sum of values on the current set of images

Synopsis

    call co_sum(a, result_image [,stat] [,errmsg] )

Characteristics

Description

co_sum(3) sums up the values of each element of a on all images of the current team.

If result_image is present, the summed-up values are returned in a on the specified image only and the value of a on the other images become undefined.

If result_image is not present, the value is returned on all images. If the execution was successful and stat is present, it is assigned the value zero. If the execution failed, stat gets assigned a nonzero value and, if present, errmsg gets assigned a value describing the occurred error.

Options

Examples

Sample program:

program demo_co_sum
implicit none
integer :: val
   val = this_image()
   call co_sum(val, result_image=1)
   if (this_image() == 1) then
      ! prints (n**2 + n)/2, with n = num_images()
      write(*,*) "The sum is ", val
   endif
end program demo_co_sum

Results:

  > The sum is            1

Standard

TS 18508

See Also

co_max(3), co_min(3), co_reduce(3), co_broadcast(3)

Fortran intrinsic descriptions

count

Name

count(3) - [ARRAY:REDUCTION] Count true values in an array

Synopsis

    result = count(mask [,dim] [,kind] )
     integer(kind=KIND) function count(mask, dim, KIND )

      logical(kind=**),intent(in) :: mask(..)
      integer(kind=**),intent(in),optional :: dim
      integer(kind=**),intent(in),optional :: KIND

Characteristics

Description

count(3) counts the number of .true. elements in a logical mask, or, if the dim argument is supplied, counts the number of elements along each row of the array in the dim direction. If the array has zero size or all of the elements of mask are false, then the result is 0.

Options

Result

The return value is the number of .true. values in mask if dim is not present.

If dim is present, the result is an array with a rank one less than the rank of the input array mask, and a size corresponding to the shape of array with the dim dimension removed, with the remaining elements containing the number of .true. elements along the removed dimension.

Examples

Sample program:

program demo_count
implicit none
character(len=*),parameter :: ints='(*(i2,1x))'
! two arrays and a mask all with the same shape
integer, dimension(2,3) :: a, b
logical, dimension(2,3) :: mymask
integer :: i
integer :: c(2,3,4)

print *,'the numeric arrays we will compare'
a = reshape( [ 1, 2, 3, 4, 5, 6 ], [ 2, 3 ])
b = reshape( [ 0, 7, 3, 4, 5, 8 ], [ 2, 3 ])
c = reshape( [( i,i=1,24)], [ 2, 3 ,4])
print '(3i3)', a(1,:)
print '(3i3)', a(2,:)
print *
print '(3i3)', b(1,:)
print '(3i3)', b(2,:)
!
! basic calls
print *, 'count a few basic things creating a mask from an expression'
print *, 'count a>b',count(a>b)
print *, 'count b<a',count(a<b)
print *, 'count b==a',count(a==b)
print *, 'check sum = ',count(a>b) + &
                      & count(a<b) + &
                      & count(a==b).eq.size(a)
!
! The common usage is just getting a count, but if you want
! to specify the DIM argument and get back reduced arrays
! of counts this is easier to visualize if we look at a mask.
print *, 'make a mask identifying unequal elements ...'
mymask = a.ne.b
print *, 'the mask generated from a.ne.b'
print '(3l3)', mymask(1,:)
print '(3l3)', mymask(2,:)
!
print *,'count total and along rows and columns ...'
!
print '(a)', 'number of elements not equal'
print '(a)', '(ie. total true elements in the mask)'
print '(3i3)', count(mymask)
!
print '(a)', 'count of elements not equal in each column'
print '(a)', '(ie. total true elements in each column)'
print '(3i3)', count(mymask, dim=1)
!
print '(a)', 'count of elements not equal in each row'
print '(a)', '(ie. total true elements in each row)'
print '(3i3)', count(mymask, dim=2)
!
! working with rank=3 ...
print *, 'lets try this with c(2,3,4)'
print *,'  taking the result of the modulo   '
print *,'   z=1      z=2      z=3      z=4   '
print *,'  1 3 0 || 2 4 1 || 3 0 2 || 4 1 3 |'
print *,'  2 4 1 || 3 0 2 || 4 1 3 || 0 2 4 |'
print *,'                                    '
print *,'  would result in the mask ..       '
print *,'  F F T || F F F || F T F || F F F |'
print *,'  F F F || F T F || F F F || T F F |'
print *,'                                    '
print *,' the total number of .true.values is'
print ints, count(modulo(c,5).eq.0)
call printi('counting up along a row and removing rows',&
count(modulo(c,5).eq.0,dim=1))
call printi('counting up along a column and removing columns',&
count(modulo(c,5).eq.0,dim=2))
call printi('counting up along a depth and removing depths',&
count(modulo(c,5).eq.0,dim=3))
!
contains
!
! CONVENIENCE ROUTINE FOR PRINTING SMALL INTEGER MATRICES
subroutine printi(title,arr)
implicit none
!
!@(#) print small 2d integer arrays in row-column format
!
character(len=*),parameter :: all='(*(g0,1x))' ! a handy format
character(len=*),intent(in)  :: title
integer,intent(in)           :: arr(:,:)
integer                      :: i
character(len=:),allocatable :: biggest
   !
   print all
   print all, trim(title),':(',shape(arr),')'  ! print title
   biggest='           '  ! make buffer to write integer into
   ! find how many characters to use for integers
   write(biggest,'(i0)')ceiling(log10(max(1.0,real(maxval(abs(arr))))))+2
   ! use this format to write a row
   biggest='(" > [",*(i'//trim(biggest)//':,","))'
   ! print one row of array at a time
   do i=1,size(arr,dim=1)
      write(*,fmt=biggest,advance='no')arr(i,:)
      write(*,'(" ]")')
   enddo
   !
end subroutine printi
end program demo_count

Results:

 >   the numeric arrays we will compare
 >    1  3  5
 >    2  4  6
 >
 >    0  3  5
 >    7  4  8
 >   count a few basic things creating a mask from an expression
 >   count a>b           1
 >   count b<a           2
 >   count b==a           3
 >   check sum =  T
 >   make a mask identifying unequal elements ...
 >   the mask generated from a.ne.b
 >    T  F  F
 >    T  F  T
 >   count total and along rows and columns ...
 >  number of elements not equal
 >  (ie. total true elements in the mask)
 >    3
 >  count of elements not equal in each column
 >  (ie. total true elements in each column)
 >    2  0  1
 >  count of elements not equal in each row
 >  (ie. total true elements in each row)
 >    1  2
 >   lets try this with c(2,3,4)
 >     taking the result of the modulo
 >      z=1      z=2      z=3      z=4
 >     1 3 0 || 2 4 1 || 3 0 2 || 4 1 3 |
 >     2 4 1 || 3 0 2 || 4 1 3 || 0 2 4 |
 >
 >     would result in the mask ..
 >     F F T || F F F || F T F || F F F |
 >     F F F || F T F || F F F || T F F |
 >
 >    the total number of .true.values is
 >   4
 >
 >  counting up along a row and removing rows :( 3 4 )
 >   > [ 0, 0, 0, 1 ]
 >   > [ 0, 1, 1, 0 ]
 >   > [ 1, 0, 0, 0 ]
 >
 >  counting up along a column and removing columns :( 2 4 )
 >   > [ 1, 0, 1, 0 ]
 >   > [ 0, 1, 0, 1 ]
 >
 >  counting up along a depth and removing depths :( 2 3 )
 >   > [ 0, 1, 1 ]
 >   > [ 1, 1, 0 ]

Standard

Fortran 95 , with KIND argument - Fortran 2003

See Also

Fortran intrinsic descriptions (license: MIT) @urbanjost

cpu_time

Name

cpu_time(3) - [SYSTEM:TIME] Return CPU processor time used in seconds

Synopsis

     call cpu_time(time)
      subroutine cpu_time(time)

       real,intent(out) :: time

Characteristics

Description

cpu_time(3) returns a real value representing the elapsed CPU time in seconds. This is useful for testing segments of code to determine execution time.

If no time source is available, time is set to a negative value.

The exact definition of time is left imprecise because of the variability in what different processors are able to provide.

Note that time may contain a system dependent, arbitrary offset and may not start with 0.0. For cpu_time(3) the absolute value is meaningless. Only differences between subsequent calls, as shown in the example below, should be used.

PARALLEL PROCESSING

Whether the value assigned is an approximation to the amount of time used by the invoking image, or the amount of time used by the whole program, is processor dependent.

A processor for which a single result is inadequate (for example, a parallel processor) might choose to provide an additional version for which time is an array.

Result

Examples

Sample program:

program demo_cpu_time
use, intrinsic :: iso_fortran_env, only : real32,real64,real128
implicit none
real :: start, finish
real(kind=real64) :: startd, finishd
   !
   call cpu_time(start)
   call cpu_time(startd)
   ! put code to time here
   call cpu_time(finish)
   call cpu_time(finishd)
   !
  ! writes processor time taken by the piece of code.

  ! the accuracy of the clock and whether it includes system time
  ! as well as user time is processor dependent. Accuracy up to
  ! milliseconds is common but not guaranteed, and may be much
  ! higher or lower
   print '("Processor Time = ",f6.3," seconds.")',finish-start

   ! see your specific compiler documentation for how to measure
   ! parallel jobs and for the precision of the time returned
   print '("Processor Time = ",g0," seconds.")',finish-start
   print '("Processor Time = ",g0," seconds.")',finishd-startd
end program demo_cpu_time

Results:

The precision of the result, some aspects of what is returned, and what if any options there are for parallel applications may very from system to system. See compiler-specific for details.

   > Processor Time =  0.000 seconds.
   > Processor Time = .4000030E-05 seconds.
   > Processor Time = .2000000000000265E-05 seconds.

Standard

Fortran 95

See Also

system_clock(3), date_and_time(3)

Fortran intrinsic descriptions (license: MIT) @urbanjost

cshift

Name

cshift(3) - [ARRAY:TRANSFORMATIONAL] Circular shift elements of an array

Synopsis

   result = cshift(array, shift [,dim])
    type(TYPE(kind=KIND)) function cshift(array, shift, dim )

     type(TYPE(kind=KIND)),intent(in) :: array(..)
     integer(kind=**),intent(in)  :: shift
     integer(kind=**),intent(in)  :: dim

Characteristics

NOTE: :a kind designated as ** may be any supported kind for the type

Description

cshift(3) performs a circular shift on elements of array along the dimension of dim. If dim is omitted it is taken to be 1. dim is a scalar of type integer in the range of 1 <= dim <= n, where “n” is the rank of array.

If the rank of array is one, then all elements of array are shifted by shift places. If rank is greater than one, then all complete rank one sections of array along the given dimension are shifted. Elements shifted out one end of each rank one section are shifted back in the other end.

Options

Result

Returns an array of same type and rank as the array argument.

The rows of an array of rank two may all be shifted by the same amount or by different amounts.

cshift

Examples

Sample program:

program demo_cshift
implicit none
integer, dimension(5)   :: i1,i2,i3
integer, dimension(3,4) :: a, b
   !basics
    i1=[10,20,30,40,50]
    print *,'start with:'
    print '(1x,5i3)', i1
    print *,'shift -2'
    print '(1x,5i3)', cshift(i1,-2)
    print *,'shift +2'
    print '(1x,5i3)', cshift(i1,+2)

    print *,'start with a matrix'
    a = reshape( [ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 ], [ 3, 4 ])
    print '(4i3)', a(1,:)
    print '(4i3)', a(2,:)
    print '(4i3)', a(3,:)
    print *,'matrix shifted along rows, each by its own amount [-1,0,1]'
    b = cshift(a, SHIFT=[1, 0, -1], DIM=2)
    print *
    print '(4i3)', b(1,:)
    print '(4i3)', b(2,:)
    print '(4i3)', b(3,:)
end program demo_cshift

Results:

 >  start with:
 >   10 20 30 40 50
 >  shift -2
 >   40 50 10 20 30
 >  shift +2
 >   30 40 50 10 20
 >  start with a matrix
 >   1  4  7 10
 >   2  5  8 11
 >   3  6  9 12
 >  matrix shifted along rows, each by its own amount
 >
 >   4  7 10  1
 >   2  5  8 11
 >  12  3  6  9

Standard

Fortran 95

See Also

Fortran intrinsic descriptions

c_sizeof

Name

c_sizeof(3) - [ISO_C_BINDING] Size in bytes of an expression

Synopsis

    result = c_sizeof(x)

Characteristics

Description

c_sizeof(3) calculates the number of bytes of storage the expression x occupies.

Options

Result

The return value is of type integer and of the system-dependent kind csize_t (from the iso_c_binding module). Its value is the number of bytes occupied by the argument. If the argument has the pointer attribute, the number of bytes of the storage area pointed to is returned. If the argument is of a derived type with pointer or allocatable components, the return value does not account for the sizes of the data pointed to by these components.

Examples

Sample program:

program demo_c_sizeof
use iso_c_binding
implicit none
real(c_float) :: r, s(5)
   print *, (c_sizeof(s)/c_sizeof(r) == 5)
end program demo_c_sizeof

Results:

 >   T

The example will print .true. unless you are using a platform where default real variables are unusually padded.

Standard

Fortran 2008

See Also

storage_size(3)

Fortran intrinsic descriptions

date_and_time

Name

date_and_time(3) - [SYSTEM:TIME] Gets current date time

Synopsis

    call date_and_time( [date] [,time] [,zone] [,values] )
     subroutine date_and_time(date, time, zone, values)

      character(len=8),intent(out),optional :: date
      character(len=10),intent(out),optional :: time
      character(len=5),intent(out),optional :: zone
      integer,intent(out),optional :: values(8)

Characteristics

Description

date_and_time(3) gets the corresponding date and time information from the real-time system clock.

Unavailable time and date character parameters return blanks.

Unavailable numeric parameters return -huge(value).

These forms are compatible with the representations defined in ISO 8601:2004. UTC is established by the International Bureau of Weights and Measures (BIPM, i.e. Bureau International des Poids et Mesures) and the International Earth Rotation Service (IERS).

Options

The date, clock, and time zone information might be available on some images and not others. If the date, clock, or time zone information is available on more than one image, it is processor dependent whether or not those images share the same information.

Examples

Sample program:

program demo_date_and_time
   implicit none
   character(len=8)     :: date
   character(len=10)    :: time
   character(len=5)     :: zone
   integer, dimension(8) :: values

   call date_and_time(date, time, zone, values)

   ! using keyword arguments
   call date_and_time(DATE=date, TIME=time, ZONE=zone)
   print '(*(g0))','DATE="',date,'" TIME="',time,'" ZONE="',zone,'"'

   call date_and_time(VALUES=values)
   write (*, '(i5,a)') &
    & values(1), ' - The year', &
    & values(2), ' - The month', &
    & values(3), ' - The day of the month', &
    & values(4), ' - Time difference with UTC in minutes', &
    & values(5), ' - The hour of the day', &
    & values(6), ' - The minutes of the hour', &
    & values(7), ' - The seconds of the minute', &
    & values(8), ' - The milliseconds of the second'

   write (*, '(a)') iso_8601()
contains
   function iso_8601()
   ! return date using ISO-8601 format at a resolution of seconds
   character(len=8)  :: dt
   character(len=10) :: tm
   character(len=5)  :: zone
   character(len=25) :: iso_8601
   call date_and_time(dt, tm, zone)
      ISO_8601 = dt(1:4)//'-'//dt(5:6)//'-'//dt(7:8) &
               & //'T'//                             &
               & tm(1:2)//':'//tm(3:4)//':'//tm(5:6) &
               & //zone(1:3)//':'//zone(4:5)
   end function iso_8601
end program demo_date_and_time

Results:

 > DATE="20240426" TIME="111545.335" ZONE="-0400"
 >  2024 - The year
 >     4 - The month
 >    26 - The day of the month
 >  -240 - Time difference with UTC in minutes
 >    11 - The hour of the day
 >    15 - The minutes of the hour
 >    45 - The seconds of the minute
 >   335 - The milliseconds of the second
 > 2024-04-26T11:15:45-04:00

Standard

Fortran 95

See Also

cpu_time(3), system_clock(3)

Resources

date and time conversion, formatting and computation

Fortran intrinsic descriptions (license: MIT) @urbanjost

dble

Name

dble(3) - [TYPE:CONVERSION] Converstion to double precision real

Synopsis

    result = dble(a)
     elemental doubleprecision function dble(a)

      doubleprecision :: dble
      TYPE(kind=KIND),intent(in) :: a

Characteristics

Description

dble(3) Converts a to double precision real type.

Options

Result

The return value is of type doubleprecision. For complex input, the returned value has the magnitude and sign of the real component of the input value.

Examples

Sample program:

program demo_dble
implicit none
real:: x = 2.18
integer :: i = 5
complex :: z = (2.3,1.14)
   print *, dble(x), dble(i), dble(z)
end program demo_dble

Results:

  > 2.1800000667572021  5.0000000000000000   2.2999999523162842

Standard

FORTRAN 77

See also

Fortran intrinsic descriptions (license: MIT) @urbanjost

digits

Name

digits(3) - [MODEL:NUMERIC] Significant digits in the numeric model

Synopsis

    result = digits(x)
     integer function digits(x)

      TYPE(kind=KIND),intent(in) :: x(..)

Characteristics

Description

digits(3) returns the number of significant digits of the internal model representation of x. For example, on a system using a 32-bit floating point representation, a default real number would likely return 24.

Options

Result

The number of significant digits in a variable of the type and kind of x.

Examples

Sample program:

program demo_digits
implicit none
character(len=*),parameter :: all='(*(g0:,1x))'
integer                    :: i = 12345
real                       :: x = 3.143
doubleprecision            :: y = 2.33d0
   print all, 'default integer:        ', digits(i)
   print all, 'default real:           ', digits(x)
   print all, 'default doubleprecision:', digits(y)
end program demo_digits

Results:

 > default integer:         31
 > default real:            24
 > default doubleprecision: 53

Standard

Fortran 95

See Also

epsilon(3), exponent(3), fraction(3), huge(3), maxexponent(3), minexponent(3), nearest(3), precision(3), radix(3), range(3), rrspacing(3), scale(3), set_exponent(3), spacing(3), tiny(3)

Fortran intrinsic descriptions (license: MIT) @urbanjost

dim

Name

dim(3) - [NUMERIC] Positive difference of X - Y

Synopsis

    result = dim(x, y)
     elemental TYPE(kind=KIND) function dim(x, y )

      TYPE(kind=KIND),intent(in) :: x, y

Characteristics

Description

dim(3) returns the maximum of x - y and zero. That is, it returns the difference x - y if the result is positive; otherwise it returns zero. It is equivalent to

  max(0,x-y)

Options

Result

Returns the difference x - y or zero, whichever is larger.

Examples

Sample program:

program demo_dim
use, intrinsic :: iso_fortran_env, only : real64
implicit none
integer           :: i
real(kind=real64) :: x

   ! basic usage
    i = dim(4, 15)
    x = dim(4.321_real64, 1.111_real64)
    print *, i
    print *, x

   ! elemental
    print *, dim([1,2,3],2)
    print *, dim([1,2,3],[3,2,1])
    print *, dim(-10,[0,-10,-20])

end program demo_dim

Results:

 >            0
 >    3.21000000000000
 >            0           0           1
 >            0           0           2
 >            0           0          10

Standard

FORTRAN 77

See Also

Fortran intrinsic descriptions (license: MIT) @urbanjost

dot_product

Name

dot_product(3) - [ARRAY:TRANSFORMATIONAL] Dot product of two vectors

Synopsis

    result = dot_product(vector_a, vector_b)
     TYPE(kind=KIND) function dot_product(vector_a, vector_b)

      TYPE(kind=KIND),intent(in) :: vector_a(:)
      TYPE(kind=KIND),intent(in) :: vector_b(:)

Characteristics

The two vectors may be either numeric or logical and must be arrays of rank one and of equal size.

Description

dot_product(3) computes the dot product multiplication of two vectors vector_a and vector_b.

Options

Result

If the arguments are numeric, the return value is a scalar of numeric type. If the arguments are logical, the return value is .true. or .false..

If the vectors are integer or real, the result is

     sum(vector_a*vector_b)

If the vectors are complex, the result is

     sum(conjg(vector_a)*vector_b)**

If the vectors are logical, the result is

     any(vector_a .and. vector_b)

Examples

Sample program:

program demo_dot_prod
implicit none
    integer, dimension(3) :: a, b
    a = [ 1, 2, 3 ]
    b = [ 4, 5, 6 ]
    print '(3i3)', a
    print *
    print '(3i3)', b
    print *
    print *, dot_product(a,b)
end program demo_dot_prod

Results:

  >  1  2  3
  >
  >  4  5  6
  >
  >           32

Standard

Fortran 95

See Also

sum(3), conjg(3), any(3)

Fortran intrinsic descriptions (license: MIT) @urbanjost

dprod

Name

dprod(3) - [NUMERIC] Double precision real product

Synopsis

    result = dprod(x,y)
     elemental function dprod(x,y)

      real,intent(in) :: x
      real,intent(in) :: y
      doubleprecision :: dprod

Characteristics

The setting of compiler options specifying the size of a default real can affect this function.

Description

dprod(3) produces a doubleprecision product of default real values x and y.

That is, it is expected to convert the arguments to double precision before multiplying, which a simple expression x*y would not be required to do. This can be significant in specialized computations requiring high precision.

The result has a value equal to a processor-dependent approximation to the product of x and y. Note it is recommended in the standard that the processor compute the product in double precision, rather than in single precision then converted to double precision; but is only a recommendation.

Options

Result

The returned value of the product should have the same value as dble(x)*dble(y).

Examples

Sample program:

program demo_dprod
implicit none
integer,parameter :: dp=kind(0.0d0)
real :: x = 5.2
real :: y = 2.3
doubleprecision :: xx
real(kind=dp)   :: dd

   print *,'algebraically 5.2 x 2.3 is exactly 11.96'
   print *,'as floating point values results may differ slightly:'
   ! basic usage
   dd = dprod(x,y)
   print *, 'compare dprod(xy)=',dd, &
   & 'to x*y=',x*y, &
   & 'to dble(x)*dble(y)=',dble(x)*dble(y)

   print *,'test if an expected result is produced'
   xx=-6.0d0
   write(*,*)DPROD(-3.0, 2.0),xx
   write(*,*)merge('PASSED','FAILED',DPROD(-3.0, 2.0) == xx)

   print *,'elemental'
   print *, dprod( [2.3,3.4,4.5], 10.0 )
   print *, dprod( [2.3,3.4,4.5], [9.8,7.6,5.4] )

end program demo_dprod

Results: (this can vary between programming environments):

 >  algebraically 5.2 x 2.3 is exactly 11.96
 >  as floating point values results may differ slightly:
 >  compare dprod(xy)=   11.9599993133545      to x*y=   11.96000
 >  to dble(x)*dble(y)=   11.9599993133545
 >  test if an expected result is produced
 >   -6.00000000000000       -6.00000000000000
 >  PASSED
 >  elemental
 >    22.9999995231628     34.0000009536743     45.0000000000000
 >    22.5399999713898     25.8400004005432     24.3000004291534

Standard

FORTRAN 77

See Also

dble(3) real(3)

Fortran intrinsic descriptions (license: MIT) @urbanjost

dshiftl

Name

dshiftl(3) - [BIT:COPY] Combined left shift of the bits of two integers

Synopsis

    result = dshiftl(i, j, shift)
     elemental integer(kind=KIND) function dshiftl(i, j, shift)

      integer(kind=KIND),intent(in) :: i
      integer(kind=KIND),intent(in) :: j
      integer(kind=**),intent(in) :: shift

Characteristics

Description

dshiftl(3) combines bits of i and j. The rightmost shift bits of the result are the leftmost shift bits of j, and the remaining bits are the rightmost bitsize(i)-shift of i.

Hence dshiftl is designated as a “combined left shift”, because it is like we appended i and j together, shifted it shift bits to the left, and then kept the same number of bits as i or j had.

For example, for two 16-bit values if shift=6

      SHIFT=6
      I =             1111111111111111
      J =             0000000000000000
      COMBINED        11111111111111110000000000000000
      DROP LEFT BITS  11111111110000000000000000
      KEEP LEFT 16    1111111111000000

NOTE

This is equivalent to

     ior( shiftl(i, shift), shiftr(j, bit_size(j) - shift) )

Also note that using this last representation of the operation is can be derived that when both i and j have the same value as in

      dshiftl(i, i, shift)

the result has the same value as a circular shift:

      ishftc(i, shift)

Options

Result

The leftmost shift bits of j are copied to the rightmost bits of the result, and the remaining bits are the rightmost bits of i.

Examples

Sample program:

program demo_dshiftl
use,intrinsic :: iso_fortran_env, only : int8, int16, int32, int64
implicit none
integer(kind=int32) :: i, j
integer             :: shift

  ! basic usage
   write(*,*) dshiftl (1, 2**30, 2) ! int32 values on little-endian => 5

  ! print some simple calls as binary to better visual the results
   i=-1
   j=0
   shift=5
   call printit()

   ! the leftmost SHIFT bits of J are copied to the rightmost result bits
   j=int(b"11111000000000000000000000000000")
   ! and the other bits are the rightmost bits of I
   i=int(b"00000000000000000000000000000000")
   call printit()

   j=int(b"11111000000000000000000000000000")
   i=int(b"00000111111111111111111111111111")
   ! result should be all 1s
   call printit()

contains
subroutine printit()
   ! print i,j,shift and then i,j, and the result as binary values
    write(*,'(*(g0))')'I=',i,' J=',j,' SHIFT=',shift
    write(*,'(b32.32)') i,j, dshiftl (i, j, shift)
end subroutine printit

end program demo_dshiftl

Results:

 >            5
 > I=-1 J=0 SHIFT=5
 > 11111111111111111111111111111111
 > 00000000000000000000000000000000
 > 11111111111111111111111111100000
 > I=0 J=-134217728 SHIFT=5
 > 00000000000000000000000000000000
 > 11111000000000000000000000000000
 > 00000000000000000000000000011111
 > I=134217727 J=-134217728 SHIFT=5
 > 00000111111111111111111111111111
 > 11111000000000000000000000000000
 > 11111111111111111111111111111111

Standard

Fortran 2008

See Also

dshiftr(3)

Fortran intrinsic descriptions (license: MIT) @urbanjost

dshiftr

Name

dshiftr(3) - [BIT:COPY] Combined right shift of the bits of two integers

Synopsis

    result = dshiftr(i, j, shift)
     elemental integer(kind=KIND) function dshiftr(i, j, shift)

      integer(kind=KIND),intent(in) :: i
      integer(kind=KIND),intent(in) :: j
      integer(kind=**),intent(in) :: shift

Characteristics

Description

dshiftr(3) combines bits of i and j. The leftmost shift bits of the result are the rightmost shift bits of i, and the remaining bits are the leftmost bits of j.

It may be thought of as appending the bits of i and j, dropping off the shift rightmost bits, and then retaining the same number of rightmost bits as an input value, hence the name “combined right shift”…

Given two 16-bit values labeled alphabetically …

   i=ABCDEFGHIJKLMNOP
   j=abcdefghijklmnop

Append them together

   ABCDEFGHIJKLMNOPabcdefghijklmnop

Shift them N=6 bits to the right dropping off bits

         ABCDEFGHIJKLMNOPabcdefghij

Keep the 16 right-most bits

                   KLMNOPabcdefghij

NOTE

dshifr(i,j,shift) is equivalent to

     ior(shiftl (i, bit_size(i) - shift), shiftr(j, shift) )

it can also be seen that if i and j have the same value

     dshiftr( i, i, shift )

this has the same result as a negative circular shift

     ishftc( i,  -shift ).

Options

Result

The result is a combined right shift of i and j that is the same as the bit patterns of the inputs being combined left to right, dropping off shift bits on the right and then retaining the same number of bits as an input value from the rightmost bits.

Examples

Sample program:

program demo_dshiftr
use,intrinsic :: iso_fortran_env, only : int8, int16, int32, int64
implicit none
integer(kind=int32) :: i, j
integer             :: shift

  ! basic usage
   write(*,*) dshiftr (1, 2**30, 2)

  ! print some calls as binary to better visualize the results
   i=-1
   j=0
   shift=5

   ! print values
    write(*,'(*(g0))')'I=',i,' J=',j,' SHIFT=',shift
    write(*,'(b32.32)') i,j, dshiftr (i, j, shift)

  ! visualizing a "combined right shift" ...
   i=int(b"00000000000000000000000000011111")
   j=int(b"11111111111111111111111111100000")
   ! appended together ( i//j )
   ! 0000000000000000000000000001111111111111111111111111111111100000
   ! shifted right SHIFT values dropping off shifted values
   !      00000000000000000000000000011111111111111111111111111111111
   ! keep enough rightmost bits to fill the kind
   !                                 11111111111111111111111111111111
   ! so the result should be all 1s bits ...

    write(*,'(*(g0))')'I=',i,' J=',j,' SHIFT=',shift
    write(*,'(b32.32)') i,j, dshiftr (i, j, shift)

end program demo_dshiftr

Results:

 >    1342177280
 >  I=-1 J=0 SHIFT=5
 >  11111111111111111111111111111111
 >  00000000000000000000000000000000
 >  11111000000000000000000000000000
 >  I=31 J=-32 SHIFT=5
 >  00000000000000000000000000011111
 >  11111111111111111111111111100000
 >  11111111111111111111111111111111

Standard

Fortran 2008

See Also

dshiftl(3)

Fortran intrinsic descriptions (license: MIT) @urbanjost

eoshift

Name

eoshift(3) - [ARRAY:TRANSFORMATIONAL] End-off shift of elements of an array

Synopsis

  result = eoshift( array, shift [,boundary] [,dim] )
   type(TYPE(kind=KIND)) function eoshift(array,shift,boundary,dim)

    type(TYPE(kind=KIND)),intent(in) :: array(..)
    integer(kind=**),intent(in)      :: shift(..)
    type(TYPE(kind=KIND)),intent(in) :: boundary(..)
    integer(kind=**),intent(in)      :: dim

Characteristics

Description

eoshift(3) performs an end-off shift on elements of array along the dimension of dim.

Elements shifted out one end of each rank one section are dropped.

If boundary is present then the corresponding value from boundary is copied back in the other end, else default values are used.

Options

    Array Type    | Boundary Value
    -----------------------------------------------------
    Numeric       | 0, 0.0, or (0.0, 0.0) of the type and kind of "array"
    Logical       | .false.
    Character(len)|  LEN blanks

These are the only types for which boundary may not be present. For these types the kind is converted as neccessary to the kind of array. - dim : dim is in the range of

    1 <= DIM <= n

where “n” is the rank of array. If dim is omitted it is taken to be 1.

Result

Returns an array of the same characteristics as the input with the specified number of elements dropped off along the specified direction indicated, backfilling the vacated elements with a value indicated by the boundary value.

Examples

Sample program:

program demo_eoshift
implicit none
integer, dimension(3,3) :: a
integer :: i

    a = reshape( [ 1, 2, 3, 4, 5, 6, 7, 8, 9 ], [ 3, 3 ])
    print '(3i3)', (a(i,:),i=1,3)

    print *

    ! shift it
    a = eoshift(a, SHIFT=[1, 2, 1], BOUNDARY=-5, DIM=2)
    print '(3i3)', (a(i,:),i=1,3)

end program demo_eoshift

Results:

  >  1  4  7
  >  2  5  8
  >  3  6  9
  >
  >  4  7 -5
  >  8 -5 -5
  >  6  9 -5

Standard

Fortran 95

See Also

dshiftr(3), dshiftl(3)

Fortran intrinsic descriptions (license: MIT) @urbanjost

epsilon

Name

epsilon(3) - [MODEL:NUMERIC] Epsilon function

Synopsis

    result = epsilon(x)
     real(kind=kind(x)) function epsilon(x)

      real(kind=kind(x),intent(in) :: x(..)

Characteristics

Description

epsilon(3) returns the floating point relative accuracy. It is the nearly negligible number relative to 1 such that 1+ little_number is not equal to 1; or more precisely

   real( 1.0, kind(x)) + epsilon(x) /= real( 1.0, kind(x))

It may be thought of as the distance from 1.0 to the next largest floating point number.

One use of epsilon(3) is to select a delta value for algorithms that search until the calculation is within delta of an estimate.

If delta is too small the algorithm might never halt, as a computation summing values smaller than the decimal resolution of the data type does not change.

Options

Result

The return value is of the same type as the argument.

Examples

Sample program:

program demo_epsilon
use,intrinsic :: iso_fortran_env, only : dp=>real64,sp=>real32
implicit none
real(kind=sp) :: x = 3.143
real(kind=dp) :: y = 2.33d0

   ! so if x is of type real32, epsilon(x) has the value 2**-23
   print *, epsilon(x)
   ! note just the type and kind of x matter, not the value
   print *, epsilon(huge(x))
   print *, epsilon(tiny(x))

   ! the value changes with the kind of the real value though
   print *, epsilon(y)

   ! adding and subtracting epsilon(x) changes x
   write(*,*)x == x + epsilon(x)
   write(*,*)x == x - epsilon(x)

   ! these next two comparisons will be .true. !
   write(*,*)x == x + epsilon(x) * 0.999999
   write(*,*)x == x - epsilon(x) * 0.999999

   ! you can calculate epsilon(1.0d0)
   write(*,*)my_dp_eps()

contains

   function my_dp_eps()
   ! calculate the epsilon value of a machine the hard way
   real(kind=dp) :: t
   real(kind=dp) :: my_dp_eps

      ! starting with a value of 1, keep dividing the value
      ! by 2 until no change is detected. Note that with
      ! infinite precision this would be an infinite loop,
      ! but floating point values in Fortran have a defined
      ! and limited precision.
      my_dp_eps = 1.0d0
      SET_ST: do
         my_dp_eps = my_dp_eps/2.0d0
         t = 1.0d0 + my_dp_eps
         if (t <= 1.0d0) exit
      enddo SET_ST
      my_dp_eps = 2.0d0*my_dp_eps

   end function my_dp_eps
end program demo_epsilon

Results:

 >    1.19209290E-07
 >    1.19209290E-07
 >    1.19209290E-07
 >    2.2204460492503131E-016
 >  F
 >  F
 >  T
 >  T
 >    2.2204460492503131E-016

Standard

Fortran 95

See Also

digits(3), exponent(3), fraction(3), huge(3), maxexponent(3), minexponent(3), nearest(3), precision(3), radix(3), range(3), rrspacing(3), scale(3), set_exponent(3), spacing(3), tiny(3)

Fortran intrinsic descriptions (license: MIT) @urbanjost

erfc

Name

erfc(3) - [MATHEMATICS] Complementary error function

Synopsis

    result = erfc(x)
     elemental real(kind=KIND) function erfc(x)

      real(kind=KIND),intent(in) :: x

Characteristics

Description

erfc(3) computes the complementary error function of x. Simply put this is equivalent to 1 - erf(x), but erfc is provided because of the extreme loss of relative accuracy if erf(x) is called for large x and the result is subtracted from 1.

erfc(x) is defined as


$$ \text{erfc}(x) = 1 - \text{erf}(x) = 1 - \frac{2}{\sqrt{\pi}} \int_x^{\infty} e^{-t^2} dt. $$

Options

Result

The return value is of type real and of the same kind as x. It lies in the range

     0 <= erfc(x) <= 2.

and is a processor-dependent approximation to the complementary error function of x ( 1-erf(x) ).

Examples

Sample program:

program demo_erfc
use, intrinsic :: iso_fortran_env, only : real32, real64, real128
implicit none
real(kind=real64) :: x = 0.17_real64
   write(*,'(*(g0))')'X=',x, ' ERFC(X)=',erfc(x)
   write(*,'(*(g0))')'equivalently 1-ERF(X)=',1-erf(x)
end program demo_erfc

Results:

 > X=.1700000000000000 ERFC(X)=.8100075387981912
 > equivalently 1-ERF(X)=.8100075387981912

Standard

Fortran 2008

See also

erf(3) erf_scaled(3)

Resources

Fortran intrinsic descriptions (license: MIT) @urbanjost

erfc_scaled

Name

erfc_scaled(3) - [MATHEMATICS] Scaled complementary error function

Synopsis

    result = erfc_scaled(x)
     elemental real(kind=KIND) function erfc_scaled(x)

      real(kind=KIND),intent(in) :: x

Characteristics

Description

erfc_scaled(3) computes the exponentially-scaled complementary error function of x:


$$ e^{x^2} \frac{2}{\sqrt{\pi}} \int_{x}^{\infty} e^{-t^2} dt. $$

erfc_scaled(x)=exp(x*x)erfc(x)

NOTE1

The complementary error function is asymptotic to exp(-X2)/(X/PI). As such it underflows at approximately X >= 9 when using ISO/IEC/IEEE 60559:2011 single precision arithmetic. The exponentially-scaled complementary error function is asymptotic to 1/(X PI). As such it does not underflow until X > HUGE (X)/PI.

Options

Result

The approximation to the exponentially-scaled complementary error function of x

Examples

Sample program:

program demo_erfc_scaled
implicit none
real(kind(0.0d0)) :: x = 0.17d0
   x = erfc_scaled(x)
   print *, x
end program demo_erfc_scaled

Results:

 >   0.833758302149981

Standard

Fortran 2008

See also

erf(3), exp(3), erfc(3)

Fortran intrinsic descriptions (license: MIT) @urbanjost

erf

Name

erf(3) - [MATHEMATICS] Error function

Synopsis

    result = erf(x)
     elemental real(kind=KIND) function erf(x)

      real(kind=KIND),intent(in) :: x

Characteristics

Description

erf(3) computes the error function of x, defined as


$$ \text{erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{__-t__^2} dt. $$

Options

Result

The return value is of type real, of the same kind as x and lies in the range -1 <= erf(x) <= 1 .

Examples

Sample program:

program demo_erf
use, intrinsic :: iso_fortran_env, only : real32, real64, real128
implicit none
real(kind=real64) :: x = 0.17_real64
    write(*,*)x, erf(x)
end program demo_erf

Results:

   >  0.17000000000000001       0.18999246120180879

Standard

Fortran 2008

See also

erfc(3), erf_scaled(3)

Resources

Fortran intrinsic descriptions

event_query

Name

event_query(3) - [COLLECTIVE] Query whether a coarray event has occurred

Synopsis

    call event_query(event, count [,stat] )

Characteristics

Description

event_query(3) assigns the number of events to count which have been posted to the event variable and not yet been removed by calling event_wait. When stat is present and the invocation was successful, it is assigned the value 0. If it is present and the invocation has failed, it is assigned a positive value and count is assigned the value -1.

Options

Examples

Sample program:

program demo_event_query
use iso_fortran_env
implicit none
type(event_type) :: event_value_has_been_set[*]
integer :: cnt
   if (this_image() == 1) then
      call event_query(event_value_has_been_set, cnt)
      if (cnt > 0) write(*,*) "Value has been set"
   elseif (this_image() == 2) then
      event post(event_value_has_been_set[1])
   endif
end program demo_event_query

Standard

TS 18508

See also

Fortran intrinsic descriptions

execute_command_line

Name

execute_command_line(3) - [SYSTEM:PROCESSES] Execute a shell command

Synopsis

    call execute_command_line( &
    & command [,wait] [,exitstat] [,cmdstat] [,cmdmsg] )
     subroutine execute_command_line(command,wait,exitstat,cmdstat,cmdmsg)

      character(len=*),intent(in)             :: command
      logical,intent(in),optional             :: wait
      integer,intent(inout),optional          :: exitstat
      integer,intent(inout),optional          :: cmdstat
      character(len=*),intent(inout),optional :: cmdmsg

Characteristics

Description

For execute_command_line(3) the command argument is passed to the shell and executed. (The shell is generally sh(1) on Unix systems, and cmd.exe on Windows.) If wait is present and has the value .false., the execution of the command is asynchronous if the system supports it; otherwise, the command is executed synchronously.

The three last arguments allow the user to get status information. After synchronous execution, exitstat contains the integer exit code of the command, as returned by system. cmdstat is set to zero if the command line was executed (whatever its exit status was). cmdmsg is assigned an error message if an error has occurred.

Note that the system call need not be thread-safe. It is the responsibility of the user to ensure that the system is not called concurrently if required.

When the command is executed synchronously, execute_command_line returns after the command line has completed execution. Otherwise, execute_command_line returns without waiting.

Because this intrinsic is making a system call, it is very system dependent. Its behavior with respect to signaling is processor dependent. In particular, on POSIX-compliant systems, the SIGINT and SIGQUIT signals will be ignored, and the SIGCHLD will be blocked. As such, if the parent process is terminated, the child process might not be terminated alongside.

One of the most common causes of errors is that the program requested is not in the search path. You should make sure that the program to be executed is installed on your system and that it is in the system’s path when the program calls it. You can check if it is installed by running it from the command prompt. If it runs successfully from the command prompt, it means that it is installed, and so you should next check that it is in the search path when the program executes (usually this means checking the environment variable PATH).

Options

Examples

Sample program:

program demo_execute_command_line
implicit none
integer :: exitstat, cmdstat
character(len=256) :: cmdmsg

   call execute_command_line( &
   &  command  = "external_prog.exe", &
   &  exitstat = exitstat,            &
   &  cmdstat  = cmdstat,             &
   &  cmdmsg   = cmdmsg)
   print *, "Exit status of external_prog.exe was ", exitstat
   if(cmdstat.ne.0)then
      print *, '<ERROR>'//trim(cmdmsg)
   endif

   ! if asynchronous exitstat and cmdstat may not be relied on
   call execute_command_line("reindex_files.exe", wait=.false.)
   print *, "Now hopefully reindexing files in the background"

   if(cmd('dir'))then
      write(*,*)'OK'
   else
      stop 4
   endif

   ! might short-circuit or not if a command fails
   if(all(cmd([character(len=80) :: 'date','time myprg','date'])))then
       write(*,*)'good time'
   else
       write(*,*)'bad time'
   endif

   stop 'end of program'
contains

elemental impure function cmd(command)
! a functional interface for calling system commands
use, intrinsic :: iso_fortran_env, only : &
& stderr=>ERROR_UNIT, stdout=>OUTPUT_UNIT
character(len=*),intent(in) :: command
logical                     :: cmd
logical                     :: wait
integer                     :: exitstat
integer                     :: cmdstat
character(len=256)          :: cmdmsg
   wait=.false.
   exitstat=0
   cmdstat=0
   call execute_command_line(command=command,wait=wait, &
   & exitstat=exitstat,cmdstat=cmdstat,cmdmsg=cmdmsg)
   if(cmdstat.ne.0)then
      flush(stdout)
      write(stderr,'(a)')trim(cmdmsg)
      flush(stderr)
   endif
   if(exitstat.ne.0)then
      flush(stdout)
      write(stderr,'(*(g0))')'exitstat=',exitstat,':',trim(command)
      flush(stderr)
   endif
   cmd=merge(.true.,.false.,exitstat==0)
end function cmd

end program demo_execute_command_line

Standard

Fortran 2008

See also

get_environment_variable(3)

Fortran intrinsic descriptions (license: MIT) @urbanjost

exp

Name

exp(3) - [MATHEMATICS] Base-e exponential function

Synopsis

    result = exp(x)
     elemental TYPE(kind=KIND) function exp(x)

      TYPE(kind=KIND),intent(in) :: x

Characteristics

Description

exp(3) returns the value of e (the base of natural logarithms) raised to the power of x.

“e” is also known as Euler’s constant.

If x is of type complex, its imaginary part is regarded as a value in radians such that if (see Euler’s formula):

    cx=(re,im)

then

    exp(cx) = exp(re) * cmplx(cos(im),sin(im),kind=kind(cx))

Since exp(3) is the inverse function of log(3) the maximum valid magnitude of the real component of x is log(huge(x)).

Options

Result

The value of the result is e**x where e is Euler’s constant.

If x is of type complex, its imaginary part is regarded as a value in radians.

Examples

Sample program:

program demo_exp
implicit none
real :: x, re, im
complex :: cx

   x = 1.0
   write(*,*)"Euler's constant is approximately",exp(x)

   !! complex values
   ! given
   re=3.0
   im=4.0
   cx=cmplx(re,im)

   ! complex results from complex arguments are Related to Euler's formula
   write(*,*)'given the complex value ',cx
   write(*,*)'exp(x) is',exp(cx)
   write(*,*)'is the same as',exp(re)*cmplx(cos(im),sin(im),kind=kind(cx))

   ! exp(3) is the inverse function of log(3) so
   ! the real component of the input must be less than or equal to
   write(*,*)'maximum real component',log(huge(0.0))
   ! or for double precision
   write(*,*)'maximum doubleprecision component',log(huge(0.0d0))

   ! but since the imaginary component is passed to the cos(3) and sin(3)
   ! functions the imaginary component can be any real value

end program demo_exp

Results:

 >  Euler's constant is approximately   2.71828175
 >  given the complex value              (3.00000000,4.00000000)
 >  exp(x) is           (-13.1287832,-15.2007847)
 >  is the same as           (-13.1287832,-15.2007847)
 >  maximum real component   88.7228394
 >  maximum doubleprecision component   709.78271289338397

Standard

FORTRAN 77

See Also

Resources

Fortran intrinsic descriptions (license: MIT) @urbanjost

exponent

Name

exponent(3) - [MODEL:COMPONENTS] Exponent of floating-point number

Synopsis

    result = exponent(x)
     elemental integer function exponent(x)

      real(kind=**),intent(in) :: x

Characteristics

Description

exponent(3) returns the value of the exponent part of x, provided the exponent is within the range of default integers.

Options

Result

exponent(3) returns the value of the exponent part of x

If x is zero the value returned is zero.

If x is an IEEE infinity or NaN, the result has the value HUGE(0).

Examples

Sample program:

program demo_exponent
implicit none
real :: x = 1.0
integer :: i
   i = exponent(x)
   print *, i
   print *, exponent(0.0)
   print *, exponent([10.0,100.0,1000.0,-10000.0])
   ! beware of overflow, it may occur silently
   !print *, 2**[10.0,100.0,1000.0,-10000.0]
   print *, exponent(huge(0.0))
   print *, exponent(tiny(0.0))
end program demo_exponent

Results:

 >            4           7          10          14
 >          128
 >         -125

Standard

Fortran 95

See Also

digits(3), epsilon(3), fraction(3), huge(3), maxexponent(3), minexponent(3), nearest(3), precision(3), radix(3), range(3), rrspacing(3), scale(3), set_exponent(3), spacing(3), tiny(3)

Fortran intrinsic descriptions

extends_type_of

Name

extends_type_of(3) - [STATE:INQUIRY] Determine if the dynamic type of a is an extension of the dynamic type of mold.

Synopsis

    result = extends_type_of(a, mold)
     logical extends_type_of(a, mold)

      type(TYPE(kind=KIND)),intent(in) :: a
      type(TYPE(kind=KIND)),intent(in) :: mold

Characteristics

-a shall be an object or pointer to an extensible declared type, or unlimited polymorphic. If it is a polymorphic pointer, it shall not have an undefined association status. -mole shall be an object or pointer to an extensible declared type or unlimited polymorphic. If it is a polymorphic pointer, it shall not have an undefined association status. - the result is a scalar default logical type.

Description

extends_type_of(3) is .true. if and only if the dynamic type of a is or could be (for unlimited polymorphic) an extension of the dynamic type of mold.

NOTE1

The dynamic type of a disassociated pointer or unallocated allocatable variable is its declared type.

NOTE2

The test performed by extends_type_of is not the same as the test performed by the type guard class is. The test performed by extends_type_of does not consider kind type parameters.

options

Result

If mold is unlimited polymorphic and is either a disassociated pointer or unallocated allocatable variable, the result is true.

Otherwise if a is unlimited polymorphic and is either a disassociated pointer or unallocated allocatable variable, the result is false.

Otherwise the result is true if and only if the dynamic type of a

if the dynamic type of A or MOLD is extensible, the result is true if and only if the dynamic type of A is an extension type of the dynamic type of MOLD; otherwise the result is processor dependent.

Examples

Sample program:

  ! program demo_extends_type_of
  module M_demo_extends_type_of
  implicit none
  private

  type nothing
  end type nothing

  type, extends(nothing) :: dot
    real :: x=0
    real :: y=0
  end type dot

  type, extends(dot) :: point
    real :: z=0
  end type point

  type something_else
  end type something_else

  public :: nothing
  public :: dot
  public :: point
  public :: something_else

  end module M_demo_extends_type_of

  program demo_extends_type_of
  use M_demo_extends_type_of, only : nothing, dot, point, something_else
  implicit none
  type(nothing) :: grandpa
  type(dot) :: dad
  type(point) :: me
  type(something_else) :: alien

   write(*,*)'these should all be true'
   write(*,*)extends_type_of(me,grandpa),'I am descended from Grandpa'
   write(*,*)extends_type_of(dad,grandpa),'Dad is descended from Grandpa'
   write(*,*)extends_type_of(me,dad),'Dad is my ancestor'

   write(*,*)'is an object an extension of itself?'
   write(*,*)extends_type_of(grandpa,grandpa) ,'self-propagating!'
   write(*,*)extends_type_of(dad,dad) ,'clone!'

   write(*,*)' you did not father your grandfather'
   write(*,*)extends_type_of(grandpa,dad),'no paradox here'

   write(*,*)extends_type_of(dad,me),'no paradox here'
   write(*,*)extends_type_of(grandpa,me),'no relation whatsoever'
   write(*,*)extends_type_of(grandpa,alien),'no relation'
   write(*,*)extends_type_of(me,alien),'not what everyone thinks'

   call pointers()
   contains

   subroutine pointers()
   ! Given the declarations and assignments
   type t1
   real c
   end type
   type, extends(t1) :: t2
   end type
   class(t1), pointer :: p, q
      allocate (p)
      allocate (t2 :: q)
      ! the result of EXTENDS_TYPE_OF (P, Q) will be false, and the result
      ! of EXTENDS_TYPE_OF (Q, P) will be true.
      write(*,*)'(P,Q)',extends_type_of(p,q),"mind your P's and Q's"
      write(*,*)'(Q,P)',extends_type_of(q,p)
   end subroutine pointers

  end program demo_extends_type_of

Results:

  > these should all be true
  > T I am descended from Grandpa
  > T Dad is descended from Grandpa
  > T Dad is my ancestor
  > is an object an extension of itself?
  > T self-propagating!
  > T clone!
  >  you did not father your grandfather
  > F no paradox here
  > F no paradox here
  > F no relation whatsoever
  > F no relation
  > F not what everyone thinks
  > (P,Q) F mind your P's and Q's
  > (Q,P) T

Standard

Fortran 2003

See Also

same_type_as(3)

Fortran intrinsic descriptions (license: MIT) @urbanjost

findloc

Name

findloc(3) - [ARRAY:LOCATION] Location of first element of ARRAY identified by MASK along dimension DIM matching a target value

Synopsis

    result = findloc (array, value, dim [,mask] [,kind] [,back]) |
             findloc (array, value [,mask] [,kind] [,back])
     function findloc (array, value, dim, mask, kind, back)

      type(TYPE(kind=KIND)),intent(in)     :: array(..)
      type(TYPE(kind=KIND)),intent(in)     :: value
      integer(kind=**),intent(in),optional :: dim
      logical(kind=**),intent(in),optional :: mask(..)
      integer(kind=**),intent(in),optional :: kind
      logical(kind=**),intent(in),optional :: back

Characteristics

NOTE: a kind designated as ** may be any supported kind for the type

Description

findloc(3) returns the location of the first element of array identified by mask along dimension dim having a value equal to value.

If both array and value are of type logical, the comparison is performed with the .eqv. operator; otherwise, the comparison is performed with the == operator. If the value of the comparison is .true., that element of array matches value.

If only one element matches value, that element’s subscripts are returned. Otherwise, if more than one element matches value and back is absent or present with the value .false., the element whose subscripts are returned is the first such element, taken in array element order. If back is present with the value .true., the element whose subscripts are returned is the last such element, taken in array element order.

Options

Result

kind is present, the kind type parameter is that specified by the value of kind; otherwise the kind type parameter is that of default integer type. If dim does not appear, the result is an array of rank one and of size equal to the rank of array; otherwise, the result is of rank n - 1 and shape

   [d1, d2, . . ., dDIM-1, dDIM+1, . . ., dn ]

where

   [d1, d2, . . ., dn ]

is the shape of array.

Result

Examples

Sample program:

program demo_findloc
logical,parameter :: T=.true., F=.false.
integer,allocatable :: ibox(:,:)
logical,allocatable :: mask(:,:)
  ! basics
   ! the first element matching the value is returned AS AN ARRAY
   call printi('== 6',findloc ([2, 6, 4, 6], value = 6))
   call printi('== 6',findloc ([2, 6, 4, 6], value = 6,back=.true.))
   ! the first element matching the value is returned AS A SCALAR
   call printi('== 6',findloc ([2, 6, 4, 6], value = 6,dim=1))
   call printi('== 6',findloc ([2, 6, 4, 6], value = 6,back=.true.,dim=1))

   ibox=reshape([ 0,-5,  7, 7, &
                  3, 4, -1, 2, &
                  1, 5,  6, 7] ,shape=[3,4],order=[2,1])

   mask=reshape([ T, T, F, T, &
                  T, T, F, T, &
                  T, T, F, T] ,shape=[3,4],order=[2,1])

   call printi('array is', ibox )
   call printl('mask  is', mask )
   print *, 'so for == 7 and back=.false.'
   call printi('so for == 7 the address of the element is', &
           & findloc (ibox, 7, mask = mask) )
   print *, 'so for == 7 and back=.true.'
   call printi('so for == 7 the address of the element is', &
           & findloc (ibox, 7, mask = mask, back=.true.) )

   print *,'This is independent of declared lower bounds for the array'

   print *, ' using dim=N'
   ibox=reshape([ 1,  2, -9,  &
                  2,  2,  6 ] ,shape=[2,3],order=[2,1])

   call printi('array is', ibox )
   ! has the value [2, 1, 0] and
   call printi('',findloc (ibox, value = 2, dim = 1) )
   ! has the value [2, 1].
   call printi('',findloc (ibox, value = 2, dim = 2) )
contains
! GENERIC ROUTINES TO PRINT MATRICES
subroutine printl(title,a)
implicit none
!@(#) print small 2d logical scalar, vector, matrix in row-column format
character(len=*),intent(in)  :: title
logical,intent(in)           :: a(..)

character(len=*),parameter   :: row='(" > [ ",*(l1:,","))'
character(len=*),parameter   :: all='(" ",*(g0,1x))'
logical,allocatable          :: b(:,:)
integer                      :: i
   write(*,all,advance='no')trim(title)
   ! copy everything to a matrix to keep code simple
   select rank(a)
   rank (0); write(*,'(a)')' (a scalar)'; b=reshape([a],[1,1])
   rank (1); write(*,'(a)')' (a vector)'; b=reshape(a,[size(a),1])
   rank (2); write(*,'(a)')' (a matrix)'; b=a
   rank default; stop '*printl* unexpected rank'
   end select
   do i=1,size(b,dim=1)
      write(*,fmt=row,advance='no')b(i,:)
      write(*,'(" ]")')
   enddo
   write(*,all) '>shape=',shape(a),',rank=',rank(a),',size=',size(a)
   write(*,*)
end subroutine printl

subroutine printi(title,a)
implicit none
!@(#) print small 2d integer scalar, vector, matrix in row-column format
character(len=*),intent(in)  :: title
integer,intent(in)           :: a(..)
character(len=*),parameter   :: all='(" ",*(g0,1x))'
character(len=20)            :: row
integer,allocatable          :: b(:,:)
integer                      :: i
   write(*,all,advance='no')trim(title)
   ! copy everything to a matrix to keep code simple
   select rank(a)
   rank (0); write(*,'(a)')' (a scalar)'; b=reshape([a],[1,1])
   rank (1); write(*,'(a)')' (a vector)'; b=reshape(a,[size(a),1])
   rank (2); write(*,'(a)')' (a matrix)'; b=a
   rank default; stop '*printi* unexpected rank'
   end select
   ! find how many characters to use for integers
   write(row,'(i0)')ceiling(log10(max(1.0,real(maxval(abs(b))))))+2
   ! use this format to write a row
   row='(" > [",*(i'//trim(row)//':,","))'
   do i=1,size(b,dim=1)
      write(*,fmt=row,advance='no')b(i,:)
      write(*,'(" ]")')
   enddo
   write(*,all) '>shape=',shape(a),',rank=',rank(a),',size=',size(a)
   write(*,*)
end subroutine printi
end program demo_findloc

Results:

 >  == 6  (a vector)
 >  > [  2 ]
 >  >shape= 1 ,rank= 1 ,size= 1
 >
 >  == 6  (a vector)
 >  > [  4 ]
 >  >shape= 1 ,rank= 1 ,size= 1
 >
 >  == 6  (a scalar)
 >  > [  2 ]
 >  >shape= ,rank= 0 ,size= 1
 >
 >  == 6  (a scalar)
 >  > [  4 ]
 >  >shape= ,rank= 0 ,size= 1
 >
 >  array is  (a matrix)
 >  > [  0, -5,  7,  7 ]
 >  > [  3,  4, -1,  2 ]
 >  > [  1,  5,  6,  7 ]
 >  >shape= 3 4 ,rank= 2 ,size= 12
 >
 >  mask  is  (a matrix)
 >  > [ T,T,F,T ]
 >  > [ T,T,F,T ]
 >  > [ T,T,F,T ]
 >  >shape= 3 4 ,rank= 2 ,size= 12
 >
 >  so for == 7 and back=.false.
 >  so for == 7 the address of the element is  (a vector)
 >  > [  1 ]
 >  > [  4 ]
 >  >shape= 2 ,rank= 1 ,size= 2
 >
 >  so for == 7 and back=.true.
 >  so for == 7 the address of the element is  (a vector)
 >  > [  3 ]
 >  > [  4 ]
 >  >shape= 2 ,rank= 1 ,size= 2
 >
 >  This is independent of declared lower bounds for the array
 >   using dim=N
 >  array is  (a matrix)
 >  > [  1,  2, -9 ]
 >  > [  2,  2,  6 ]
 >  >shape= 2 3 ,rank= 2 ,size= 6
 >
 >    (a vector)
 >  > [  2 ]
 >  > [  1 ]
 >  > [  0 ]
 >  >shape= 3 ,rank= 1 ,size= 3
 >
 >    (a vector)
 >  > [  2 ]
 >  > [  1 ]
 >  >shape= 2 ,rank= 1 ,size= 2
 >

Standard

Fortran 95

See Also

Fortran intrinsic descriptions (license: MIT) @urbanjost

floor

Name

floor(3) - [NUMERIC] Function to return largest integral value not greater than argument

Synopsis

    result = floor(a [,kind])
     elemental integer(kind=KIND) function floor( a ,kind )

      real(kind=**),intent(in) :: a
      integer(kind=**),intent(in),optional :: KIND

Characteristics

Description

floor(3) returns the greatest integer less than or equal to a.

In other words, it picks the whole number at or to the left of the value on the number line.

This means care has to be taken that the magnitude of the real value a does not exceed the range of the output value, as the range of values supported by real values is typically larger than the range for integers.

Options

Result

The return value is of type integer(kind) if kind is present and of default-kind integer otherwise.

The result is undefined if it cannot be represented in the specified integer type.

If in range for the kind of the result the result is the whole number at or to the left of the input value on the number line.

If a is positive the result is the value with the fractional part removed.

If a is negative, it is the whole number at or to the left of the input value.

Examples

Sample program:

program demo_floor
implicit none
real :: x = 63.29
real :: y = -63.59
    print *, x, floor(x)
    print *, y, floor(y)
   ! elemental
   print *,floor([ &
   &  -2.7,  -2.5, -2.2, -2.0, -1.5, -1.0, -0.5, &
   &  0.0,   &
   &  +0.5,  +1.0, +1.5, +2.0, +2.2, +2.5, +2.7  ])

   ! note even a small deviation from the whole number changes the result
   print *,      [2.0,2.0-epsilon(0.0),2.0-2*epsilon(0.0)]
   print *,floor([2.0,2.0-epsilon(0.0),2.0-2*epsilon(0.0)])

   ! A=Nan, Infinity or huge(0_KIND)-1 < A > huge(0_KIND) is undefined
end program demo_floor

Results:

 >     63.29000             63
 >    -63.59000            -64
 >            -3         -3         -3         -2         -2         -1
 >            -1          0          0          1          1          2
 >             2          2          2
 >     2.000000      2.000000      2.000000
 >             2          1          1

Standard

Fortran 95

See Also

ceiling(3), nint(3), aint(3), anint(3), int(3), selected_int_kind(3)

Fortran intrinsic descriptions (license: MIT) @urbanjost

fraction

Name

fraction(3) - [MODEL:COMPONENTS] Fractional part of the model representation

Synopsis

    result = fraction(x)
     elemental real(kind=KIND) function fraction(x)

      real(kind=KIND),intent(in) :: fraction

Characteristics

Description

fraction(3) returns the fractional part of the model representation of x.

Options

Result

The fractional part of the model representation of x is returned; it is

    x * radix(x)**(-exponent(x))

If x has the value zero, the result is zero.

If x is an IEEE NaN, the result is that NaN.

If x is an IEEE infinity, the result is an IEEE NaN.

Examples

Sample program:

program demo_fraction
implicit none
real :: x
   x = 178.1387e-4
   print *, fraction(x), x * radix(x)**(-exponent(x))
end program demo_fraction

Results:

  >  0.5700439      0.5700439

Standard

Fortran 95

See Also

digits(3), epsilon(3), exponent(3), huge(3), maxexponent(3), minexponent(3), nearest(3), precision(3), radix(3), range(3), rrspacing(3), scale(3), set_exponent(3), spacing(3), tiny(3)

Fortran intrinsic descriptions

gamma

Name

gamma(3) - [MATHEMATICS] Gamma function, which yields factorials for positive whole numbers

Synopsis

    result = gamma(x)
     elemental real(kind=**) function gamma( x)

      type(real,kind=**),intent(in) :: x

Characteristics

Description

gamma(x) computes Gamma of x. For positive whole number values of n the Gamma function can be used to calculate factorials, as (n-1)! == gamma(real(n)). That is

n! == gamma(real(n+1))


$$ \\__Gamma__(x) = \\int\_0\*\*\\infty t\*\*{x-1}{\\mathrm{e}}\*\*{__-t__}\\,{\\mathrm{d}}t $$

Options

Result

The return value is of type real of the same kind as x. The result has a value equal to a processor-dependent approximation to the gamma function of x.

Examples

Sample program:

program demo_gamma
use, intrinsic :: iso_fortran_env, only : wp=>real64, int64
implicit none
real :: x, xa(4)
integer :: i, j

   ! basic usage
   x = gamma(1.0)
   write(*,*)'gamma(1.0)=',x

   ! elemental
   xa=gamma([1.0,2.0,3.0,4.0])
   write(*,*)xa
   write(*,*)

   ! gamma() is related to the factorial function
   do i = 1, 171
      ! check value is not too big for default integer type
      if (factorial(i)  <=  huge(0)) then
         write(*,*) i, nint(factorial(i)), 'integer'
      elseif (factorial(i)  <=  huge(0_int64)) then
         write(*,*) i, nint(factorial(i),kind=int64),'integer(kind=int64)'
      else
         write(*,*) i, factorial(i) , 'user factorial function'
         write(*,*) i, product([(real(j, kind=wp), j=1, i)]), 'product'
         write(*,*) i, gamma(real(i + 1, kind=wp)), 'gamma directly'
      endif
   enddo

contains
function factorial(i) result(f)
!  GAMMA(X) computes Gamma of X. For positive whole number values of N the
!  Gamma function can be used to calculate factorials, as (N-1)! ==
!  GAMMA(REAL(N)). That is
!
!      n! == gamma(real(n+1))
!
integer, intent(in) :: i
real(kind=wp) :: f
   if (i  <=  0) then
      write(*,'(*(g0))') '<ERROR> gamma(3) function value ', i, ' <= 0'
      stop '<STOP> bad value in gamma function'
   endif
   f = anint(gamma(real(i + 1,kind=wp)))
end function factorial

end program demo_gamma

Results:

 >  gamma(1.0)=   1.00000000
 >    1.00000000       1.00000000       2.00000000       6.00000000
 >
 >            1           1 integer
 >            2           2 integer
 >            3           6 integer
 >            4          24 integer
 >            5         120 integer
 >            6         720 integer
 >            7        5040 integer
 >            8       40320 integer
 >            9      362880 integer
 >           10     3628800 integer
 >           11    39916800 integer
 >           12   479001600 integer
 >           13           6227020800 integer(kind=int64)
 >           14          87178291200 integer(kind=int64)
 >           15        1307674368000 integer(kind=int64)
 >           16       20922789888000 integer(kind=int64)
 >           17      355687428096000 integer(kind=int64)
 >           18     6402373705728001 integer(kind=int64)
 >           19   121645100408832000 integer(kind=int64)
 >           20  2432902008176640000 integer(kind=int64)
 >           21   5.1090942171709440E+019 user factorial function
 >           21   5.1090942171709440E+019 product
 >           21   5.1090942171709440E+019 gamma directly
 >            :
 >            :
 >            :
 >          170   7.2574156153079990E+306 user factorial function
 >          170   7.2574156153079940E+306 product
 >          170   7.2574156153079990E+306 gamma directly
 >          171                  Infinity user factorial function
 >          171                  Infinity product
 >          171                  Infinity gamma directly

Standard

Fortran 2008

See Also

Logarithm of the Gamma function: log_gamma(3)

Resources

Wikipedia: Gamma_function

Fortran intrinsic descriptions

get_command_argument

Name

get_command_argument(3) - [SYSTEM:COMMAND LINE] Get command line arguments

Synopsis

  call get_command_argument(number [,value] [,length] &
  & [,status] [,errmsg])
   subroutine get_command_argument( number, value, length, &
   & status ,errmsg)

    integer(kind=**),intent(in)             :: number
    character(len=*),intent(out),optional   :: value
    integer(kind=**),intent(out),optional   :: length
    integer(kind=**),intent(out),optional   :: status
    character(len=*),intent(inout),optional :: errmsg

Characteristics

Description

get_command_argument(3) retrieves or queries the n-th argument that was passed on the command line to the current program execution.

There is not anything specifically stated about what an argument is but in practice the arguments are strings split on whitespace unless the arguments are quoted. IFS values (Internal Field Separators) used by common shells are typically ignored and unquoted whitespace is almost always the separator.

Shells have often expanded command arguments and spell characters before passing them to the program, so the strings read are often not exactly what the user typed on the command line.

Options

Result

Examples

Sample program:

program demo_get_command_argument
implicit none
character(len=255)           :: progname
integer                      :: count, i, argument_length, istat
character(len=:),allocatable :: arg

 ! command name assuming it is less than 255 characters in length
  call get_command_argument (0, progname, status=istat)
  if (istat == 0) then
     print *, "The program's name is " // trim (progname)
  else
     print *, "Could not get the program's name " // trim (progname)
  endif

 ! get number of arguments
  count = command_argument_count()
  write(*,*)'The number of arguments is ',count

  !
  ! allocate string array big enough to hold command line
  ! argument strings and related information
  !
  do i=1,count
     call get_command_argument(number=i,length=argument_length)
     if(allocated(arg))deallocate(arg)
     allocate(character(len=argument_length) :: arg)
     call get_command_argument(i, arg,status=istat)
     ! show the results
     write (*,'(i3.3,1x,i0.5,1x,i0.5,1x,"[",a,"]")') &
     & i,istat,argument_length,arg
  enddo

end program demo_get_command_argument

Results:

./demo_get_command_argument a  test 'of getting  arguments ' " leading"
 > The program's name is ./demo_get_command_argument
 > The number of arguments is            4
 >001 00000 00001 [a]
 >002 00000 00004 [test]
 >003 00000 00022 [of getting  arguments ]
 >004 00000 00008 [ leading]

Standard

Fortran 2003

See Also

get_command(3), command_argument_count(3)

Fortran intrinsic descriptions (license: MIT) @urbanjost

get_command

Name

get_command(3) - [SYSTEM:COMMAND LINE] Get the entire command line invocation

Synopsis

    call get_command([command] [,length] [,status] [,errmsg])
     subroutine get_command( command ,length ,status, errmsg )

      character(len=*),intent(out),optional   :: command
      integer(kind=**),intent(out),optional   :: length
      integer(kind=**),intent(out),optional   :: status
      character(len=*),intent(inout),optional :: errmsg

Characteristics

Description

get_command(3) retrieves the entire command line that was used to invoke the program.

Note that what is typed on the command line is often processed by a shell. The shell typically processes special characters and white space before passing it to the program. The processing can typically be turned off by turning off globbing or quoting the command line arguments and/or changing the default field separators, but this should rarely be necessary.

Result

Examples

Sample program:

program demo_get_command
implicit none
integer                      :: command_line_length
character(len=:),allocatable :: command_line
   ! get command line length
   call get_command(length=command_line_length)
   ! allocate string big enough to hold command line
   allocate(character(len=command_line_length) :: command_line)
   ! get command line as a string
   call get_command(command=command_line)
   ! trim leading spaces just in case
   command_line=adjustl(command_line)
   write(*,'("OUTPUT:",a)')command_line
end program demo_get_command

Results:

     # note that shell expansion removes some of the whitespace
     # without quotes
     ./test_get_command  arguments    on command   line to   echo

     OUTPUT:./test_get_command arguments on command line to echo

     # using the bash shell with single quotes
     ./test_get_command  'arguments  *><`~[]!{}?"\'| '

     OUTPUT:./test_get_command arguments  *><`~[]!{}?"'|

Standard

Fortran 2003

See Also

get_command_argument(3), command_argument_count(3)

Fortran intrinsic descriptions (license: MIT) @urbanjost

get_environment_variable

Name

get_environment_variable(3) - [SYSTEM:ENVIRONMENT] Retrieve the value of an environment variable

Synopsis

    call get_environment_variable(name [,value] [,length] &
    & [,status] [,trim_name] [,errmsg] )
     subroutine character(len=*) get_environment_variable( &
     & name, value, length, status, trim_name, errmsg )

      character(len=*),intent(in) :: name
      character(len=*),intent(out),optional   :: value
      integer(kind=**),intent(out),optional   :: length
      integer(kind=**),intent(out),optional   :: status
      logical,intent(out),optional            :: trim_name
      character(len=*),intent(inout),optional :: errmsg

Characteristics

Description

get_environment_variable(3) retrieves the value of the environment variable name.

Note that get_environment_variable(3) need not be thread-safe. It is the responsibility of the user to ensure that the environment is not being updated concurrently.

When running in parallel be aware it is processor dependent whether an environment variable that exists on an image also exists on another image, and if it does exist on both images whether the values are the same or different.

Options

Result

Examples

Sample program:

program demo_getenv
implicit none
character(len=:),allocatable :: homedir
character(len=:),allocatable :: var

     var='HOME'
     homedir=get_env(var)
     write (*,'(a,"=""",a,"""")')var,homedir

contains

function get_env(name,default) result(value)
! a function that makes calling get_environment_variable(3) simple
use, intrinsic :: iso_fortran_env, only : stderr=>ERROR_UNIT
implicit none
character(len=*),intent(in)          :: name
character(len=*),intent(in),optional :: default
character(len=:),allocatable         :: value
integer                              :: howbig
integer                              :: stat
integer                              :: length
   length=0
   value=''
   if(name.ne.'')then
      call get_environment_variable( name, &
      & length=howbig,status=stat,trim_name=.true.)
      select case (stat)
      case (1)
       write(stderr,*) &
       & name, " is not defined in the environment. Strange..."
       value=''
      case (2)
       write(stderr,*) &
       & "This processor does not support environment variables. Boooh!"
       value=''
      case default
       ! make string of sufficient size to hold value
       if(allocated(value))deallocate(value)
       allocate(character(len=max(howbig,1)) :: value)
       ! get value
       call get_environment_variable( &
       & name,value,status=stat,trim_name=.true.)
       if(stat.ne.0)value=''
      end select
   endif
   if(value.eq.''.and.present(default))value=default
end function get_env

end program demo_getenv

Typical Results:

 >  HOME="/home/urbanjs"

Standard

Fortran 2003

See also

get_command_argument(3), get_command(3)

Fortran intrinsic descriptions (license: MIT) @urbanjost

huge

Name

huge(3) - [MODEL:NUMERIC] Largest number of a type and kind

Synopsis

    result = huge(x)
     TYPE(kind=KIND) function huge(x)

      TYPE(kind=KIND),intent(in) :: x(..)

Characteristics

Description

huge(3) returns the largest number that is not an overflow for the kind and type of x.

Options

Result

The result is the largest value supported by the specified type and kind.

Note the result is as the same kind as the input to ensure the returned value does not overflow. Any assignment of the result to a variable requires the variable must be able to hold the value as well. For example:

     real :: r
     r=huge(0.0d0)

where R is single-precision would almost certainly result in overflow.

Examples

Sample program:

program demo_huge
implicit none
character(len=*),parameter :: f='(i2,1x,2(i11,1x),f14.0:,1x,l1,1x,a)'
integer                    :: i, j, k, biggest
real                       :: v, w
doubleprecision            :: tally
   ! basic
   print *, huge(0), huge(0.0), huge(0.0d0)
   print *, tiny(0.0), tiny(0.0d0)

   tally=0.0d0
   ! note subtracting one because counter is the end value+1 on exit
   do i=0,huge(0)-1
      tally=tally+i
   enddo
   write(*,*)'tally=',tally

   ! advanced
   biggest=huge(0)
   ! be careful of overflow when using integers in computation
   do i=1,14
      j=6**i   ! Danger, Danger
      w=6**i   ! Danger, Danger
      v=6.0**i
      k=v      ! Danger, Danger

      if(v.gt.biggest)then
         write(*,f) i, j, k, v, v.eq.w, 'wrong j and k and w'
      else
         write(*,f) i, j, k, v, v.eq.w
      endif
   enddo
   ! a simple check of the product of two 32-bit integers
   print *,checkprod([2,4,5,8],[10000,20000,3000000,400000000])

contains
impure elemental function checkprod(i,j) result(ij32)
! checkprod(3f) - check for overflow when multiplying 32-bit integers
use,intrinsic :: iso_fortran_env, only : int8, int16, int32, int64
integer(kind=int32),intent(in)  :: i, j
integer(kind=int64)             :: ij64
integer(kind=int32)             :: ij32
integer,parameter               :: toobig=huge(0_int32)
character(len=80)               :: message
   ij64=int(i,kind=int64)*int(j,kind=int64)
   if(ij64.gt.toobig)then
      write(message,'(*(g0))')&
      & '<ERROR>checkprod(3f):',i,'*',j,'=',ij64,'>',toobig
      stop message
   else
      ij32=ij64
   endif
end function checkprod
end program demo_huge

Results:

 >   2147483647   3.40282347E+38   1.7976931348623157E+308
 >    1.17549435E-38   2.2250738585072014E-308
 >  tally=   2.3058430049858406E+018
 >  1           6           6             6. T
 >  2          36          36            36. T
 >  3         216         216           216. T
 >  4        1296        1296          1296. T
 >  5        7776        7776          7776. T
 >  6       46656       46656         46656. T
 >  7      279936      279936        279936. T
 >  8     1679616     1679616       1679616. T
 >  9    10077696    10077696      10077696. T
 > 10    60466176    60466176      60466176. T
 > 11   362797056   362797056     362797056. T
 > 12 -2118184960 -2147483648    2176782336. F wrong j and k and w
 > 13   175792128 -2147483648   13060694016. F wrong j and k and w
 > 14  1054752768 -2147483648   78364164096. F wrong j and k and w
 > STOP <ERROR>checkprod(3f):8*400000000=3200000000>2147483647

Standard

Fortran 95

See Also

digits(3), epsilon(3), exponent(3), fraction(3), maxexponent(3), minexponent(3), nearest(3), precision(3), radix(3), range(3), rrspacing(3), scale(3), set_exponent(3), spacing(3), tiny(3)

Fortran intrinsic descriptions (license: MIT) @urbanjost

hypot

Name

hypot(3) - [MATHEMATICS] Returns the Euclidean distance - the distance between a point and the origin.

Synopsis

    result = hypot(x, y)
     elemental real(kind=KIND) function hypot(x,y)

      real(kind=KIND),intent(in) :: x
      real(kind=KIND),intent(in) :: y

Characteristics

Description

hypot(3) is referred to as the Euclidean distance function. It is equal to

sqrt(x**2+y**2)

without undue underflow or overflow.

In mathematics, the Euclidean distance between two points in Euclidean space is the length of a line segment between two points.

hypot(x,y) returns the distance between the point <x,y> and the origin.

Options

Result

The return value has the same type and kind type parameter as x.

The result is the positive magnitude of the distance of the point <x,y> from the origin <0.0,0.0> .

Examples

Sample program:

program demo_hypot
use, intrinsic :: iso_fortran_env, only : real32, real64, real128
implicit none
real(kind=real32) :: x, y
real(kind=real32),allocatable :: xs(:), ys(:)
integer :: i
character(len=*),parameter :: f='(a,/,SP,*(3x,g0,1x,g0:,/))'

   x = 1.e0_real32
   y = 0.5e0_real32

   write(*,*)
   write(*,'(*(g0))')'point <',x,',',y,'> is ',hypot(x,y)
   write(*,'(*(g0))')'units away from the origin'
   write(*,*)

   ! elemental
   xs=[  x,  x**2,  x*10.0,  x*15.0, -x**2  ]
   ys=[  y,  y**2, -y*20.0,  y**2,   -y**2  ]

   write(*,f)"the points",(xs(i),ys(i),i=1,size(xs))
   write(*,f)"have distances from the origin of ",hypot(xs,ys)
   write(*,f)"the closest is",minval(hypot(xs,ys))

end program demo_hypot

Results:

 >
 > point <1.00000000,0.500000000> is 1.11803401
 > units away from the origin
 >
 > the points
 >    +1.00000000 +0.500000000
 >    +1.00000000 +0.250000000
 >    +10.0000000 -10.0000000
 >    +15.0000000 +0.250000000
 >    -1.00000000 -0.250000000
 > have distances from the origin of
 >    +1.11803401 +1.03077638
 >    +14.1421356 +15.0020828
 >    +1.03077638
 > the closest is
 >    +1.03077638

Standard

Fortran 2008

See also

Fortran intrinsic descriptions (license: MIT) @urbanjost

iachar

Name

iachar(3) - [CHARACTER:CONVERSION] Return integer ASCII code of a character

Synopsis

    result = iachar(c [,kind])
     elemental integer(kind=KIND) function iachar(c,kind)

      character(len=1),intent(in) :: c
      integer(kind=**),intent(in),optional :: KIND

Characteristics

NOTE:
a kind designated as ** may be any supported kind for the type

Description

iachar(3) returns the code for the ASCII character in the first character position of C.

Options

Result

the result is the position of the character c in the ASCII collating sequence. It is nonnegative and less than or equal to 127.

By ASCII, it is meant that c is in the collating sequence defined by the codes specified in ISO/IEC 646:1991 (International Reference Version).

The value of the result is processor dependent if c is not in the ASCII collating sequence.

The results are consistent with the lge(3), lgt(3), lle(3), and llt(3) comparison functions. For example, if lle(C, D) is true, iachar(C) <= iachar (D) is true where C and D are any two characters representable by the processor.

Examples

Sample program:

program demo_iachar
implicit none
   ! basic usage
    ! just does a string one character long
    write(*,*)iachar('A')
    ! elemental: can do an array of letters
    write(*,*)iachar(['A','Z','a','z'])

   ! convert all characters to lowercase
    write(*,'(a)')lower('abcdefg ABCDEFG')
contains
!
pure elemental function lower(str) result (string)
! Changes a string to lowercase
character(*), intent(In)     :: str
character(len(str))          :: string
integer                      :: i
   string = str
   ! step thru each letter in the string in specified range
   do i = 1, len(str)
      select case (str(i:i))
      case ('A':'Z') ! change letter to miniscule
         string(i:i) = char(iachar(str(i:i))+32)
      case default
      end select
   end do
end function lower
!
end program demo_iachar

Results:

 > 65
 > 65          90          97         122
 > abcdefg abcdefg

Standard

Fortran 95 , with KIND argument - Fortran 2003

See Also

achar(3), char(3), ichar(3)

See ichar(3) in particular for a discussion of converting between numerical values and formatted string representations.

Functions that perform operations on character strings, return lengths of arguments, and search for certain arguments:

Fortran intrinsic descriptions (license: MIT) @urbanjost

iall

Name

iall(3) - [BIT:LOGICAL] Bitwise and of array elements

Synopsis

    result = iall(array [,mask]) | iall(array ,dim [,mask])
     integer(kind=KIND) function iall(array,dim,mask)

      integer(kind=KIND),intent(in)        :: array(*)
      integer(kind=**),intent(in),optional :: dim
      logical(kind=**),intent(in),optional :: mask(*)

Characteristics

Description

iall(3) reduces with a bitwise and the elements of array along dimension dim if the corresponding element in mask is .true..

Options

Result

The result is of the same type as array.

If dim is absent, a scalar with the bitwise all of all elements in array is returned. Otherwise, an array of rank n-1, where n equals the rank of array, and a shape similar to that of array with dimension dim dropped is returned.

Examples

Sample program:

program demo_iall
use, intrinsic :: iso_fortran_env, only : integer_kinds, &
 & int8, int16, int32, int64
implicit none
integer(kind=int8) :: a(2)

   a(1) = int(b'00100100')
   a(2) = int(b'01101010')

   print '(b8.8)', iall(a)

end program demo_iall

Results:

 > 00100000

Standard

Fortran 2008

See Also

iany(3), iparity(3), iand(3)

Fortran intrinsic descriptions (license: MIT) @urbanjost

iand

Name

iand(3) - [BIT:LOGICAL] Bitwise logical AND

Synopsis

    result = iand(i, j)
     elemental integer(kind=KIND) function iand(i,j)

      integer(kind=KIND),intent(in) :: i
      integer(kind=KIND),intent(in) :: j

Characteristics

Description

iand(3) returns the bitwise logical and of two values.

Options

If either i or j is a BOZ-literal-constant, it is first converted as if by the intrinsic function int(3) to type integer with the kind type parameter of the other.

Result

The result has the value obtained by combining i and i bit-by-bit according to the following table:

    I  |  J  |  IAND (I, J)
  ----------------------------
    1  |  1  |    1
    1  |  0  |    0
    0  |  1  |    0
    0  |  0  |    0

So if both the bit in i and j are on the resulting bit is on (a one); else the resulting bit is off (a zero).

This is commonly called the “bitwise logical AND” of the two values. ### Examples

Sample program:

program demo_iand
implicit none
integer :: a, b
 data a / z'f' /, b / z'3' /
 write (*,*) 'a=',a,' b=',b,'iand(a,b)=',iand(a, b)
 write (*,'(b32.32)') a,b,iand(a,b)
end program demo_iand

Results:

 >  a= 15  b= 3 iand(a,b)= 3
 > 00000000000000000000000000001111
 > 00000000000000000000000000000011
 > 00000000000000000000000000000011

Standard

Fortran 2023

See Also

btest(3), ibclr(3), ibits(3), ibset(3), ieor(3), ior(3), mvbits(3), not(3)

Fortran intrinsic descriptions (license: MIT) @urbanjost

iany

Name

iany(3) - [BIT:LOGICAL] Bitwise OR of array elements

Synopsis

    result = iany(array [,mask]) | iany(array ,dim [,mask])
     integer(kind=KIND) function iany(array,dim,mask)

      integer(kind=KIND),intent(in)        :: array(..)
      integer(kind=**),intent(in),optional :: dim
      logical(kind=**),intent(in),optional :: mask(..)

Characteristics

note a kind designated as ** may be any supported kind for the type

Description

iany(3) reduces with bitwise OR (inclusive OR) the elements of array along dimension dim if the corresponding element in mask is .true..

Options

Result

The result is of the same type as array.

If dim is absent, a scalar with the bitwise or of all elements in array is returned. Otherwise, an array of rank n-1, where n equals the rank of array, and a shape similar to that of array with dimension dim dropped is returned.

Examples

Sample program:

program demo_iany
use, intrinsic :: iso_fortran_env, only : integer_kinds, &
 & int8, int16, int32, int64
implicit none
logical,parameter :: T=.true., F=.false.
integer(kind=int8) :: a(3)
   a(1) = int(b'00100100',int8)
   a(2) = int(b'01101010',int8)
   a(3) = int(b'10101010',int8)
   write(*,*)'A='
   print '(1x,b8.8)', a
   print *
   write(*,*)'IANY(A)='
   print '(1x,b8.8)', iany(a)
   print *
   write(*,*)'IANY(A) with a mask'
   print '(1x,b8.8)', iany(a,mask=[T,F,T])
   print *
   write(*,*)'should match '
   print '(1x,b8.8)', iany([a(1),a(3)])
   print *
   write(*,*)'does it?'
   write(*,*)iany(a,[T,F,T]) == iany([a(1),a(3)])
end program demo_iany

Results:

  > A=
  > 00100100
  > 01101010
  > 10101010
  >
  > IANY(A)=
  > 11101110
  >
  > IANY(A) with a mask
  > 10101110
  >
  > should match
  > 10101110
  >
  > does it?
  > T

Standard

Fortran 2008

See Also

iparity(3), iall(3), ior(3)

Fortran intrinsic descriptions (license: MIT) @urbanjost

ibclr

Name

ibclr(3) - [BIT:SET] Clear a bit

Synopsis

    result = ibclr(i, pos)
     elemental integer(kind=KIND) function ibclr(i,pos)

      integer(kind=KIND),intent(in) :: i
      integer(kind=**),intent(in) :: pos

Characteristics

Description

ibclr(3) returns the value of i with the bit at position pos set to zero.

Options

Result

The returned value has the same bit sequence as i except the designated bit is unconditionally set to 0

Examples

Sample program:

program demo_ibclr
use,intrinsic :: iso_fortran_env,  only : int8, int16, int32, int64
implicit none
integer(kind=int16) :: i
  ! basic usage
   print *,ibclr (16, 1), ' ==> ibclr(16,1) has the value 15'

   ! it is easier to see using binary representation
   i=int(b'0000000000111111',kind=int16)
   write(*,'(b16.16,1x,i0)') ibclr(i,3), ibclr(i,3)

  ! elemental
   print *,'an array of initial values may be given as well'
   print *,ibclr(i=[7,4096,9], pos=2)
   print *
   print *,'a list of positions results in multiple returned values'
   print *,'not multiple bits set in one value, as the routine is  '
   print *,'a scalar function; calling it elementally essentially  '
   print *,'calls it multiple times.                               '
   write(*,'(b16.16)') ibclr(i=-1_int16, pos=[1,2,3,4])

   ! both may be arrays if of the same size

end program demo_ibclr

Results:

 >           16  ==> ibclr(16,1) has the value 15
 > 0000000000110111 55
 >  an array of initial values may be given as well
 >            3        4096           9
 >
 >  a list of positions results in multiple returned values
 >  not multiple bits set in one value, as the routine is
 >  a scalar function; calling it elementally essentially
 >  calls it multiple times.
 > 1111111111111101
 > 1111111111111011
 > 1111111111110111
 > 1111111111101111

Standard

Fortran 95

See Also

btest(3), iand(3), ibits(3), ibset(3), ieor(3), ior(3), mvbits(3), not(3)

Fortran intrinsic descriptions (license: MIT) @urbanjost

ibits

Name

ibits(3) - [BIT:COPY] Extraction of a subset of bits

Synopsis

    result = ibits(i, pos, len)
     elemental integer(kind=KIND) function ibits(i,pos,len)

      integer(kind=KIND),intent(in) :: i
      integer(kind=**),intent(in) :: pos
      integer(kind=**),intent(in) :: len

Characteristics

Description

ibits(3) extracts a field of bits from i, starting from bit position pos and extending left for a total of len bits.

The result is then right-justified and the remaining left-most bits in the result are zeroed.

The position pos is calculated assuming the right-most bit is zero and the positions increment to the left.

Options

pos + len shall be less than or equal to bit_size(i).

Result

The return value is composed of the selected bits right-justified, left-padded with zeros.

Examples

Sample program:

program demo_ibits
use,intrinsic :: iso_fortran_env,  only : int8, int16, int32, int64
implicit none
integer(kind=int16) :: i,j
  ! basic usage
   print *,ibits (14, 1, 3) ! should be seven
   print *,ibits(-1,10,3)   ! and so is this
   ! it is easier to see using binary representation
   i=int(b'0101010101011101',kind=int16)
   write(*,'(b16.16,1x,i0)') ibits(i,3,3), ibits(i,3,3)

  ! we can illustrate this as
   !        #-- position 15
   !        |              #-- position 0
   !        |   <-- +len   |
   !        V              V
   !        5432109876543210
   i =int(b'1111111111111111',kind=int16)
   !          ^^^^
   j=ibits(i,10,4) ! start at 10th from left and proceed
                   ! left for a total of 4 characters
   write(*,'(a,b16.16)')'j=',j
  ! lets do something less ambiguous
   i =int(b'0010011000000000',kind=int16)
   j=ibits(i,9,5)
   write(*,'(a,b16.16)')'j=',j
end program demo_ibits

Results:

 > 7
 > 7
 > 0000000000000011 3
 > j=0000000000001111
 > j=0000000000010011

Standard

Fortran 95

See Also

btest(3), iand(3), ibclr(3), ibset(3), ieor(3), ior(3), mvbits(3), not(3)

Fortran intrinsic descriptions (license: MIT) @urbanjost

ibset

Name

ibset(3) - [BIT:SET] Set a bit to one in an integer value

Synopsis

    result = ibset(i, pos)
     elemental integer(kind=KIND) function ibset(i,pos)

      integer(kind=KIND),intent(in) :: i
      integer(kind=**),intent(in) :: pos

Characteristics

Description

ibset(3) returns the value of i with the bit at position pos set to one.

Options

Result

The returned value has the same bit sequence as i except the designated bit is unconditionally set to 1.

Examples

Sample program:

program demo_ibset
use,intrinsic :: iso_fortran_env,  only : int8, int16, int32, int64
implicit none
integer(kind=int16) :: i
  ! basic usage
   print *,ibset (12, 1), 'ibset(12,1) has the value 14'

   ! it is easier to see using binary representation
   i=int(b'0000000000000110',kind=int16)
   write(*,'(b16.16,1x,i0,1x,i0)') ibset(i,12), ibset(i,12), i

  ! elemental
   print *,'an array of initial values may be given as well'
   print *,ibset(i=[0,4096], pos=2)
   print *
   print *,'a list of positions results in multiple returned values'
   print *,'not multiple bits set in one value, as the routine is  '
   print *,'a scalar function; calling it elementally essentially  '
   print *,'calls it multiple times.                               '
   write(*,'(b16.16)') ibset(i=0, pos=[1,2,3,4])

   ! both may be arrays if of the same size

end program demo_ibset

Results:

 >           14 ibset(12,1) has the value 14
 > 0001000000000110 4102 6
 >  an array of initial values may be given as well
 >            4        4100
 >
 >  a list of positions results in multiple returned values
 >  not multiple bits set in one value, as the routine is
 >  a scalar function; calling it elementally essentially
 >  calls it multiple times.
 > 0000000000000010
 > 0000000000000100
 > 0000000000001000
 > 0000000000010000

Standard

Fortran 95

See Also

ibclr(3)

btest(3), iand(3), ibits(3), ieor(3), ior(3), mvbits(3), not(3)

Fortran intrinsic descriptions (license: MIT) @urbanjost

ichar

Name

ichar(3) - [CHARACTER:CONVERSION] Character-to-integer code conversion function

Synopsis

    result = ichar(c [,kind])
     elemental integer(kind=KIND) function ichar(c,KIND)

      character(len=1,kind=**),intent(in) :: c
      integer,intent(in),optional :: KIND

Characteristics

Description

ichar(3) returns the code for the character in the system’s native character set. The correspondence between characters and their codes is not necessarily the same across different Fortran implementations. For example, a platform using EBCDIC would return different values than an ASCII platform.

See iachar(3) for specifically working with the ASCII character set.

Options

Result

The code in the system default character set for the character being queried is returned.

The result is the position of c in the processor collating sequence associated with the kind type parameter of c.

it is nonnegative and less than n, where n is the number of characters in the collating sequence.

The kind type parameter of the result shall specify an integer kind that is capable of representing n.

For any characters C and D capable of representation in the processor, C <= D is true if and only if ICHAR (C) <= ICHAR (D) is true and C == D is true if and only if ICHAR (C) == ICHAR (D) is true.

Examples

Sample program:

program demo_ichar
use,intrinsic :: iso_fortran_env, only : b=>int8
implicit none
integer,parameter  :: bytes=80
character          :: string*(bytes),lets((bytes))*1
integer(kind=b)    :: ilets(bytes)
equivalence (string,lets)
equivalence (string,ilets)
   write(*,*)ichar(['a','z','A','Z'])
   string='Do unto others'
   associate (a=>ichar(lets))
    ilets=merge(a-32,a,a>=97.and.a<=122) ! uppercase
    write(*,*)string
    ilets=merge(a+32,a,a>=65.and.a<=90)  ! lowercase
    write(*,*)string
   end associate
end program demo_ichar

Results:

    >          97         122          65          90
    > DO UNTO OTHERS
    > do unto others

Standard

Fortran 95, with KIND argument -Fortran 2003

See Also

achar(3), char(3), iachar(3)

Functions that perform operations on character strings, return lengths of arguments, and search for certain arguments:

scan(3), verify(3)

Fortran intrinsic descriptions (license: MIT) @urbanjost

ieor

Name

ieor(3) - [BIT:LOGICAL] Bitwise exclusive OR

Synopsis

    result = ieor(i, j)
     elemental integer(kind=**) function ieor(i,j)

      integer(kind=**),intent(in) :: i
      integer(kind=**),intent(in) :: j

Characteristics

Description

ieor(3) returns a bitwise exclusive-or of i and j.

An exclusive OR or “exclusive disjunction” is a logical operation that is true if and only if its arguments differ. In this case a one-bit and a zero-bit substitute for true and false.

This is often represented with the notation “XOR”, for “eXclusive OR”.

An alternate way to view the process is that the result has the value obtained by combining i and j bit-by-bit according to the following table:

  >  I | J |IEOR (I, J)
  >  --#---#-----------
  >  1 | 1 |  0
  >  1 | 0 |  1
  >  0 | 1 |  1
  >  0 | 0 |  0

Options

If either I or J is a boz-literal-constant, it is first converted as if by the intrinsic function INT to type integer with the kind type parameter of the other.

Result

If a bit is different at the same location in i and j the corresponding bit in the result is 1, otherwise it is 0.

Examples

Sample program:

program demo_ieor
use,intrinsic :: iso_fortran_env,  only : int8, int16, int32, int64
implicit none
integer(kind=int16) :: i,j
  ! basic usage
   print *,ieor (16, 1), ' ==> ieor(16,1) has the value 17'

   ! it is easier to see using binary representation
   i=int(b'0000000000111111',kind=int16)
   j=int(b'0000001111110000',kind=int16)
   write(*,'(a,b16.16,1x,i0)')'i=     ',i, i
   write(*,'(a,b16.16,1x,i0)')'j=     ',j, j
   write(*,'(a,b16.16,1x,i0)')'result=',ieor(i,j), ieor(i,j)

  ! elemental
   print *,'arguments may be arrays. If both are arrays they '
   print *,'must have the same shape.                        '
   print *,ieor(i=[7,4096,9], j=2)

   ! both may be arrays if of the same size

end program demo_ieor

Results:

 >           17  ==> ieor(16,1) has the value 17
 > i=     0000000000111111 63
 > j=     0000001111110000 1008
 > result=0000001111001111 975
 >  arguments may be arrays. If both are arrays they
 >  must have the same shape.
 >            5        4098          11

Standard

Fortran 95

See Also

btest(3), iand(3), ibclr(3), ibits(3), ibset(3), ieor(3), ior(3), mvbits(3), not(3)

Fortran intrinsic descriptions (license: MIT) @urbanjost

image_index

Name

image_index(3) - [COLLECTIVE] Cosubscript to image index conversion

Synopsis

    result = image_index(coarray, sub)

Characteristics

Description

image_index(3) returns the image index belonging to a cosubscript.

Options

Result

Scalar default integer with the value of the image index which corresponds to the cosubscripts. For invalid cosubscripts the result is zero.

Examples

Sample program:

program demo image_index
implicit none
integer :: array[2,-1:4,8,*]
   ! Writes  28 (or 0 if there are fewer than 28 images)
   write (*,*) image_index(array, [2,0,3,1])
end demo image_index

Standard

Fortran 2008

See Also

this_image(3), num_images(3)

Fortran intrinsic descriptions

index

Name

index(3) - [CHARACTER:SEARCH] Position of a substring within a string

Synopsis

result = index( string, substring [,back] [,kind] )
 elemental integer(kind=KIND) function index(string,substring,back,kind)

  character(len=*,kind=KIND),intent(in) :: string
  character(len=*,kind=KIND),intent(in) :: substring
  logical(kind=**),intent(in),optional :: back
  integer(kind=**),intent(in),optional :: kind

Characteristics

Description

index(3) returns the position of the start of the leftmost or rightmost occurrence of string substring in string, counting from one. If substring is not present in string, zero is returned.

Options

Result

The result is the starting position of the first substring substring found in string.

If the length of substring is longer than string the result is zero.

If the substring is not found the result is zero.

If back is .true. the greatest starting position is returned (that is, the position of the right-most match). Otherwise, the smallest position starting a match (ie. the left-most match) is returned.

The position returned is measured from the left with the first character of string being position one.

Otherwise, if no match is found zero is returned.

Examples

Example program

program demo_index
implicit none
character(len=*),parameter :: str=&
   'Search this string for this expression'
   !1234567890123456789012345678901234567890
   write(*,*)&
      index(str,'this').eq.8,              &
      ! return value is counted from the left end even if BACK=.TRUE.
      index(str,'this',back=.true.).eq.24, &
      ! INDEX is case-sensitive
      index(str,'This').eq.0
end program demo_index

Expected Results:

  > T T T

Standard

FORTRAN 77 , with KIND argument Fortran 2003

See Also

Functions that perform operations on character strings, return lengths of arguments, and search for certain arguments:

Fortran intrinsic descriptions

int

Name

int(3) - [TYPE:CONVERSION] Truncate towards zero and convert to integer

Synopsis

    result = int(a [,kind])
     elemental integer(kind=KIND) function int(a, KIND )

      TYPE(kind=**),intent(in) :: a
      integer,optional :: KIND

Characteristics

Description

int(3) truncates towards zero and return an integer.

Options

Result

returns an integer variable applying the following rules:

Case:

  1. If a is of type integer, int(a) = a

  2. If a is of type real and |a| < 1, int(a) equals 0. If |a| >= 1, then int(a) equals the integer whose magnitude does not exceed a and whose sign is the same as the sign of a.

  3. If a is of type complex, rule 2 is applied to the real part of a.

  4. If a is a boz-literal constant, it is treated as an integer with the kind specified.

    The interpretation of a bit sequence whose most significant bit is 1 is processor dependent.

The result is undefined if it cannot be represented in the specified integer type.

Examples

Sample program:

program demo_int
use,intrinsic :: iso_fortran_env, only : int8, int16, int32, int64
implicit none
integer :: i = 42
complex :: z = (-3.7, 1.0)
real :: x=-10.5, y=10.5

   print *, int(x), int(y)

   print *, int(i)

   print *, int(z), int(z,8)
   ! elemental
   print *, int([-10.9,-10.5,-10.3,10.3,10.5,10.9])
   ! note int(3) truncates towards zero

   ! CAUTION:
   ! a number bigger than a default integer can represent
   ! produces an incorrect result and is not required to
   ! be detected by the program.
   x=real(huge(0))+1000.0
   print *, int(x),x
   ! using a larger kind
   print *, int(x,kind=int64),x

   print *, int(&
   & B"111111111111111111111111111111111111111111111111111111111111111",&
   & kind=int64)
   print *, int(O"777777777777777777777",kind=int64)
   print *, int(Z"7FFFFFFFFFFFFFFF",kind=int64)

   ! elemental
   print *
   print *,int([ &
   &  -2.7,  -2.5, -2.2, -2.0, -1.5, -1.0, -0.5, &
   &  0.0,   &
   &  +0.5,  +1.0, +1.5, +2.0, +2.2, +2.5, +2.7  ])

end program demo_int

Results:

 >          -10   10
 >           42
 >           -3  -3
 >          -10  -10  -10   10   10  10
 >  -2147483648   2.14748467E+09
 >   2147484672   2.14748467E+09
 >   9223372036854775807
 >   9223372036854775807
 >   9223372036854775807
 >
 >  -2          -2          -2          -2          -1
 >  -1           0           0           0           1
 >   1           2           2           2           2

Standard

FORTRAN 77

See Also

aint(3), anint(3), nint(3), selected_int_kind(3), ceiling(3), floor(3)

Fortran intrinsic descriptions (license: MIT) @urbanjost

ior

Name

ior(3) - [BIT:LOGICAL] Bitwise logical inclusive OR

Synopsis

    result = ior(i, j)
     elemental integer(kind=KIND) function ior(i,j)

      integer(kind=KIND ,intent(in) :: i
      integer(kind=KIND ,intent(in) :: j

Characteristics

Description

ior(3) returns the bit-wise Boolean inclusive-or of i and j.

Options

If either i or j is a BOZ-literal-constant, it is first converted as if by the intrinsic function int(3) to type integer with the kind type parameter of the other.

Result

The result has the value obtained by combining I and J bit-by-bit according to the following table:

          I   J   IOR (I, J)
          1   1        1
          1   0        1
          0   1        1
          0   0        0

Where if the bit is set in either input value, it is set in the result. Otherwise the result bit is zero.

This is commonly called the “bitwise logical inclusive OR” of the two values.

Examples

Sample program:

program demo_ior
implicit none
integer :: i, j, k
   i=53       ! i=00110101 binary (lowest order byte)
   j=45       ! j=00101101 binary (lowest order byte)
   k=ior(i,j) ! k=00111101 binary (lowest order byte), k=61 decimal
   write(*,'(i8,1x,b8.8)')i,i,j,j,k,k
end program demo_ior

Results:

   > 53 00110101
   > 45 00101101
   > 61 00111101

Standard

Fortran 95

See Also

btest(3), iand(3), ibclr(3), ibits(3), ibset(3), ieor(3), mvbits(3), not(3)

Fortran intrinsic descriptions (license: MIT) @urbanjost

iparity

Name

iparity(3) - [BIT:LOGICAL] Bitwise exclusive OR of array elements

Synopsis

    result = iparity( array [,mask] ) | iparity( array, dim [,mask] )
     integer(kind=KIND) function iparity(array, dim, mask )

      integer(kind=KIND),intent(in) :: array(..)
      logical(kind=**),intent(in),optional :: dim
      logical(kind=**),intent(in),optional :: mask(..)

Description

iparity(3) reduces with bitwise xor (exclusive or) the elements of array along dimension dim if the corresponding element in mask is .true..

Options

Result

The result is of the same type as array.

If dim is absent, a scalar with the bitwise xor of all elements in array is returned. Otherwise, an array of rank n-1, where n equals the rank of array, and a shape similar to that of array with dimension dim dropped is returned.

Case (i)
The result of IPARITY (ARRAY) has a value equal to the bitwise exclusive OR of all the elements of ARRAY. If ARRAY has size zero the result has the value zero.
Case (ii)

The result of IPARITY (ARRAY, MASK=MASK) has a value equal to that of

Case (iii)

The result of IPARITY (ARRAY, DIM=DIM [, MASK=MASK]) has a value equal to that of IPARITY (ARRAY [, MASK=MASK]) if ARRAY has rank one.

Otherwise, an array of values reduced along the dimension DIM is returned.

Examples

Sample program:

program demo_iparity
implicit none
integer, dimension(2) :: a
  a(1) = int(b'00100100')
  a(2) = int(b'01101010')
  print '(b8.8)', iparity(a)
end program demo_iparity

Results:

 > 01001110

Standard

Fortran 2008

See Also

iany(3), iall(3), ieor(3), parity(3)

Fortran intrinsic descriptions

is_contiguous

Name

is_contiguous(3) - [ARRAY:INQUIRY] Test if object is contiguous

Synopsis

    result = is_contiguous(array)
     logical function is_contiguous(array)

      type(TYPE(kind=**)),intent(in) :: array

Characteristics

Description

is_contiguous(3) returns .true. if and only if an object is contiguous.

An object is contiguous if it is

An object is not contiguous if it is an array subobject, and

It is processor-dependent whether any other object is contiguous.

Options

Result

The result has the value .true. if array is contiguous, and .false. otherwise.

Examples

Sample program:

program demo_is_contiguous
implicit none
intrinsic is_contiguous
real, DIMENSION (1000, 1000), TARGET :: A
real, DIMENSION (:, :), POINTER       :: IN, OUT
   IN => A              ! Associate IN with target A
   OUT => A(1:1000:2,:) ! Associate OUT with subset of target A
   !
   write(*,*)'IN is ',IS_CONTIGUOUS(IN)
   write(*,*)'OUT is ',IS_CONTIGUOUS(OUT)
   !
end program demo_is_contiguous

Results:

  > IN is  T
  > OUT is  F

Standard

Fortran 2008

See also

Fortran intrinsic descriptions

ishftc

Name

ishftc(3) - [BIT:SHIFT] Shift rightmost bits circularly, AKA. a logical shift

Synopsis

    result = ishftc( i, shift [,size] )
     elemental integer(kind=KIND) function ishftc(i, shift, size)

      integer(kind=KIND),intent(in)        :: i
      integer(kind=**),intent(in)          :: shift
      integer(kind=**),intent(in),optional :: size

Characteristics

Description

ishftc(3) circularly shifts just the specified rightmost bits of an integer.

ishftc(3) returns a value corresponding to i with the rightmost size bits shifted circularly shift places; that is, bits shifted out one end of the section are shifted into the opposite end of the section.

A value of shift greater than zero corresponds to a left shift, a value of zero corresponds to no shift, and a value less than zero corresponds to a right shift.

Options

Result

The result characteristics (kind, shape, size, rank, …) are the same as i.

The result has the value obtained by shifting the size rightmost bits of i circularly by shift positions.

No bits are lost.

The unshifted bits are unaltered.

Examples

Sample program:

program demo_ishftc
use,intrinsic :: iso_fortran_env, only : int8, int16, int32, int64
implicit none
integer             :: i
character(len=*),parameter :: g='(b32.32,1x,i0)'
  ! basics
   write(*,*) ishftc(3, 1),' <== typically should have the value 6'

   print *, 'lets start with this:'
   write(*,'(b32.32)')huge(0)
   print *, 'shift the value by various amounts, negative and positive'
   do i= -bit_size(0), bit_size(0), 8
      write(*,g) ishftc(huge(0),i), i
   enddo
  print *,'elemental'
  i=huge(0)
  write(*,*)ishftc(i,[2,3,4,5])
  write(*,*)ishftc([2**1,2**3,-2**7],3)
  print *,'note the arrays have to conform when elemental'
  write(*,*)ishftc([2**1,2**3,-2**7],[5,20,0])

end program demo_ishftc

Results:

 >            6  <== typically should have the value 6
 >  lets start with this:
 > 01111111111111111111111111111111
 >  shift the value by various amounts, negative and positive
 > 01111111111111111111111111111111 -32
 > 11111111111111111111111101111111 -24
 > 11111111111111110111111111111111 -16
 > 11111111011111111111111111111111 -8
 > 01111111111111111111111111111111 0
 > 11111111111111111111111101111111 8
 > 11111111111111110111111111111111 16
 > 11111111011111111111111111111111 24
 > 01111111111111111111111111111111 32
 >  elemental
 >           -3          -5          -9         -17
 >           16          64       -1017
 >  note the arrays have to conform when elemental
 >           64     8388608        -128

Standard

Fortran 95

See Also

Fortran intrinsic descriptions (license: MIT) @urbanjost

ishft

Name

ishft(3) - [BIT:SHIFT] Logical shift of bits in an integer

Synopsis

    result = ishftc( i, shift )
     elemental integer(kind=KIND) function ishft(i, shift )

      integer(kind=KIND),intent(in) :: i
      integer(kind=**),intent(in) :: shift

Characteristics

Description

ishft(3) returns a value corresponding to i with all of the bits shifted shift places left or right as specified by the sign and magnitude of shift.

Bits shifted out from the left end or right end are lost; zeros are shifted in from the opposite end.

Options

Result

The result has the value obtained by shifting the bits of i by shift positions.

  1. If shift is positive, the shift is to the left
  2. if shift is negative, the shift is to the right
  3. if shift is zero, no shift is performed.

Bits shifted out from the left or from the right, as appropriate, are lost. Zeros are shifted in from the opposite end.

Examples

Sample program:

program demo_ishft
use,intrinsic :: iso_fortran_env, only : int8, int16, int32, int64
implicit none
integer             :: shift
character(len=*),parameter :: g='(b32.32,1x,i0)'

   write(*,*) ishft(3, 1),' <== typically should have the value 6'

   shift=4
   write(*,g) ishft(huge(0),shift), shift
   shift=0
   write(*,g) ishft(huge(0),shift), shift
   shift=-4
   write(*,g) ishft(huge(0),shift), shift
end program demo_ishft

Results:

>              6  <== typically should have the value 6
>   11111111111111111111111111110000 4
>   01111111111111111111111111111111 0
>   00000111111111111111111111111111 -4

Standard

Fortran 95

See Also

ishftc(3)

Fortran intrinsic descriptions (license: MIT) @urbanjost

is_iostat_end

Name

is_iostat_end(3) - [STATE:INQUIRY] Test for end-of-file value

Synopsis

    result = is_iostat_end(i)
     elemental logical function is_iostat_end(i)

      integer,intent(in) :: i

Characteristics

Description

is_iostat_end(3) tests whether a variable (assumed returned as a status from an I/O statement) has the “end of file” I/O status value.

The function is equivalent to comparing the variable with the iostat_end parameter of the intrinsic module iso_fortran_env.

Options

Result

returns .true. if and only ifi has the value which indicates an end of file condition for iostat= specifiers, and is .false. otherwise.

Examples

Sample program:

program demo_iostat
implicit none
integer,parameter  :: wp=kind(0.0d0)
real(kind=wp)      :: value
integer            :: ios
integer            :: lun
character(len=256) :: message
   ! make a scratch input file for demonstration purposes
   call makefile(lun)
   write(*,*)'Begin entering numeric values, one per line'
   do
      read(lun,*,iostat=ios,iomsg=message)value
      if(ios.eq.0)then
         write(*,*)'VALUE=',value
      elseif( is_iostat_end(ios) ) then
         stop 'end of file. Goodbye!'
      else
         write(*,*)'ERROR:',ios,trim(message)
         exit
      endif
      !
   enddo
contains
subroutine makefile(lun)
! make a scratch file just for demonstration purposes
integer :: iostat,lun
integer :: i
character(len=80),parameter  :: fakefile(*)=[character(len=80) :: &

'3.141592653589793238462643383279502884197169399375105820974944592307 &
 &/ pi', &

'0.577215664901532860606512090082402431042 &
 &/ The Euler-Mascheroni constant (Gamma)', &

'2.71828182845904523536028747135266249775724709369995 &
 &/ Napier''s constant "e"&
 & is the base of the natural logarithm system,&
 & named in honor of Euler ', &

'1.6180339887498948482045868 &
 &/ Golden_Ratio', &

'1 / unity']

   open(newunit=lun,status='scratch')
   write(lun,'(a)')(trim(fakefile(i)),i=1,size(fakefile))
   rewind(lun)
end subroutine makefile
end program demo_iostat

Results:

STOP end of file. Goodbye!
 >  Begin entering numeric values, one per line
 >  VALUE=   3.1415926535897931
 >  VALUE=  0.57721566490153287
 >  VALUE=   2.7182818284590451
 >  VALUE=   1.6180339887498949
 >  VALUE=   1.0000000000000000

Standard

Fortran 2003

See also

Fortran intrinsic descriptions (license: MIT) @urbanjost

is_iostat_eor

Name

is_iostat_eor(3) - [STATE:INQUIRY] Test for end-of-record value

Synopsis

    result = is_iostat_eor(i)
     elemental integer function is_iostat_eor(i)

      integer(kind=KIND),intent(in) :: i

Characteristics

Description

is_iostat_eor(3) tests whether a variable has the value of the I/O status “end of record”. The function is equivalent to comparing the variable with the iostat_eor parameter of the intrinsic module iso_fortran_env.

Options

Result

Returns .true. if and only if i has the value which indicates an end-of-record condition for iostat= specifiers, and is .false. otherwise.

Examples

Sample program:

program demo_is_iostat_eor
use iso_fortran_env, only : iostat_eor
implicit none
integer :: inums(5), lun, ios

  ! create a test file to read from
   open(newunit=lun, form='formatted',status='scratch')
   write(lun, '(a)') '10 20 30'
   write(lun, '(a)') '40 50 60 70'
   write(lun, '(a)') '80 90'
   write(lun, '(a)') '100'
   rewind(lun)

   do
      read(lun, *, iostat=ios) inums
      write(*,*)'iostat=',ios
      if(is_iostat_eor(ios)) then
         stop 'end of record'
      elseif(is_iostat_end(ios)) then
         print *,'end of file'
         exit
      elseif(ios.ne.0)then
         print *,'I/O error',ios
         exit
      endif
   enddo

   close(lun,iostat=ios,status='delete')

end program demo_is_iostat_eor

Results:

 >  iostat=           0
 >  iostat=          -1
 >  end of file

Standard

Fortran 2003

See also

Fortran intrinsic descriptions

kind

Name

kind(3) - [KIND:INQUIRY] Query kind of an entity

Synopsis

    result = kind(x)
     integer function kind(x)

      type(TYPE(kind=**)),intent(in) :: x(..)

Characteristics

Description

kind(x)(3) returns the kind value of the entity x.

Options

Result

The return value indicates the kind of the argument x.

Note that kinds are processor-dependent.

Examples

Sample program:

program demo_kind
implicit none
integer,parameter :: dc = kind(' ')
integer,parameter :: dl = kind(.true.)

   print *, "The default character kind is ", dc
   print *, "The default logical kind is ", dl

end program demo_kind

Results:

  > The default character kind is            1
  > The default logical kind is            4

Standard

Fortran 95

See also

Fortran intrinsic descriptions (license: MIT) @urbanjost

lbound

Name

lbound(3) - [ARRAY:INQUIRY] Lower dimension bounds of an array

Synopsis

    result = lbound(array [,dim] [,kind] )
     elemental TYPE(kind=KIND) function lbound(array,dim,kind)

      TYPE(kind=KIND),intent(in)           :: array(..)
      integer(kind=**),intent(in),optional :: dim
      integer(kind=**),intent(in),optional :: kind

Characteristics

Description

lbound(3) returns the lower bounds of an array, or a single lower bound along the dim dimension.

Options

Result

If dim is absent, the result is an array of the lower bounds of array.

If dim is present, the result is a scalar corresponding to the lower bound of the array along that dimension. If array is an expression rather than a whole array or array structure component, or if it has a zero extent along the relevant dimension, the lower bound is taken to be 1.

NOTE1

If array is assumed-rank and has rank zero, dim cannot be present since it cannot satisfy the requirement 1 <= dim <= 0.

Examples

Note that this function should not be used on assumed-size arrays or in any function without an explicit interface. Errors can occur if there is no interface defined.

Sample program

! program demo_lbound
module m_bounds
implicit none
 contains
    subroutine msub(arr)
       !!integer,intent(in) :: arr(*)  ! cannot be assumed-size array
       integer,intent(in) :: arr(:)
       write(*,*)'MSUB: LOWER=',lbound(arr), &
       & 'UPPER=',ubound(arr), &
       & 'SIZE=',size(arr)
    end subroutine msub
 end module m_bounds

 program demo_lbound
 use m_bounds, only : msub
 implicit none
 interface
    subroutine esub(arr)
    integer,intent(in) :: arr(:)
    end subroutine esub
 end interface
 integer :: arr(-10:10)
    write(*,*)'MAIN: LOWER=',lbound(arr), &
    & 'UPPER=',ubound(arr), &
    & 'SIZE=',size(arr)
    call csub()
    call msub(arr)
    call esub(arr)
 contains
subroutine csub
   write(*,*)'CSUB: LOWER=',lbound(arr), &
   & 'UPPER=',ubound(arr), &
   & 'SIZE=',size(arr)
end subroutine csub
end

 subroutine esub(arr)
 implicit none
 integer,intent(in) :: arr(:)
    ! WARNING: IF CALLED WITHOUT AN EXPLICIT INTERFACE
    ! THIS WILL GIVE UNDEFINED ANSWERS (like 0,0,0)
    write(*,*)'ESUB: LOWER=',lbound(arr), &
    & 'UPPER=',ubound(arr), &
    & 'SIZE=',size(arr)
 end subroutine esub

!end program demo_lbound

Results:

 >  MAIN: LOWER=         -10 UPPER=          10 SIZE=          21
 >  CSUB: LOWER=         -10 UPPER=          10 SIZE=          21
 >  MSUB: LOWER=           1 UPPER=          21 SIZE=          21
 >  ESUB: LOWER=           1 UPPER=          21 SIZE=          21

Standard

Fortran 95 , with KIND argument - Fortran 2003

See Also

Array inquiry:

co_ubound(3), co_lbound(3)

State Inquiry:

Kind Inquiry:

Bit Inquiry:

Fortran intrinsic descriptions (license: MIT) @urbanjost

lcobound

Name

lcobound(3) - [COLLECTIVE] Lower codimension bounds of an array

Synopsis

     result = lcobound( coarray [,dim] [,kind] )

Characteristics

Description

lcobound(3) returns the lower bounds of a coarray, or a single lower cobound along the dim codimension.

Options

Result

The return value is of type integer and of kind kind. If kind is absent, the return value is of default integer kind. If dim is absent, the result is an array of the lower cobounds of coarray. If dim is present, the result is a scalar corresponding to the lower cobound of the array along that codimension.

Standard

Fortran 2008

See Also

ucobound(3), lbound(3)

Fortran intrinsic descriptions

leadz

Name

leadz(3) - [BIT:COUNT] Number of leading zero bits of an integer

Synopsis

    result = leadz(i)
     elemental integer function leadz(i)

      integer(kind=**),intent(in) :: i

Characteristics

Description

leadz(3) returns the number of leading zero bits of an integer.

Options

Result

The number of leading zero bits, taking into account the kind of the input value. If all the bits of i are zero, the result value is bit_size(i).

The result may also be thought of as bit_size(i)-1-k where k is the position of the leftmost 1 bit in the input i. Positions are from 0 to bit-size(), with 0 at the right-most bit.

Examples

Sample program:

program demo_leadz
implicit none
integer :: value, i
character(len=80) :: f

  ! make a format statement for writing a value as a bit string
  write(f,'("(b",i0,".",i0,")")')bit_size(value),bit_size(value)

  ! show output for various integer values
  value=0
  do i=-150, 150, 50
     value=i
     write (*,'("LEADING ZERO BITS=",i3)',advance='no') leadz(value)
     write (*,'(" OF VALUE ")',advance='no')
     write(*,f,advance='no') value
     write(*,'(*(1x,g0))') "AKA",value
  enddo
  ! Notes:
  ! for two's-complements programming environments a negative non-zero
  ! integer value will always start with a 1 and a positive value with 0
  ! as the first bit is the sign bit. Such platforms are very common.
end program demo_leadz

Results:

 > LEADING ZERO BITS= 0 OF VALUE 11111111111111111111111101101010 AKA -150
 > LEADING ZERO BITS= 0 OF VALUE 11111111111111111111111110011100 AKA -100
 > LEADING ZERO BITS= 0 OF VALUE 11111111111111111111111111001110 AKA -50
 > LEADING ZERO BITS=32 OF VALUE 00000000000000000000000000000000 AKA 0
 > LEADING ZERO BITS=26 OF VALUE 00000000000000000000000000110010 AKA 50
 > LEADING ZERO BITS=25 OF VALUE 00000000000000000000000001100100 AKA 100
 > LEADING ZERO BITS=24 OF VALUE 00000000000000000000000010010110 AKA 150

Standard

Fortran 2008

See Also

bit_size(3), popcnt(3), poppar(3), trailz(3)

Fortran intrinsic descriptions (license: MIT) @urbanjost

len

Name

len(3) - [CHARACTER] Length of a character entity

Synopsis

    result = len(string [,kind])
     integer(kind=KIND) function len(string,KIND)

      character(len=*),intent(in) :: string(..)
      integer,optional,intent(in) :: KIND

Characteristics

Description

len(3) returns the length of a character string.

If string is an array, the length of a single element of string is returned, as all elements of an array are the same length.

Note that string need not be defined when this intrinsic is invoked, as only the length (not the content) of string is needed.

Options

Result

The result has a value equal to the number of characters in STRING if it is scalar or in an element of STRING if it is an array.

Examples

Sample program

program demo_len
implicit none

! fixed length
character(len=40) :: string
! allocatable length
character(len=:),allocatable :: astring
character(len=:),allocatable :: many_strings(:)
integer :: ii
  ! BASIC USAGE
   ii=len(string)
   write(*,*)'length =',ii

  ! ALLOCATABLE VARIABLE LENGTH CAN CHANGE
  ! the allocatable string length will be the length of RHS expression
   astring=' How long is this allocatable string? '
   write(*,*)astring, ' LEN=', len(astring)
  ! print underline
   write(*,*) repeat('=',len(astring))
  ! assign new value to astring and length changes
   astring='New allocatable string'
   write(*,*)astring, ' LEN=', len(astring)
  ! print underline
   write(*,*) repeat('=',len(astring))

  ! THE STRING LENGTH WILL BE CONSTANT FOR A FIXED-LENGTH VARIABLE
   string=' How long is this fixed string? '
   write(*,*)string,' LEN=',len(string)
   string='New fixed string '
   write(*,*)string,' LEN=',len(string)

  ! ALL STRINGS IN AN ARRAY ARE THE SAME LENGTH
  ! a scalar is returned for an array, as all values in a Fortran
  ! character array must be of the same length.
   many_strings = [ character(len=7) :: 'Tom', 'Dick', 'Harry' ]
   write(*,*)'length of ALL elements of array=',len(many_strings)

  ! NAME%LEN IS ESSENTIALLY THE SAME AS LEN(NAME)
  ! you can also query the length (and other attributes) of a string
  ! using a "type parameter inquiry" (available since fortran 2018)
   write(*,*)'length from type parameter inquiry=',string%len
  ! %len is equivalent to a call to LEN() except the kind of the integer
  ! value returned is always of default kind.

  ! LOOK AT HOW A PASSED STRING CAN BE USED ...
   call passed(' how long? ')

contains

   subroutine passed(str)
   character(len=*),intent(in)  :: str
   ! the length of str can be used in the definitions of variables
      ! you can query the length of the passed variable
      write(*,*)'length of passed value is ', LEN(str)
   end subroutine passed

end program demo_len

Results:

 >  length =          40
 >   How long is this allocatable string?  LEN=          38
 >  ======================================
 >  New allocatable string LEN=          22
 >  ======================
 >   How long is this fixed string?          LEN=          40
 >  New fixed string                         LEN=          40
 >  length of ALL elements of array=           7
 >  length from type parameter inquiry=          40
 >  length of passed value is           11

Standard

FORTRAN 77 ; with kind argument - Fortran 2003

See Also

len_trim(3), adjustr(3), trim(3), and adjustl(3) are related routines that allow you to deal with leading and trailing blanks.

Functions that perform operations on character strings, return lengths of arguments, and search for certain arguments:

Fortran intrinsic descriptions (license: MIT) @urbanjost

len_trim

Name

len_trim(3) - [CHARACTER:WHITESPACE] Character length without trailing blank characters

Synopsis

  result = len_trim(string [,kind])
   elemental integer(kind=KIND) function len_trim(string,KIND)

    character(len=*),intent(in) :: string
    integer(kind=KIND),intent(in),optional :: KIND

Characteristics

Description

len_trim(3) returns the length of a character string, ignoring any trailing blanks.

Options

Result

The result equals the number of characters remaining after any trailing blanks in string are removed.

If the input argument is of zero length or all blanks the result is zero.

Examples

Sample program

program demo_len_trim
implicit none
character(len=:),allocatable :: string
integer :: i
! basic usage
   string=" how long is this string?     "
   write(*,*) string
   write(*,*)'UNTRIMMED LENGTH=',len(string)
   write(*,*)'TRIMMED LENGTH=',len_trim(string)

   ! print string, then print substring of string
   string='xxxxx   '
   write(*,*)string,string,string
   i=len_trim(string)
   write(*,*)string(:i),string(:i),string(:i)
   !
  ! elemental example
   ELE:block
   ! an array of strings may be used
   character(len=:),allocatable :: tablet(:)
   tablet=[character(len=256) :: &
   & ' how long is this string?     ',&
   & 'and this one?']
      write(*,*)'UNTRIMMED LENGTH=  ',len(tablet)
      write(*,*)'TRIMMED LENGTH=    ',len_trim(tablet)
      write(*,*)'SUM TRIMMED LENGTH=',sum(len_trim(tablet))
   endblock ELE
   !
end program demo_len_trim

Results:

  >   how long is this string?
  >  UNTRIMMED LENGTH=          30
  >  TRIMMED LENGTH=          25
  >  xxxxx   xxxxx   xxxxx
  >  xxxxxxxxxxxxxxx
  >  UNTRIMMED LENGTH=           256
  >  TRIMMED LENGTH=              25          13
  >  SUM TRIMMED LENGTH=          38

Standard

Fortran 95 . kind argument added with Fortran 2003.

See Also

Functions that perform operations on character strings, return lengths of arguments, and search for certain arguments:

Fortran intrinsic descriptions (license: MIT) @urbanjost

lge

Name

lge(3) - [CHARACTER:COMPARE] ASCII Lexical greater than or equal

Synopsis

    result = lge(string_a, stringb)
     elemental logical function lge(string_a, string_b)

      character(len=*),intent(in) :: string_a
      character(len=*),intent(in) :: string_b

Characteristics

Description

lge(3) determines whether one string is lexically greater than or equal to another string, where the two strings are interpreted as containing ASCII character codes. If string_a and string_b are not the same length, the shorter is compared as if spaces were appended to it to form a value that has the same length as the longer.

The lexical comparison intrinsics lge(3), lgt(3), lle(3), and llt(3) differ from the corresponding intrinsic operators .ge., .gt., .le., and .lt., in that the latter use the processor’s character ordering (which is not ASCII on some targets), whereas the former always use the ASCII ordering.

Options

Result

Returns .true. if string_a >= string_b, and .false. otherwise, based on the ASCII collating sequence.

If both input arguments are null strings, .true. is always returned.

If either string contains a character not in the ASCII character set, the result is processor dependent.

Examples

Sample program:

program demo_lge
implicit none
integer :: i
   print *,'the ASCII collating sequence for printable characters'
   write(*,'(1x,19a)')(char(i),i=32,126) ! ASCII order
   write(*,*) lge('abc','ABC')           ! [T] lowercase is > uppercase
   write(*,*) lge('abc','abc  ')         ! [T] trailing spaces
   ! If both strings are of zero length the result is true
   write(*,*) lge('','')                 ! [T]
   write(*,*) lge('','a')                ! [F] the null string is padded
   write(*,*) lge('a','')                ! [T]
   ! elemental
   write(*,*) lge('abc',['abc','123'])   ! [T T]  scalar and array
   write(*,*) lge(['cba', '123'],'abc')  ! [T F]
   write(*,*) lge(['abc','123'],['cba','123']) ! [F T]  both arrays
end program demo_lge

Results:

 >  the ASCII collating sequence for printable characters
 >   !"#$%&'()*+,-./012
 >  3456789:;<=>?@ABCDE
 >  FGHIJKLMNOPQRSTUVWX
 >  YZ[\]^_`abcdefghijk
 >  lmnopqrstuvwxyz{|}~
 >  T
 >  T
 >  T
 >  F
 >  T
 >  T T
 >  T F
 >  F T

Standard

FORTRAN 77

See Also

lgt(3), lle(3), llt(3)

Functions that perform operations on character strings, return lengths of arguments, and search for certain arguments:

scan(3), verify(3)

Fortran intrinsic descriptions (license: MIT) @urbanjost

lgt

Name

lgt(3) - [CHARACTER:COMPARE] ASCII Lexical greater than

Synopsis

     result = lgt(string_a, string_b)
      elemental logical function lgt(string_a, string_b)

       character(len=*),intent(in) :: string_a
       character(len=*),intent(in) :: string_b

Characteristics

Description

lgt(3) determines whether one string is lexically greater than another string, where the two strings are interpreted as containing ASCII character codes. If the String a and String b are not the same length, the shorter is compared as if spaces were appended to it to form a value that has the same length as the longer.

In general, the lexical comparison intrinsics lge, lgt, lle, and llt differ from the corresponding intrinsic operators .ge., .gt., .le., and .lt., in that the latter use the processor’s character ordering (which is not ASCII on some targets), whereas the former always use the ASCII ordering.

Options

Result

Returns .true. if string_a > string_b, and .false. otherwise, based on the ASCII ordering.

If both input arguments are null strings, .false. is returned.

If either string contains a character not in the ASCII character set, the result is processor dependent.

Examples

Sample program:

program demo_lgt
implicit none
integer :: i
   print *,'the ASCII collating sequence for printable characters'
   write(*,'(1x,19a)')(char(i),i=32,126)

   write(*,*) lgt('abc','ABC')          ! [T] lowercase is > uppercase
   write(*,*) lgt('abc','abc  ')        ! [F] trailing spaces

   ! If both strings are of zero length the result is false.
   write(*,*) lgt('','')                ! [F]
   write(*,*) lgt('','a')               ! [F] the null string is padded
   write(*,*) lgt('a','')               ! [T]
   write(*,*) lgt('abc',['abc','123'])  ! [F T]  scalar and array
   write(*,*) lgt(['cba', '123'],'abc') ! [T F]
   write(*,*) lgt(['abc','123'],['cba','123']) ! [F F]  both arrays
end program demo_lgt

Results:

 >  the ASCII collating sequence for printable characters
 >   !"#$%&'()*+,-./012
 >  3456789:;<=>?@ABCDE
 >  FGHIJKLMNOPQRSTUVWX
 >  YZ[\]^_`abcdefghijk
 >  lmnopqrstuvwxyz{|}~
 >  T
 >  F
 >  F
 >  F
 >  T
 >  F T
 >  T F
 >  F F

Standard

FORTRAN 77

See Also

lge(3), lle(3), llt(3)

Functions that perform operations on character strings, return lengths of arguments, and search for certain arguments:

scan(3), verify(3)

Fortran intrinsic descriptions (license: MIT) @urbanjost

lle

Name

lle(3) - [CHARACTER:COMPARE] ASCII Lexical less than or equal

Synopsis

     result = lle(string_a, stringb)
      elemental logical function lle(string_a, string_b)

       character(len=*),intent(in) :: string_a
       character(len=*),intent(in) :: string_b

Characteristics

Description

lle(3) determines whether one string is lexically less than or equal to another string, where the two strings are interpreted as containing ASCII character codes.

If string_a and string_b are not the same length, the shorter is compared as if spaces were appended to it to form a value that has the same length as the longer.

Leading spaces are significant.

In general, the lexical comparison intrinsics lge, lgt, lle, and llt differ from the corresponding intrinsic operators .ge., .gt., .le., and .lt., in that the latter use the processor’s character ordering (which is not ASCII on some targets), whereas lle(3) always uses the ASCII ordering.

Options

Result

Returns .true. if string_a <= string_b, and .false. otherwise, based on the ASCII collating sequence.

If both input arguments are null strings, .true. is always returned.

If either string contains a character not in the ASCII character set, the result is processor dependent.

Examples

Sample program:

program demo_lle
implicit none
integer :: i
   print *,'the ASCII collating sequence for printable characters'
   write(*,'(1x,19a)')(char(i),i=32,126)
  ! basics

   print *,'case matters'
   write(*,*) lle('abc','ABC')       ! F lowercase is > uppercase

   print *,'a space is the lowest printable character'
   write(*,*) lle('abcd','abc')      ! F  d > space
   write(*,*) lle('abc','abcd')      ! T  space < d

   print *,'leading spaces matter, trailing spaces do not'
   write(*,*) lle('abc','abc  ')     ! T trailing spaces
   write(*,*) lle('abc',' abc')      ! F leading spaces are significant

   print *,'even null strings are padded and compared'
   ! If both strings are of zero length the result is true.
   write(*,*) lle('','')             ! T
   write(*,*) lle('','a')            ! T the null string is padded
   write(*,*) lle('a','')            ! F
   print *,'elemental'
   write(*,*) lle('abc',['abc','123'])  ! [T,F] scalar and array
   write(*,*) lle(['cba', '123'],'abc') ! [F,T]
   ! per the rules for elemental procedures arrays must be the same size
   write(*,*) lle(['abc','123'],['cba','123']) ! [T,T] both arrays
end program demo_lle

Results:

 >  the ASCII collating sequence for printable characters
 >   !"#$%&'()*+,-./012
 >  3456789:;<=>?@ABCDE
 >  FGHIJKLMNOPQRSTUVWX
 >  YZ[\]^_`abcdefghijk
 >  lmnopqrstuvwxyz{|}~
 >  case matters
 >  F
 >  a space is the lowest printable character
 >  F
 >  T
 >  leading spaces matter, trailing spaces do not
 >  T
 >  F
 >  even null strings are padded and compared
 >  T
 >  T
 >  F
 >  elemental
 >  T F
 >  F T
 >  T T

Standard

FORTRAN 77

See Also

lge(3), lgt(3), llt(3)

Functions that perform operations on character strings, return lengths of arguments, and search for certain arguments:

scan(3), verify(3)

Fortran intrinsic descriptions (license: MIT) @urbanjost

llt

Name

llt(3) - [CHARACTER:COMPARE] ASCII Lexical less than

Synopsis

     result = llt(string_a, stringb)
      elemental logical function llt(string_a, string_b)

       character(len=*),intent(in) :: string_a
       character(len=*),intent(in) :: string_b

Characteristics

Description

llt(3) determines whether one string is lexically less than another string, where the two strings are interpreted as containing ASCII character codes. If the string_a and string_b are not the same length, the shorter is compared as if spaces were appended to it to form a value that has the same length as the longer.

In general, the lexical comparison intrinsics lge, lgt, lle, and llt differ from the corresponding intrinsic operators .ge., .gt., .le., and .lt., in that the latter use the processor’s character ordering (which is not ASCII on some targets), whereas the former always use the ASCII ordering.

Options

Result

Returns .true. if string_a < string_b, and .false. otherwise, based on the ASCII collating sequence.

If both input arguments are null strings, .false. is always returned.

If either string contains a character not in the ASCII character set, the result is processor dependent.

Examples

Sample program:

program demo_llt
implicit none
integer :: i

   print *,'the ASCII collating sequence for printable characters'
   write(*,'(1x,19a)')(char(i),i=32,126) ! ASCII order

  ! basics
   print *,'case matters'
   write(*,*) llt('abc','ABC')           ! [F] lowercase is > uppercase
   write(*,*) llt('abc','abc  ')         ! [F] trailing spaces
   ! If both strings are of zero length the result is false.
   write(*,*) llt('','')                 ! [F]
   write(*,*) llt('','a')                ! [T] the null string is padded
   write(*,*) llt('a','')                ! [F]
   print *,'elemental'
   write(*,*) llt('abc',['abc','123'])   ! [F F]  scalar and array
   write(*,*) llt(['cba', '123'],'abc')  ! [F T]
   write(*,*) llt(['abc','123'],['cba','123']) ! [T F]  both arrays
end program demo_llt

Results:

 >  the ASCII collating sequence for printable characters
 >   !"#$%&'()*+,-./012
 >  3456789:;<=>?@ABCDE
 >  FGHIJKLMNOPQRSTUVWX
 >  YZ[\]^_`abcdefghijk
 >  lmnopqrstuvwxyz{|}~
 >  case matters
 >  F
 >  F
 >  F
 >  T
 >  F
 >  elemental
 >  F F
 >  F T
 >  T F

Standard

FORTRAN 77

See Also

lge(3), lgt(3), lle(3))

Functions that perform operations on character strings, return lengths of arguments, and search for certain arguments:

Fortran intrinsic descriptions (license: MIT) @urbanjost

log10

Name

log10(3) - [MATHEMATICS] Base 10 or common logarithm

Synopsis

    result = log10(x)
     elemental real(kind=KIND) function log10(x)

      real(kind=KIND),intent(in) :: x

Characteristics

Description

log10(3) computes the base 10 logarithm of x. This is generally called the “common logarithm”.

Options

Result

The logarithm to base 10 of x

Examples

Sample program:

program demo_log10
use, intrinsic :: iso_fortran_env, only : real32, real64, real128
implicit none
real(kind=real64) :: x = 10.0_real64

   x = log10(x)
   write(*,'(*(g0))')'log10(',x,') is ',log10(x)

   ! elemental
   write(*, *)log10([1.0, 10.0, 100.0, 1000.0, 10000.0, &
                     & 100000.0, 1000000.0, 10000000.0])

end program demo_log10

Results:

 > log10(1.000000000000000) is .000000000000000
 >   0.0000000E+00   1.000000       2.000000       3.000000       4.000000
 >    5.000000       6.000000       7.000000

Standard

FORTRAN 77

See also

Fortran intrinsic descriptions

log_gamma

Name

log_gamma(3) - [MATHEMATICS] Logarithm of the absolute value of the Gamma function

Synopsis

    result = log_gamma(x)
     elemental real(kind=KIND) function log_gamma(x)

      real(kind=KIND),intent(in) :: x

Characteristics

Description

log_gamma(3) computes the natural logarithm of the absolute value of the Gamma function.

Options

Result

The result has a value equal to a processor-dependent approximation to the natural logarithm of the absolute value of the gamma function of x.

Examples

Sample program:

program demo_log_gamma
implicit none
real :: x = 1.0
   write(*,*)x,log_gamma(x) ! returns 0.0
   write(*,*)x,log_gamma(3.0) ! returns 0.693 (approximately)
end program demo_log_gamma

Results:

 >    1.000000      0.0000000E+00
 >    1.000000      0.6931472

Standard

Fortran 2008

See Also

Gamma function: gamma(3)

Fortran intrinsic descriptions

logical

Name

logical(3) - [TYPE:LOGICAL] Conversion between kinds of logical values

Synopsis

    result = logical(l [,kind])
     elemental logical(kind=KIND) function logical(l,KIND)

      logical(kind=**),intent(in) :: l
      integer(kind=**),intent(in),optional :: KIND

Characteristics

Description

logical(3) converts one kind of logical variable to another.

Options

Result

The return value is a logical value equal to l, with a kind corresponding to kind, or of the default logical kind if kind is not given.

Examples

Sample program:

program demo_logical
! Access array containing the kind type parameter values supported by this
! compiler for entities of logical type
use iso_fortran_env, only : logical_kinds
implicit none
integer :: i

   ! list kind values supported on this platform, which generally vary
   ! in storage size as alias declarations
   do i =1, size(logical_kinds)
      write(*,'(*(g0))')'integer,parameter :: boolean', &
      & logical_kinds(i),'=', logical_kinds(i)
   enddo

end program demo_logical

Results:

 > integer,parameter :: boolean1=1
 > integer,parameter :: boolean2=2
 > integer,parameter :: boolean4=4
 > integer,parameter :: boolean8=8
 > integer,parameter :: boolean16=16

Standard

Fortran 95 , related ISO_FORTRAN_ENV module - fortran 2009

See Also

int(3), real(3), cmplx(3)

Fortran intrinsic descriptions (license: MIT) @urbanjost

log

Name

log(3) - [MATHEMATICS] Natural logarithm

Synopsis

  result = log(x)
   elemental TYPE(kind=KIND) function log(x)

    TYPE(kind=KIND),intent(in) :: x

Characteristics

Description

log(3) computes the natural logarithm of x, i.e. the logarithm to the base “e”.

Options

Result

The natural logarithm of x. If x is the complex value (r,i) , the imaginary part “i” is in the range

    -PI < i <= PI

If the real part of x is less than zero and the imaginary part of x is zero, then the imaginary part of the result is approximately PI if the imaginary part of PI is positive real zero or the processor does not distinguish between positive and negative real zero, and approximately -PI if the imaginary part of x is negative real zero.

Examples

Sample program:

program demo_log
implicit none
  real(kind(0.0d0)) :: x = 2.71828182845904518d0
  complex :: z = (1.0, 2.0)
  write(*,*)x, log(x)    ! will yield (approximately) 1
  write(*,*)z, log(z)
end program demo_log

Results:

  >    2.7182818284590451        1.0000000000000000
  > (1.00000000,2.00000000) (0.804718971,1.10714877)

Standard

FORTRAN 77

See also

Fortran intrinsic descriptions (license: MIT) @urbanjost

maskl

Name

maskl(3) - [BIT:SET] Generates a left justified mask

Synopsis

    result = maskl( i [,kind] )
     elemental integer(kind=KIND) function maskl(i,KIND)

      integer(kind=**),intent(in) :: i
      integer(kind=**),intent(in),optional :: KIND

Characteristics

Description

maskl(3) has its leftmost i bits set to 1, and the remaining bits set to 0.

Options

   i >= 0 .and. i < bitsize(i) ! if KIND is not specified
   i >= 0 .and. i < bitsize(0_KIND) ! if KIND is specified

Result

The leftmost i bits of the output integer are set to 1 and the other bits are set to 0.

Examples

Sample program:

program demo_maskl
implicit none
integer :: i
  ! basics
   i=3
   write(*,'(i0,1x,b0)') i, maskl(i)

  ! elemental
   write(*,'(*(i11,1x,b0.32,1x,/))') maskl([(i,i,i=0,bit_size(0),4)])
end program demo_maskl

Results:

 > 3 11100000000000000000000000000000
 >           0 00000000000000000000000000000000
 >  -268435456 11110000000000000000000000000000
 >   -16777216 11111111000000000000000000000000
 >    -1048576 11111111111100000000000000000000
 >      -65536 11111111111111110000000000000000
 >       -4096 11111111111111111111000000000000
 >        -256 11111111111111111111111100000000
 >         -16 11111111111111111111111111110000
 >          -1 11111111111111111111111111111111

Standard

Fortran 2008

See Also

maskr(3)

Fortran intrinsic descriptions (license: MIT) @urbanjost

maskr

Name

maskr(3) - [BIT:SET] Generates a right-justified mask

Synopsis

    result = maskr( i [,kind] )
     elemental integer(kind=KIND) function maskr(i,KIND)

      integer(kind=**),intent(in) :: i
      integer(kind=**),intent(in),optional :: KIND

Characteristics

Description

maskr(3) generates an integer with its rightmost i bits set to 1, and the remaining bits set to 0.

Options

   i >= 0 .and. i < bitsize(i) ! if KIND is not specified
   i >= 0 .and. i < bitsize(0_KIND) ! if KIND is specified

Result

The rightmost i bits of the output integer are set to 1 and the other bits are set to 0.

Examples

Sample program:

program demo_maskr
implicit none
integer :: i

  ! basics
   print *,'basics'
   write(*,'(i0,t5,b32.32)') 1, maskr(1)
   write(*,'(i0,t5,b32.32)') 5,  maskr(5)
   write(*,'(i0,t5,b32.32)') 11, maskr(11)
   print *,"should be equivalent on two's-complement processors"
   write(*,'(i0,t5,b32.32)') 1,  shiftr(-1,bit_size(0)-1)
   write(*,'(i0,t5,b32.32)') 5,  shiftr(-1,bit_size(0)-5)
   write(*,'(i0,t5,b32.32)') 11, shiftr(-1,bit_size(0)-11)

  ! elemental
   print *,'elemental '
   print *,'(array argument accepted like called with each element)'
   write(*,'(*(i11,1x,b0.32,1x,/))') maskr([(i,i,i=0,bit_size(0),4)])

end program demo_maskr

Results:

 >   basics
 >  1   00000000000000000000000000000001
 >  5   00000000000000000000000000011111
 >  11  00000000000000000000011111111111
 >   should be equivalent on two's-complement processors
 >  1   00000000000000000000000000000001
 >  5   00000000000000000000000000011111
 >  11  00000000000000000000011111111111
 >   elemental
 >   (array argument accepted like called with each element)
 >            0 00000000000000000000000000000000
 >           15 00000000000000000000000000001111
 >          255 00000000000000000000000011111111
 >         4095 00000000000000000000111111111111
 >        65535 00000000000000001111111111111111
 >      1048575 00000000000011111111111111111111
 >     16777215 00000000111111111111111111111111
 >    268435455 00001111111111111111111111111111
 >           -1 11111111111111111111111111111111

Standard

Fortran 2008

See Also

maskl(3)

Fortran intrinsic descriptions (license: MIT) @urbanjost

matmul

Name

matmul(3) - [ARRAY:TRANSFORMATIONAL] Numeric or logical matrix multiplication

Synopsis

    result = matmul(matrix_a,matrix_b)
     function matmul(matrix_a, matrix_b)

      type(TYPE1(kind=**))      :: matrix_a(..)
      type(TYPE2(kind=**))      :: matrix_b(..)
      type(TYPE(kind=PROMOTED)) :: matmul(..)

Characteristics

Description

matmul(3) performs a matrix multiplication on numeric or logical arguments.

Options

Result

Numeric Arguments

If matrix_a and matrix_b are numeric the result is an array containing the conventional matrix product of matrix_a and matrix_b.

First, for the numeric expression C=matmul(A,B)

Shape and Rank

The shape of the result can then be determined as the number of rows of the first matrix and the number of columns of the second; but if any argument is of rank one (a vector) the result is also rank one. Conversely when both arguments are of rank two, the result has a rank of two. That is …

Values

Then element C(i,j) of the product is obtained by multiplying term-by-term the entries of the ith row of A and the jth column of B, and summing these products. In other words, C(i,j) is the dot product of the ith row of A and the jth column of B.

Logical Arguments

Values

If matrix_a and matrix_b are of type logical, the array elements of the result are instead:

  Value_of_Element (i,j) = &
  ANY( (row_i_of_MATRIX_A) .AND. (column_j_of_MATRIX_B) )

Examples

Sample program:

program demo_matmul
implicit none
integer :: a(2,3), b(3,2), c(2), d(3), e(2,2), f(3), g(2), v1(4),v2(4)
   a = reshape([1, 2, 3, 4, 5, 6], [2, 3])
   b = reshape([10, 20, 30, 40, 50, 60], [3, 2])
   c = [1, 2]
   d = [1, 2, 3]
   e = matmul(a, b)
   f = matmul(c,a)
   g = matmul(a,d)

   call print_matrix_int('A is ',a)
   call print_matrix_int('B is ',b)
   call print_vector_int('C is ',c)
   call print_vector_int('D is ',d)
   call print_matrix_int('E is matmul(A,B)',e)
   call print_vector_int('F is matmul(C,A)',f)
   call print_vector_int('G is matmul(A,D)',g)

   ! look at argument shapes when one is a vector
   write(*,'(" > shape")')
   ! at least one argument must be of rank two
   ! so for two vectors at least one must be reshaped
   v1=[11,22,33,44]
   v2=[10,20,30,40]

   ! these return a vector C(1:1)
   ! treat A(1:n) as A(1:1,1:n)
   call print_vector_int('Cd is a vector (not a scalar)',&
   & matmul(reshape(v1,[1,size(v1)]),v2))
   ! or treat B(1:m) as B(1:m,1:1)
   call print_vector_int('cD is a vector too',&
   & matmul(v1,reshape(v2,[size(v2),1])))

   ! or treat A(1:n) as A(1:1,1:n) and B(1:m) as B(1:m,1:1)
   ! but note this returns a matrix C(1:1,1:1) not a vector!
   call print_matrix_int('CD is a matrix',matmul(&
   & reshape(v1,[1,size(v1)]), &
   & reshape(v2,[size(v2),1])))

contains

! CONVENIENCE ROUTINES TO PRINT IN ROW-COLUMN ORDER
subroutine print_vector_int(title,arr)
character(len=*),intent(in)  :: title
integer,intent(in)           :: arr(:)
   call print_matrix_int(title,reshape(arr,[1,shape(arr)]))
end subroutine print_vector_int

subroutine print_matrix_int(title,arr)
!@(#) print small 2d integer arrays in row-column format
character(len=*),parameter :: all='(" > ",*(g0,1x))' ! a handy format
character(len=*),intent(in)  :: title
integer,intent(in)           :: arr(:,:)
integer                      :: i
character(len=:),allocatable :: biggest

   print all
   print all, trim(title)
   biggest='           '  ! make buffer to write integer into
   ! find how many characters to use for integers
   write(biggest,'(i0)')ceiling(log10(max(1.0,real(maxval(abs(arr))))))+2
   ! use this format to write a row
   biggest='(" > [",*(i'//trim(biggest)//':,","))'
   ! print one row of array at a time
   do i=1,size(arr,dim=1)
      write(*,fmt=biggest,advance='no')arr(i,:)
      write(*,'(" ]")')
   enddo

end subroutine print_matrix_int

end program demo_matmul

Results:

    >
    > A is
    > [  1,  3,  5 ]
    > [  2,  4,  6 ]
    >
    > B is
    > [  10,  40 ]
    > [  20,  50 ]
    > [  30,  60 ]
    >
    > C is
    > [  1,  2 ]
    >
    > D is
    > [  1,  2,  3 ]
    >
    > E is matmul(A,B)
    > [  220,  490 ]
    > [  280,  640 ]
    >
    > F is matmul(C,A)
    > [   5,  11,  17 ]
    >
    > G is matmul(A,D)
    > [  22,  28 ]
    > shape
    >
    > Cd is a vector (not a scalar)
    > [  3300 ]
    >
    > cD is a vector too
    > [  3300 ]
    >
    > CD is a matrix
    > [  3300 ]

Standard

Fortran 95

See Also

product(3), transpose(3)

Resources

    "GEMMW: A portable level 3 BLAS Winograd variant of Strassen's
    matrix-matrix multiply algorithm",

    Douglas, C. C., Heroux, M., Slishman, G., and Smith, R. M.,
    Journal of Computational Physics,
    Vol. 110, No. 1, January 1994, pages 1-10.

  The numerical instabilities of Strassen's method for matrix
  multiplication requires special processing.

Fortran intrinsic descriptions (license: MIT) @urbanjost

maxexponent

Name

maxexponent(3) - [MODEL:NUMERIC] Maximum exponent of a real kind

Synopsis

    result = maxexponent(x)
     elemental integer function maxexponent(x)

      real(kind=**),intent(in) :: x

Characteristics

Description

maxexponent(3) returns the maximum exponent in the model of the type of x.

Options

Result

The value returned is the maximum exponent for the kind of the value queried

Examples

Sample program:

program demo_maxexponent
use, intrinsic :: iso_fortran_env, only : real32,real64,real128
implicit none
character(len=*),parameter :: g='(*(g0,1x))'
   print  g,  minexponent(0.0_real32),   maxexponent(0.0_real32)
   print  g,  minexponent(0.0_real64),   maxexponent(0.0_real64)
   print  g,  minexponent(0.0_real128),  maxexponent(0.0_real128)
end program demo_maxexponent

Results:

  >  -125 128
  >  -1021 1024
  >  -16381 16384

Standard

Fortran 95

See Also

digits(3), epsilon(3), exponent(3), fraction(3), huge(3), minexponent(3), nearest(3), precision(3), radix(3), range(3), rrspacing(3), scale(3), set_exponent(3), spacing(3), tiny(3)

Fortran intrinsic descriptions (license: MIT) @urbanjost

maxloc

Name

maxloc(3) - [ARRAY:LOCATION] Location of the maximum value within an array

Synopsis

    result = maxloc(array [,mask]) | maxloc(array [,dim] [,mask])
     NUMERIC function maxloc(array, dim, mask)

      NUMERIC,intent(in) :: array(..)
      integer(kind=**),intent(in),optional :: dim
      logical(kind=**),intent(in),optional :: mask(..)

Characteristics

Description

maxloc(3) determines the location of the element in the array with the maximum value, or, if the dim argument is supplied, determines the locations of the maximum element along each row of the array in the dim direction.

If mask is present, only the elements for which mask is .true. are considered. If more than one element in the array has the maximum value, the location returned is that of the first such element in array element order.

If the array has zero size, or all of the elements of mask are .false., then the result is an array of zeroes. Similarly, if dim is supplied and all of the elements of mask along a given row are zero, the result value for that row is zero.

Options

Result

If dim is absent, the result is a rank-one array with a length equal to the rank of array. If dim is present, the result is an array with a rank one less than the rank of array, and a size corresponding to the size of array with the dim dimension removed. If dim is present and array has a rank of one, the result is a scalar. In all cases, the result is of default integer type.

The value returned is reference to the offset from the beginning of the array, not necessarily the subscript value if the array subscripts do not start with one.

Examples

sample program

program demo_maxloc
implicit none
integer      :: ii
integer,save :: i(-3:3)=[(abs(abs(ii)-50),ii=-3,3)]
integer,save :: ints(3,5)= reshape([&
   1,  2,  3,  4,  5, &
   10, 20, 30, 40, 50, &
   11, 22, 33, 44, 55  &
],shape(ints),order=[2,1])

    write(*,*) maxloc(ints)
    write(*,*) maxloc(ints,dim=1)
    write(*,*) maxloc(ints,dim=2)
    ! when array bounds do not start with one remember MAXLOC(3) returns
    ! the offset relative to the lower bound-1 of the location of the
    ! maximum value, not the subscript of the maximum value. When the
    ! lower bound of the array is one, these values are the same. In
    ! other words, MAXLOC(3) returns the subscript of the value assuming
    ! the first subscript of the array is one no matter what the lower
    ! bound of the subscript actually is.
    write(*,'(g0,1x,g0)') (ii,i(ii),ii=lbound(i,dim=1),ubound(i,dim=1))
    write(*,*)maxloc(i)

end program demo_maxloc

Results:

 >     3       5
 >     3       3       3       3       3
 >     5       5       5
 >  -3 47
 >  -2 48
 >  -1 49
 >  0 50
 >  1 49
 >  2 48
 >  3 47

Standard

Fortran 95

See Also

Fortran intrinsic descriptions

max

Name

max(3) - [NUMERIC] Maximum value of an argument list

Synopsis

    result = max(a1, a2, a3, ...)
     elemental TYPE(kind=KIND) function max(a1, a2, a3, ... )

      TYPE(kind=KIND,intent(in),optional :: a1
      TYPE(kind=KIND,intent(in),optional :: a2
      TYPE(kind=KIND,intent(in),optional :: a3
                :
                :

Characteristics

Description

max(3) returns the argument with the largest (most positive) value.

For arguments of character type, the result is as if the arguments had been successively compared with the intrinsic operational operators, taking into account the collating sequence of the character kind.

The returned selected character argument is padded with blanks as needed on the right to the same length of the longest argument.

It is unusual for a Fortran intrinsic to take an arbitrary number of options, and in addition max(3) is elemental, meaning any number of arguments may be arrays as long as they are of the same shape.

The examples contain such cases as examples to clarify the resulting behavior for those not familiar with calling a “scalar” function elementally with arrays.

See maxval(3) for simply getting the max value of an array.

Options

Result

The return value corresponds to an array of the same shape of any array argument, or a scalar if all arguments are scalar.

The returned value when any argument is an array will be an array of the same shape where each element is the maximum value occurring at that location, treating all the scalar values as arrays of that same shape with all elements set to the scalar value.

Examples

Sample program

program demo_max
implicit none
real :: arr1(4)= [10.0,11.0,30.0,-100.0]
real :: arr2(5)= [20.0,21.0,32.0,-200.0,2200.0]
integer :: box(3,4)= reshape([-6,-5,-4,-3,-2,-1,1,2,3,4,5,6],shape(box))

  ! basic usage
   ! this is simple enough when all arguments are scalar

   ! the most positive value is returned, not the one with the
   ! largest magnitude
   write(*,*)'scalars:',max(10.0,11.0,30.0,-100.0)
   write(*,*)'scalars:',max(-22222.0,-0.0001)

   ! strings do not need to be of the same length
   write(*,*)'characters:',max('the','words','order')

   ! leading spaces are significant; everyone is padded on the right
   ! to the length of the longest argument
   write(*,*)'characters:',max('c','bb','a')
   write(*,*)'characters:',max(' c','b','a')

  ! elemental
   ! there must be at least two arguments, so even if A1 is an array
   ! max(A1) is not valid. See MAXVAL(3) and/or MAXLOC(3) instead.

   ! strings in a single array do need to be of the same length
   ! but the different objects can still be of different lengths.
   write(*,"(*('""',a,'""':,1x))")MAX(['A','Z'],['BB','Y '])
   ! note the result is now an array with the max of every element
   ! position, as can be illustrated numerically as well:
   write(*,'(a,*(i3,1x))')'box=   ',box
   write(*,'(a,*(i3,1x))')'box**2=',sign(1,box)*box**2
   write(*,'(a,*(i3,1x))')'max    ',max(box,sign(1,box)*box**2)

   ! Remember if any argument is an array by the definition of an
   ! elemental function all the array arguments must be the same shape.

   ! to find the single largest value of multiple arrays you could
   ! use something like
   !    MAXVAL([arr1, arr2])
   ! or probably better (more likely to avoid creating a large temp array)
   !    max(maxval(arr1),maxval(arr2))
   ! instead

   ! so this returns an array of the same shape as any input array
   ! where each result is the maximum that occurs at that position.
   write(*,*)max(arr1,arr2(1:4))
   ! this returns an array just like BOX  except all values less than
   ! zero are set to zero:
   write(*,*)max(box,0)
   ! When mixing arrays and scalars you can think of the scalars
   ! as being a copy of one of the arrays with all values set to
   ! the scalar value.

end program demo_max

Results:

 >   scalars:   30.00000
 >   scalars: -9.9999997E-05
 >   characters:words
 >   characters:c
 >   characters:b
 >  "BB" "Z "
 >  box=    -6  -5  -4  -3  -2  -1   1   2   3   4   5   6
 >  box**2=-36 -25 -16  -9  -4  -1   1   4   9  16  25  36
 >  max     -6  -5  -4  -3  -2  -1   1   4   9  16  25  36
 >  20.00000  21.00000  32.00000  -100.0000
 >  0  0  0  0  0  0
 >  1  2  3  4  5  6

Standard

FORTRAN 77

See Also

maxloc(3), minloc(3), maxval(3), minval(3), min(3)

Fortran intrinsic descriptions (license: MIT) @urbanjost

maxval

Name

maxval(3) - [ARRAY:REDUCTION] Determines the maximum value in an array or row

Synopsis

    result = maxval(array [,mask]) | maxval(array [,dim] [,mask])
     NUMERIC function maxval(array ,dim, mask)

      NUMERIC,intent(in) :: array(..)
      integer(kind=**),intent(in),optional :: dim
      logical(kind=**),intent(in),optional :: mask(..)

Characteristics

Description

maxval(3) determines the maximum value of the elements in an array value, or, if the dim argument is supplied, determines the maximum value along each row of the array in the dim direction. If mask is present, only the elements for which mask is .true. are considered.

Options

Result

If dim is absent, or if array has a rank of one, the result is a scalar. If dim is present, the result is an array with a rank one less than the rank of array, and a size corresponding to the size of array with the dim dimension removed. In all cases, the result is of the same type and kind as array.

If the considered array has zero size then the result is the most negative number of the type and kind of array if array is numeric, or a string of nulls if array is of ASCII character type. or equal to CHAR(0, KIND(ARRAY)) otherwise.

Examples

sample program:

program demo_maxval
implicit none
integer,save :: ints(3,5)= reshape([&
   1,  2,  3,  4,  5, &
  10, 20, 30, 40, 50, &
  11, 22, 33, 44, 55  &
],shape(ints),order=[2,1])
character(len=:),allocatable :: strs(:)
integer :: i
character(len=*),parameter :: gen='(*(g0,1x))'
character(len=*),parameter :: ind='(3x,*(g0,1x))'

   print gen,'Given the array'
   write(*,'(1x,*(g4.4,1x))') &
   & (ints(i,:),new_line('a'),i=1,size(ints,dim=1))
   print gen,'Basics:'
   print ind, 'biggest value in array'
   print ind, maxval(ints)
   print ind, 'biggest value in each column'
   print ind, maxval(ints,dim=1)
   print ind, 'biggest value in each row'
   print ind,  maxval(ints,dim=2)

   print gen,'With a mask:'
   print ind, ' find biggest number less than 30 with mask'
   print ind, maxval(ints,mask=ints.lt.30)

   print gen,'If zero size considered:'
   print ind, 'if zero size numeric array'
   print ind, maxval([integer :: ]),'and -huge(0) is',-huge(0),&
   & '(often not the same!)'
   print ind, 'if zero-size character array all nulls'
   strs=[character(len=5)::]
   strs=maxval(strs)
   print ind, ichar([(strs(i),i=1,len(strs))])
   print ind, 'if everything is false,'
   print ind, 'same as zero-size array for each subarray'
   print ind, maxval(ints,mask=.false.)
   print ind, maxval(ints,mask=.false.,dim=1)
end program demo_maxval

Results:

 > Given the array:
 >    1,  2,  3,  4,  5, &
 >   10, 20, 30, 40, 50, &
 >   11, 22, 33, 44, 55  &
 > biggest value in array
 > 55
 > biggest value in each column
 > 11 22 33 44 55
 > biggest value in each row
 > 5 50 55
 > find biggest number less than 30 with mask
 > 22
 > if zero size numeric array
 > -2147483648 and -huge(0) is -2147483647 (often not the same!)
 > if zero-size character array all nulls
 > 0 0 0 0 0
 > if everything is false, same as zero-size array
 > -2147483648
 > -2147483648 -2147483648 -2147483648 -2147483648 -2147483648

Standard

Fortran 95

See Also

minval(3), minloc(3), maxloc(3), min(3) max(3),

Fortran intrinsic descriptions (license: MIT) @urbanjost

merge_bits

Name

merge_bits(3) - [BIT:COPY] Merge bits using a mask

Synopsis

    result = merge_bits(i, j, mask)
     elemental integer(kind=KIND) function merge_bits(i,j,mask)

      integer(kind=KIND), intent(in) :: i, j, mask

Characteristics

Description

A common graphics operation in Ternary Raster Operations is to combine bits from two different sources, generally referred to as bit-blending. merge_bits(3) performs a masked bit-blend of i and j using the bits of the mask value to determine which of the input values to copy bits from.

Specifically, The k-th bit of the result is equal to the k-th bit of i if the k-th bit of mask is 1; it is equal to the k-th bit of j otherwise (so all three input values must have the same number of bits).

The resulting value is the same as would result from

    ior (iand (i, mask),iand (j, not (mask)))

An exception to all values being of the same integer type is that i or j and/or the mask may be a BOZ constant (A BOZ constant means it is either a Binary, Octal, or Hexadecimal literal constant). The BOZ values are converted to the integer type of the non-BOZ value(s) as if called by the intrinsic function int() with the kind of the non-BOZ value(s), so the BOZ values must be in the range of the type of the result.

Options

Result

The bits blended from i and j using the mask mask.

Examples

Sample program:

program demo_merge_bits
use,intrinsic :: iso_fortran_env,  only : int8, int16, int32, int64
implicit none
integer(kind=int16) :: if_one,if_zero,msk
character(len=*),parameter :: fmt='(*(g0, 1X))'

   ! basic usage
   print *,'MERGE_BITS( 5,10,41) should be 3.=>',merge_bits(5,10,41)
   print *,'MERGE_BITS(13,18,22) should be 4.=>',merge_bits(13,18,22)

   ! use some values in base2 illustratively:
   if_one =int(b'1010101010101010',kind=int16)
   if_zero=int(b'0101010101010101',kind=int16)

   msk=int(b'0101010101010101',kind=int16)
   print '("should get all zero bits =>",b16.16)', &
   & merge_bits(if_one,if_zero,msk)

   msk=int(b'1010101010101010',kind=int16)
   print '("should get all ones bits =>",b16.16)', &
   & merge_bits(if_one,if_zero,msk)

   ! using BOZ values
   print fmt, &
   & merge_bits(32767_int16,    o'12345',         32767_int16), &
   & merge_bits(o'12345', 32767_int16, b'0000000000010101'), &
   & merge_bits(32767_int16,    o'12345',             z'1234')

   ! a do-it-yourself equivalent for comparison and validation
   print fmt, &
   & ior(iand(32767_int16, 32767_int16),                   &
   &   iand(o'12345', not(32767_int16))),                  &

   & ior(iand(o'12345', int(o'12345', kind=int16)),        &
   &   iand(32767_int16, not(int(o'12345', kind=int16)))), &

   & ior(iand(32767_int16, z'1234'),                       &
   &   iand(o'12345', not(int( z'1234', kind=int16))))

end program demo_merge_bits

Results:

 >   MERGE_BITS( 5,10,41) should be 3.=>           3
 >   MERGE_BITS(13,18,22) should be 4.=>           4
 >  should get all zero bits =>0000000000000000
 >  should get all ones bits =>1111111111111111
 >  32767 32751 5877
 >  32767 32767 5877

Standard

Fortran 2008

See also

Fortran intrinsic descriptions (license: MIT) @urbanjost

merge

Name

merge(3) - [ARRAY:CONSTRUCTION] Merge variables

Synopsis

    result = merge(tsource, fsource, mask)
     elemental type(TYPE(kind=KIND)) function merge(tsource,fsource,mask)

      type(TYPE(kind=KIND)),intent(in) :: tsource
      type(TYPE(kind=KIND)),intent(in) :: fsource
      logical(kind=**),intent(in)      :: mask

Characteristics

Description

The elemental function merge(3) selects values from two arrays or scalars according to a logical mask. The result is equal to an element of tsource where the corresponding element of mask is .true., or an element of fsource when it is .false. .

Multi-dimensional arrays are supported.

Note that argument expressions to merge(3) are not required to be short-circuited so (as an example) if the array x contains zero values in the statement below the standard does not prevent floating point divide by zero being generated; as 1.0/x may be evaluated for all values of x before the mask is used to select which value to retain:

      y = merge( 1.0/x, 0.0, x /= 0.0 )

Note the compiler is also free to short-circuit or to generate an infinity so this may work in many programming environments but is not recommended.

For cases like this one may instead use masked assignment via the where construct:

      where(x .ne. 0.0)
         y = 1.0/x
      elsewhere
         y = 0.0
      endwhere

instead of the more obscure

      merge(1.0/merge(x,1.0,x /= 0.0), 0.0, x /= 0.0)

Options

Note that (currently) character values must be of the same length.

Result

The result is built from an element of tsource if mask is .true. and from fsource otherwise.

Because tsource and fsource are required to have the same type and type parameters (for both the declared and dynamic types), the result is polymorphic if and only if both tsource and fsource are polymorphic.

Examples

Sample program:

program demo_merge
implicit none
integer :: tvals(2,3), fvals(2,3), answer(2,3)
logical :: mask(2,3)
integer :: i
integer :: k
logical :: chooseleft

   ! Works with scalars
   k=5
   write(*,*)merge (1.0, 0.0, k > 0)
   k=-2
   write(*,*)merge (1.0, 0.0, k > 0)

   ! set up some simple arrays that all conform to the
   ! same shape
   tvals(1,:)=[  10, -60,  50 ]
   tvals(2,:)=[ -20,  40, -60 ]

   fvals(1,:)=[ 0, 3, 2 ]
   fvals(2,:)=[ 7, 4, 8 ]

   mask(1,:)=[ .true.,  .false., .true. ]
   mask(2,:)=[ .false., .false., .true. ]

   ! lets use the mask of specific values
   write(*,*)'mask of logicals'
   answer=merge( tvals, fvals, mask )
   call printme()

   ! more typically the mask is an expression
   write(*, *)'highest values'
   answer=merge( tvals, fvals, tvals > fvals )
   call printme()

   write(*, *)'lowest values'
   answer=merge( tvals, fvals, tvals < fvals )
   call printme()

   write(*, *)'zero out negative values'
   answer=merge( 0, tvals, tvals < 0)
   call printme()

   write(*, *)'binary choice'
   chooseleft=.false.
   write(*, '(3i4)')merge([1,2,3],[10,20,30],chooseleft)
   chooseleft=.true.
   write(*, '(3i4)')merge([1,2,3],[10,20,30],chooseleft)

contains

subroutine printme()
      write(*, '(3i4)')(answer(i, :), i=1, size(answer, dim=1))
end subroutine printme

end program demo_merge

Results:

 >    1.00000000
 >    0.00000000
 >  mask of logicals
 >   10   3  50
 >    7   4 -60
 >  highest values
 >   10   3  50
 >    7  40   8
 >  lowest values
 >    0 -60   2
 >  -20   4 -60
 >  zero out negative values
 >   10   0  50
 >    0  40   0
 >  binary choice
 >   10  20  30
 >    1   2   3

Standard

Fortran 95

See Also

Fortran intrinsic descriptions (license: MIT) @urbanjost

minexponent

Name

minexponent(3) - [MODEL:NUMERIC] Minimum exponent of a real kind

Synopsis

    result = minexponent(x)
     elemental integer function minexponent(x)

      real(kind=**),intent(in) :: x

Characteristics

Description

minexponent(3) returns the minimum exponent in the model of the type of x.

Options

Result

The value returned is the maximum exponent for the kind of the value queried

Examples

Sample program:

program demo_minexponent
use, intrinsic :: iso_fortran_env, only : real32, real64, real128
implicit none
real(kind=real32) :: x
real(kind=real64) :: y
    print *, minexponent(x), maxexponent(x)
    print *, minexponent(y), maxexponent(y)
end program demo_minexponent

Expected Results:

  >     -125         128
  >    -1021        1024

Standard

Fortran 95

See Also

digits(3), epsilon(3), exponent(3), fraction(3), huge(3), maxexponent(3), nearest(3), precision(3), radix(3), range(3), rrspacing(3), scale(3), set_exponent(3), spacing(3), tiny(3)

Fortran intrinsic descriptions (license: MIT) @urbanjost

minloc

Name

minloc(3) - [ARRAY:LOCATION] Location of the minimum value within an array

Synopsis

    result = minloc(array [,mask]) | minloc(array [,dim] [,mask])
     NUMERIC function minloc(array, dim, mask)

      NUMERIC,intent(in) :: array(..)
      integer(kind=**),intent(in),optional :: dim
      logical(kind=**),intent(in),optional :: mask(..)

Characteristics

Description

minloc(3) determines the location of the element in the array with the minimum value, or, if the dim argument is supplied, determines the locations of the minimum element along each row of the array in the dim direction.

If mask is present, only the elements for which mask is true. are considered.

If more than one element in the array has the minimum value, the location returned is that of the first such element in array element order.

If the array has zero size, or all of the elements of mask are .false., then the result is an array of zeroes. Similarly, if dim is supplied and all of the elements of mask along a given row are zero, the result value for that row is zero.

Options

Result

If dim is absent, the result is a rank-one array with a length equal to the rank of array. If dim is present, the result is an array with a rank one less than the rank of array, and a size corresponding to the size of array with the dim dimension removed. If dim is present and array has a rank of one, the result is a scalar. In all cases, the result is of default integer type.

Examples

sample program:

program demo_minloc
implicit none
integer,save :: ints(3,5)= reshape([&
   4, 10,  1,  7, 13, &
   9, 15,  6, 12,  3, &
  14,  5, 11,  2,  8  &
],shape(ints),order=[2,1])
   write(*,*) minloc(ints)
   write(*,*) minloc(ints,dim=1)
   write(*,*) minloc(ints,dim=2)
   ! where in each column is the smallest number .gt. 10 ?
   write(*,*) minloc(ints,dim=2,mask=ints.gt.10)
   ! a one-dimensional array with dim=1 explicitly listed returns a scalar
   write(*,*) minloc(pack(ints,.true.),dim=1) ! scalar
end program demo_minloc

Results:

 >        1       3
 >        1       3       1       3       2
 >        3       5       4
 >        5       4       3
 >        7

Standard

Fortran 95

See Also

Fortran intrinsic descriptions (license: MIT) @urbanjost

min

Name

min(3) - [NUMERIC] Minimum value of an argument list

Synopsis

    result = min(a1, a2, a3, ... )
     elemental TYPE(kind=KIND) function min(a1, a2, a3, ... )

      TYPE(kind=KIND,intent(in)   :: a1
      TYPE(kind=KIND,intent(in)   :: a2
      TYPE(kind=KIND,intent(in)   :: a3
                :
                :
                :

Characteristics

Description

min(3) returns the argument with the smallest (most negative) value.

The arguments must the same type which shall be integer, real, or character and they also all have the same kind type parameter.

The type and kind type parameter of the result are the same as those of the arguments.

NOTE:

A common extension is that the argument kinds can vary. In that case the returned value may be the kind of the first argument, or might be the kind of the expression a1+a2+a3+a4… per the rules of promotion.

Options

Result

The return value corresponds to the minimum value among the arguments, and has the same type and kind as the first argument.

Examples

Sample program

program demo_min
implicit none
integer :: i
integer :: rectangle(3,4)=reshape([(-6+i,i=0,11)],[3,4])
    print *, 'basics'
    print *, min(10.0,11.0,30.0,-100.0)
    print *, min(-200.0,-1.0)
    print *, 'elemental'
    print *, min(1,[2,3,4])
    print *, min(5,[2,3,4])

    print *, 'box:'
    do i=1,size(rectangle,dim=1)
       write(*,'(*(i3,1x))')rectangle(i,:)
    enddo
    print *, 'make all values 0 or less:'
    do i=1,size(rectangle,dim=1)
       write(*,'(*(i3,1x))')min(rectangle(i,:),0)
    enddo
end program demo_min

Results:

 >  basics
 >   -100.000000
 >   -200.000000
 >  elemental
 >            1           1           1
 >            2           3           4
 >  box:
 >  -6  -3   0   3
 >  -5  -2   1   4
 >  -4  -1   2   5
 >  make all values 0 or less:
 >  -6  -3   0   0
 >  -5  -2   0   0
 >  -4  -1   0   0

Standard

FORTRAN 77

See Also

max(3), maxloc(3), minloc(3), minval(3), maxval(3)

Fortran intrinsic descriptions (license: MIT) @urbanjost ’

minval

Name

minval(3) - [ARRAY:REDUCTION] Minimum value of all the elements of ARRAY along dimension DIM corresponding to true elements of MASK.

Synopsis

forms

    result = minval(array, [mask])

or

    result = minval(array [,dim] [,mask])
     type(TYPE(kind=**)) function minval(array, dim, mask)

      NUMERIC,intent(in) :: array(..)
      integer(kind=**),intent(in),optional :: dim
      logical(kind=**),intent(in),optional :: mask(..)

Characteristics

Description

minval(3) determines the minimum value of the elements in an array or, if the dim argument is supplied, determines the minimum value in the subarrays indicated by stepping along the dimth dimension.

Note that the result of

  MINVAL(ARRAY, MASK = MASK)

has a value equal to that of

  MINVAL (PACK (ARRAY, MASK)).

and The result of

  MINVAL (ARRAY, DIM = DIM [, MASK = MASK])

has a value equal to that of

  MINVAL (ARRAY [, MASK = MASK])

if ARRAY has rank one. Otherwise, the value of element (s1 , s2 , . . . , sDIM-1 , sDIM+1 , . . . , sn ) of the result is equal to

  MINVAL (ARRAY (s1 , s2 , . . . , sDIM-1 , :, sDIM+1 , . . . , sn )
  [, MASK= MASK (s1 , s2 , . . . , sDIM-1 , :, sDIM+1 , . . . , sn ) ] ).

Options

Result

If dim is absent, or if array has a rank of one, the result is a scalar.

If dim is present, the result is an array with a rank one less than the rank of array, and a size corresponding to the size of array with the dim dimension removed. In all cases, the result is of the same type and kind as array.

Examples

sample program:

program demo_minval
implicit none
integer :: i
character(len=:),allocatable :: strs(:)
character(len=*),parameter :: g='(3x,*(g0,1x))'

integer,save :: ints(3,5)= reshape([&
       1,  -2,   3,   4,   5,  &
      10,  20, -30,  40,  50,  &
      11,  22,  33, -44,  55  &
],shape(ints),order=[2,1])

integer,save :: box(3,5,2)

   box(:,:,1)=ints
   box(:,:,2)=-ints

   write(*,*)'Given the array'
   write(*,'(1x,*(g4.4,1x))') &
   & (ints(i,:),new_line('a'),i=1,size(ints,dim=1))

   write(*,*)'What is the smallest element in the array?'
   write(*,g) minval(ints),'at <',minloc(ints),'>'

   write(*,*)'What is the smallest element in each column?'
   write(*,g) minval(ints,dim=1)

   write(*,*)'What is the smallest element in each row?'
   write(*,g) minval(ints,dim=2)

   ! notice the shape of the output has less columns
   ! than the input in this case
   write(*,*)'What is the smallest element in each column,'
   write(*,*)'considering only those elements that are'
   write(*,*)'greater than zero?'
   write(*,g) minval(ints, dim=1, mask = ints > 0)

   write(*,*)&
   & 'if everything is false a zero-sized array is NOT returned'
   write(*,*) minval(ints, dim=1, mask = .false.)
   write(*,*)'even for a zero-sized input'
   write(*,g) minval([integer ::], dim=1, mask = .false.)

   write(*,*)'a scalar answer for everything false is huge()'
   write(*,g) minval(ints, mask = .false.)
   write(*,g) minval([integer ::], mask = .false.)

   print *, 'if zero-size character array all dels if ASCII'
   strs=[character(len=5)::]
   strs=minval(strs)
   print g, ichar([(strs(i),i=1,len(strs))])

   write(*,*)'some calls with three dimensions'
   write(*,g) minval(box, mask = .true. )
   write(*,g) minval(box, dim=1, mask = .true. )

   write(*,g) minval(box, dim=2, mask = .true. )
   write(*,g) 'shape of answer is ', &
   & shape(minval(box, dim=2, mask = .true. ))

end program demo_minval

Result:

 >  Given the array
 >     1   -2    3    4    5
 >    10   20  -30   40   50
 >    11   22   33  -44   55
 >
 >  What is the smallest element in the array?
 >    -44 at < 3 4 >
 >  What is the smallest element in each column?
 >    1 -2 -30 -44 5
 >  What is the smallest element in each row?
 >    -2 -30 -44
 >  What is the smallest element in each column,
 >  considering only those elements that are
 >  greater than zero?
 >    1 20 3 4 5
 >  if everything is false a zero-sized array is NOT returned
 >   2147483647  2147483647  2147483647  2147483647  2147483647
 >  even for a zero-sized input
 >    2147483647
 >  a scalar answer for everything false is huge()
 >    2147483647
 >    2147483647
 >  if zero-size character array all dels if ASCII
 >
 >  some calls with three dimensions
 >    -55
 >    1 -2 -30 -44 5 -11 -22 -33 -40 -55
 >    -2 -30 -44 -5 -50 -55
 >    shape of answer is  3 2

Standard

Fortran 95

See Also

min(3), minloc(3) maxloc(3), maxval(3), min(3)

Fortran intrinsic descriptions (license: MIT) @urbanjost

mod

Name

mod(3) - [NUMERIC] Remainder function

Synopsis

    result = mod(a, p)
     elemental type(TYPE(kind=KIND)) function mod(a,p)

      type(TYPE(kind=KIND)),intent(in) :: a
      type(TYPE(kind=KIND)),intent(in) :: p

Characteristics

Description

mod(3) computes the remainder of the division of a by p.

In mathematics, the remainder is the amount “left over” after performing some computation. In arithmetic, the remainder is the integer “left over” after dividing one integer by another to produce an integer quotient (integer division). In algebra of polynomials, the remainder is the polynomial “left over” after dividing one polynomial by another. The modulo operation is the operation that produces such a remainder when given a dividend and divisor.

Options

Result

The return value is the result of a - (int(a/p) * p).

As can be seen by the formula the sign of p is canceled out. Therefore the returned value always has the sign of a.

Of course, the magnitude of the result will be less than the magnitude of p, as the result has been reduced by all multiples of p.

Examples

Sample program:

program demo_mod
implicit none

   ! basics
    print *, mod( -17,  3 ), modulo( -17,  3 )
    print *, mod(  17, -3 ), modulo(  17, -3 )
    print *, mod(  17,  3 ), modulo(  17,  3 )
    print *, mod( -17, -3 ), modulo( -17, -3 )

    print *, mod(-17.5, 5.2), modulo(-17.5, 5.2)
    print *, mod( 17.5,-5.2), modulo( 17.5,-5.2)
    print *, mod( 17.5, 5.2), modulo( 17.5, 5.2)
    print *, mod(-17.5,-5.2), modulo(-17.5,-5.2)

  ! with a divisor of 1 the fractional part is returned
    print *, mod(-17.5, 1.0), modulo(-17.5, 1.0)
    print *, mod( 17.5,-1.0), modulo( 17.5,-1.0)
    print *, mod( 17.5, 1.0), modulo( 17.5, 1.0)
    print *, mod(-17.5,-1.0), modulo(-17.5,-1.0)

end program demo_mod

Results:

  >          -2           1
  >           2          -1
  >           2           2
  >          -2          -2
  >  -1.900001       3.299999
  >   1.900001      -3.299999
  >   1.900001       1.900001
  >  -1.900001      -1.900001
  > -0.5000000      0.5000000
  >  0.5000000     -0.5000000
  >  0.5000000      0.5000000
  > -0.5000000     -0.5000000

Standard

FORTRAN 77

See Also

Fortran intrinsic descriptions (license: MIT) @urbanjost

modulo

Name

modulo(3) - [NUMERIC] Modulo function

Synopsis

    result = modulo(a, p)
     elemental TYPE(kind=KIND) function modulo(a,p)

      TYPE(kind=KIND),intent(in) :: a
      TYPE(kind=KIND),intent(in) :: p

Characteristics

Description

modulo(3) computes the a modulo p.

Options

Result

The type and kind of the result are those of the arguments.

The returned value has the same sign as p and a magnitude less than the magnitude of p. ### Examples

Sample program:

program demo_modulo
implicit none
     print *, modulo(17,3)        ! yields 2
     print *, modulo(17.5,5.5)    ! yields 1.0

     print *, modulo(-17,3)       ! yields 1
     print *, modulo(-17.5,5.5)   ! yields 4.5

     print *, modulo(17,-3)       ! yields -1
     print *, modulo(17.5,-5.5)   ! yields -4.5
end program demo_modulo

Results:

 >            2
 >    1.000000
 >            1
 >    4.500000
 >           -1
 >   -4.500000

Standard

Fortran 95

See Also

mod(3)

Fortran intrinsic descriptions

move_alloc

Name

move_alloc(3) - [MEMORY] Move allocation from one object to another

Synopsis

    call move_alloc(from, to [,stat] [,errmsg] )
     subroutine move_alloc(from, to)

      type(TYPE(kind=**)),intent(inout),allocatable :: from(..)
      type(TYPE(kind=**)),intent(out),allocatable   :: to(..)
      integer(kind=**),intent(out)   :: stat
      character(len=*),intent(inout) :: errmsg

Characteristics

Description

move_alloc(3) moves the allocation from from to to. from will become deallocated in the process.

This is potentially more efficient than other methods of assigning the values in from to to and explicitly deallocating from, which are far more likely to require a temporary object or a copy of the elements of the array.

Options

Examples

Basic sample program to allocate a bigger grid

program demo_move_alloc
implicit none
! Example to allocate a bigger GRID
real, allocatable :: grid(:), tempgrid(:)
integer :: n, i

   ! initialize small GRID
   n = 3
   allocate (grid(1:n))
   grid = [ (real (i), i=1,n) ]

   ! initialize TEMPGRID which will be used to replace GRID
   allocate (tempgrid(1:2*n))    ! Allocate bigger grid
   tempgrid(::2)  = grid         ! Distribute values to new locations
   tempgrid(2::2) = grid + 0.5   ! initialize other values

   ! move TEMPGRID to GRID
   call MOVE_ALLOC (from=tempgrid, to=grid)

   ! TEMPGRID should no longer be allocated
   ! and GRID should be the size TEMPGRID was
   if (size (grid) /= 2*n .or. allocated (tempgrid)) then
      print *, "Failure in move_alloc!"
   endif
   print *, allocated(grid), allocated(tempgrid)
   print '(99f8.3)', grid
end program demo_move_alloc

Results:

  > T F
  >   1.000   1.500   2.000   2.500   3.000   3.500

Standard

Fortran 2003, STAT and ERRMSG options added 2018

See Also

allocated(3)

Fortran intrinsic descriptions

mvbits

Name

mvbits(3) - [BIT:COPY] Reproduce bit patterns found in one integer in another

Synopsis

   call mvbits(from, frompos, len, to, topos)
    elemental subroutine mvbits( from, frompos, len, to, topos )

     integer(kind=KIND),intent(in)    :: from
     integer(kind=**),intent(in)      :: frompos
     integer(kind=**),intent(in)      :: len
     integer(kind=KIND),intent(inout) :: to
     integer(kind=**),intent(in)      :: topos

Characteristics

Description

mvbits(3) copies a bit pattern found in a range of adjacent bits in the integer from to a specified position in another integer to (which is of the same kind as from). It otherwise leaves the bits in to as-is.

The bit positions copied must exist within the value of from. That is, the values of frompos+len-1 and topos+len-1 must be nonnegative and less than bit_size(from).

The bits are numbered 0 to bit_size(i)-1, from right to left.

Options

Examples

Sample program that populates a new 32-bit integer with its bytes in reverse order from the input value (ie. changes the Endian of the integer).

program demo_mvbits
use,intrinsic :: iso_fortran_env,  only : int8, int16, int32, int64
implicit none
integer(kind=int32) :: intfrom, intto, abcd_int
character(len=*),parameter :: bits= '(g0,t30,b32.32)'
character(len=*),parameter :: fmt= '(g0,t30,a,t40,b32.32)'

    intfrom=huge(0)  ! all bits are 1 accept the sign bit
    intto=0          ! all bits are 0

    !! CHANGE BIT 0
    ! show the value and bit pattern
    write(*,bits)intfrom,intfrom
    write(*,bits)intto,intto

    ! copy bit 0 from intfrom to intto to show the rightmost bit changes
    !          (from,    frompos, len,    to, topos)
    call mvbits(intfrom,       0,   1, intto,     0) ! change bit 0
    write(*,bits)intto,intto

    !! COPY PART OF A VALUE TO ITSELF
    ! can copy bit from a value to itself
    call mvbits(intfrom,0,1,intfrom,31)
    write(*,bits)intfrom,intfrom

    !! MOVING BYTES AT A TIME
    ! make native integer value with bit patterns
    ! that happen to be the same as the beginning of the alphabet
    ! to make it easy to see the bytes are reversed
    abcd_int=transfer('abcd',0)
    ! show the value and bit pattern
    write(*,*)'native'
    write(*,fmt)abcd_int,abcd_int,abcd_int

    ! change endian of the value
    abcd_int=int_swap32(abcd_int)
    ! show the values and their bit pattern
    write(*,*)'non-native'
    write(*,fmt)abcd_int,abcd_int,abcd_int

 contains

 pure elemental function int_swap32(intin) result(intout)
 ! Convert a 32 bit integer from big Endian to little Endian,
 ! or conversely from little Endian to big Endian.
 !
 integer(kind=int32), intent(in)  :: intin
 integer(kind=int32) :: intout
    ! copy bytes from input value to new position in output value
    !          (from,  frompos, len,     to, topos)
    call mvbits(intin,       0,   8, intout,    24) ! byte1 to byte4
    call mvbits(intin,       8,   8, intout,    16) ! byte2 to byte3
    call mvbits(intin,      16,   8, intout,     8) ! byte3 to byte2
    call mvbits(intin,      24,   8, intout,     0) ! byte4 to byte1
 end function int_swap32

 end program demo_mvbits

Results:

 > 2147483647                   01111111111111111111111111111111
 > 0                            00000000000000000000000000000000
 > 1                            00000000000000000000000000000001
 > -1                           11111111111111111111111111111111
 >  native
 > 1684234849                   abcd      01100100011000110110001001100001
 >  non-native
 > 1633837924                   dcba      01100001011000100110001101100100

Standard

Fortran 95

See Also

btest(3), iand(3), ibclr(3), ibits(3), ibset(3), ieor(3), ior(3), not(3)

Fortran intrinsic descriptions (license: MIT) @urbanjost

nearest

Name

nearest(3) - [MODEL:COMPONENTS] Nearest representable number

Synopsis

    result = nearest(x, s)
     elemental real(kind=KIND) function nearest(x,s)

      real(kind=KIND),intent(in) :: x
      real(kind=**),intent(in) :: s

Characteristics

Description

nearest(3) returns the processor-representable number nearest to x in the direction indicated by the sign of s.

Options

Result

The return value is of the same type as x. If s is positive, nearest returns the processor-representable number greater than x and nearest to it. If s is negative, nearest returns the processor-representable number smaller than x and nearest to it.

Examples

Sample program:

program demo_nearest
implicit none

   real :: x, y
   x = nearest(42.0, 1.0)
   y = nearest(42.0, -1.0)
   write (*,"(3(g20.15))") x, y, x - y

!  write (*,"(3(g20.15))") &
!   nearest(tiny(0.0),1.0), &
!   nearest(tiny(0.0),-1.0), &
!   nearest(tiny(0.0),1.0) -nearest(tiny(0.0),-1.0)

!  write (*,"(3(g20.15))") &
!   nearest(huge(0.0),1.0), &
!   nearest(huge(0.0),-1.0), &
!   nearest(huge(0.0),1.0)- nearest(huge(0.0),-1.0)

end program demo_nearest

Results:

  > 42.0000038146973    41.9999961853027    .762939453125000E-05

Standard

Fortran 95

See Also

digits(3), epsilon(3), exponent(3), fraction(3), huge(3), maxexponent(3), minexponent(3), precision(3), radix(3), range(3), rrspacing(3), scale(3), set_exponent(3), spacing(3), tiny(3)

Fortran intrinsic descriptions

new_line

Name

new_line(3) - [CHARACTER:INQUIRY] Newline character

Synopsis

    result = new_line(c)
     character(len=1,kind=KIND) function new_line(c)

      character(len=1,kind=KIND),intent(in) :: c(..)

Characteristics

Description

new_line(3) returns the newline character.

Normally, newlines are generated with regular formatted I/O statements like WRITE() and PRINT() when each statement completes:

   print *, 'x=11'
   print *
   print *, 'y=22'
   end

produces:

    x=11

    y=22

Alternatively, a “/” descriptor in a format is used to generate a newline on the output. For example:

   write(*,'(a,1x,i0,/,a)') 'x =',11,'is the answer'
   end

produces:

   x = 11
   is the answer

Also, for formatted sequential output if more data is listed on the output statement than can be represented by the format statement a newline is generated and then the format is reused until the output list is exhausted.

   write(*,'(a,"=",i0)') 'x', 10, 'y', 20
   end

produces

   x=10
   y=20

But there are occasions, particularly when non-advancing I/O or stream I/O is being generated (which does not generate a newline at the end of each WRITE statement, as normally occurs) where it is preferable to place a newline explicitly in the output at specified points.

To do so you must make sure you are generating the correct newline character, which the techniques above do automatically.

The newline character varies between some platforms, and can even depend on the encoding (ie. which character set is being used) of the output file. In these cases selecting the correct character to output can be determined by the new_line(3) procedure.

Options

Result

Case (i)
If a is default character and the character in position 10 of the ASCII collating sequence is representable in the default character set, then the result is achar(10).

This is the typical case, and just requires using “new_line(‘a’)”.

Case (ii)
If a is an ASCII character or an ISO 10646 character, then the result is char(10, kind (a)).
Case (iii)
Otherwise, the result is a processor-dependent character that represents a newline in output to files connected for formatted stream output if there is such a character.
Case (iv)
If not of the previous cases apply, the result is the blank character.

Examples

Sample program:

program demo_new_line
implicit none
character,parameter :: nl=new_line('a')
character(len=:),allocatable :: string
real :: r
integer :: i, count

  ! basics
   ! print a string with a newline embedded in it
   string='This is record 1.'//nl//'This is record 2.'
   write(*,'(a)') string

   ! print a newline character string
   write(*,'(*(a))',advance='no') &
      nl,'This is record 1.',nl,'This is record 2.',nl

   ! output a number of words of random length as a paragraph
   ! by inserting a new_line before line exceeds 70 characters

  ! simplistic paragraph print using non-advancing I/O
   count=0
   do i=1,100

      ! make some fake word of random length
      call random_number(r)
      string=repeat('x',int(r*10)+1)

      count=count+len(string)+1
      if(count.gt.70)then
         write(*,'(a)',advance='no')nl
         count=len(string)+1
      endif
      write(*,'(1x,a)',advance='no')string
   enddo
   write(*,'(a)',advance='no')nl

end program demo_new_line

Results:

 > This is record 1.
 > This is record 2.
 >
 > This is record 1.
 > This is record 2.
 >  x x xxxx xxxxxxx xxxxxxxxxx xxxxxxxxx xxxx xxxxxxxxxx xxxxxxxx
 >  xxxxxxxxx xxxx xxxxxxxxx x xxxxxxxxx xxxxxxxx xxxxxxxx xxxx x
 >  xxxxxxxxxx x x x xxxxxx xxxxxxxxxx x xxxxxxxxxx x xxxxxxx xxxxxxxxx
 >  xx xxxxxxxxxx xxxxxxxx x xx xxxxxxxxxx xxxxxxxx xxx xxxxxxx xxxxxx
 >  xxxxx xxxxxxxxx x xxxxxxxxxx xxxxxx xxxxxxxx xxxxx xxxxxxxx xxxxxxxx
 >  xxxxx xxx xxxxxxxx xxxxxxx xxxxxxxx xxx xxxx xxx xxxxxxxx xxxxxx
 >  xxxxxxx xxxxxxx xxxxx xxxxx xx xxxxxx xx xxxxxxxxxx xxxxxx x xxxx
 >  xxxxxx xxxxxxx x xxx xxxxx xxxxxxxxx xxx xxxxxxx x xxxxxx xxxxxxxxx
 >  xxxx xxxxxxxxx xxxxxxxx xxxxxxxx xxx xxxxxxx xxxxxxx xxxxxxxxxx
 >  xxxxxxxxxx xxxxxx xxxxx xxxx xxxxxxx xx xxxxxxxxxx xxxxxx xxxxxx
 >  xxxxxx xxxx xxxxx

Standard

Fortran 2003

See also

achar(3), char(3), iachar(3), ichar(3), selected_char_kind(3)

Fortran intrinsic descriptions (license: MIT) @urbanjost

nint

Name

nint(3) - [TYPE:CONVERSION] Nearest whole number

Synopsis

    result = nint( a [,kind] )
     elemental integer(kind=KIND) function nint(a, kind )

      real(kind=**),intent(in) :: a
      integer(kind=**),intent(in),optional :: KIND

Characteristics

Description

nint(3) rounds its argument to the nearest whole number with its sign preserved.

The user must ensure the value is a valid value for the range of the kind returned. If the processor cannot represent the result in the kind specified, the result is undefined.

If a is greater than zero, nint(a) has the value int(a+0.5).

If a is less than or equal to zero, nint(a) has the value int(a-0.5).

Options

Result

The result is the integer nearest a, or if there are two integers equally near a, the result is whichever such integer has the greater magnitude.

The result is undefined if it cannot be represented in the specified integer type.

Examples

Sample program:

program demo_nint
implicit none
integer,parameter   :: dp=kind(0.0d0)
real,allocatable    :: in(:)
integer,allocatable :: out(:)
integer             :: i
real                :: x4
real(kind=dp)       :: x8

  ! basic use
   x4 = 1.234E0
   x8 = 4.721_dp
   print *, nint(x4), nint(-x4)
   print *, nint(x8), nint(-x8)

  ! elemental
   in = [ -2.7,  -2.5, -2.2, -2.0, -1.5, -1.0, -0.5, -0.4, &
        &  0.0,   &
        & +0.04, +0.5, +1.0, +1.5, +2.0, +2.2, +2.5, +2.7  ]
   out = nint(in)
   do i=1,size(in)
      write(*,*)in(i),out(i)
   enddo

  ! dusty corners
   ISSUES: block
   use,intrinsic :: iso_fortran_env, only : int8, int16, int32, int64
   integer :: icheck
      ! make sure input is in range for the type returned
      write(*,*)'Range limits for typical KINDS:'
      write(*,'(1x,g0,1x,g0)')  &
      & int8,huge(0_int8),   &
      & int16,huge(0_int16), &
      & int32,huge(0_int32), &
      & int64,huge(0_int64)

      ! the standard does not require this to be an error ...
      x8=12345.67e15 ! too big of a number
      icheck=selected_int_kind(ceiling(log10(x8)))
      write(*,*)'Any KIND big enough? ICHECK=',icheck
      print *, 'These are all wrong answers for ',x8
      print *, nint(x8,kind=int8)
      print *, nint(x8,kind=int16)
      print *, nint(x8,kind=int32)
      print *, nint(x8,kind=int64)
   endblock ISSUES

end program demo_nint

Results:

 >               1          -1
 >               5          -5
 >      -2.700000              -3
 >      -2.500000              -3
 >      -2.200000              -2
 >      -2.000000              -2
 >      -1.500000              -2
 >      -1.000000              -1
 >     -0.5000000              -1
 >     -0.4000000               0
 >      0.0000000E+00           0
 >      3.9999999E-02           0
 >      0.5000000               1
 >       1.000000               1
 >       1.500000               2
 >       2.000000               2
 >       2.200000               2
 >       2.500000               3
 >       2.700000               3
 >     Range limits for typical KINDS:
 >     1 127
 >     2 32767
 >     4 2147483647
 >     8 9223372036854775807
 >     Any KIND big enough? ICHECK=          -1
 >     These are all wrong answers for   1.234566949990144E+019
 >        0
 >          0
 >     -2147483648
 >      -9223372036854775808

Standard

FORTRAN 77 , with KIND argument - Fortran 90

See Also

aint(3), anint(3), int(3), selected_int_kind(3), ceiling(3), floor(3)

Fortran intrinsic descriptions (license: MIT) @urbanjost

norm2

Name

norm2(3) - [MATHEMATICS] Euclidean vector norm

Synopsis

    result = norm2(array, [dim])
     real(kind=KIND) function norm2(array, dim)

      real(kind=KIND),intent(in) :: array(..)
      integer(kind=**),intent(in),optional :: dim

Characteristics

Description

norm2(3) calculates the Euclidean vector norm (L_2 norm or generalized L norm) of array along dimension dim.

Options

Result

If dim is absent, a scalar with the square root of the sum of squares of the elements of array is returned.

Otherwise, an array of rank n-1, where n equals the rank of array, and a shape similar to that of array with dimension DIM dropped is returned.

Case (i)
The result of NORM2 (X) has a value equal to a processor-dependent approximation to the generalized L norm of X, which is the square root of the sum of the squares of the elements of X. If X has size zero, the result has the value zero.
Case (ii)
The result of NORM2 (X, DIM=DIM) has a value equal to that of NORM2 (X) if X has rank one. Otherwise, the resulting array is reduced in rank with dimension dim removed, and each remaining elment is the result of NORM2(X) for the values along dimension dim.

It is recommended that the processor compute the result without undue overflow or underflow.

Examples

Sample program:

program demo_norm2
implicit none
integer :: i
real :: x(2,3) = reshape([ &
   1, 2, 3, &
   4, 5, 6  &
   ],shape(x),order=[2,1])

  write(*,*) 'input in row-column order'
  write(*,*) 'x='
  write(*,'(4x,3f4.0)')transpose(x)
  write(*,*)
  write(*,*) 'norm2(x)=',norm2(x)
  write(*,*) 'which is equivalent to'
  write(*,*) 'sqrt(sum(x**2))=',sqrt(sum(x**2))
  write(*,*)
  write(*,*) 'for reference the array squared is'
  write(*,*) 'x**2='
  write(*,'(4x,3f4.0)')transpose(x**2)
  write(*,*)
  write(*,*) 'norm2(x,dim=1)=',norm2(x,dim=1)
  write(*,*) 'norm2(x,dim=2)=',norm2(x,dim=2)
  write(*,*) '(sqrt(sum(x(:,i)**2)),i=1,3)=',(sqrt(sum(x(:,i)**2)),i=1,3)
  write(*,*) '(sqrt(sum(x(i,:)**2)),i=1,2)=',(sqrt(sum(x(i,:)**2)),i=1,2)

end program demo_norm2

Results:

 >  input in row-column order
 >  x=
 >       1.  2.  3.
 >       4.  5.  6.
 >
 >  norm2(x)=   9.539392
 >  which is equivalent to
 >  sqrt(sum(x**2))=   9.539392
 >
 >  for reference the array squared is
 >  x**2=
 >       1.  4.  9.
 >      16. 25. 36.
 >
 >  norm2(x,dim=1)=   4.123106       5.385165       6.708204
 >  norm2(x,dim=2)=   3.741657       8.774964
 >  (sqrt(sum(x(:,i)**2)),i=1,3)=   4.123106       5.385165       6.708204
 >  (sqrt(sum(x(i,:)**2)),i=1,2)=   3.741657       8.774964

Standard

Fortran 2008

See Also

product(3), sum(3), hypot(3)

Fortran intrinsic descriptions (license: MIT) @urbanjost

not

Name

not(3) - [BIT:LOGICAL] Logical negation; flips all bits in an integer

Synopsis

    result = not(i)
    elemental integer(kind=KIND) function not(i)

     integer(kind=KIND), intent(in) :: i

Characteristics

Description

not(3) returns the bitwise Boolean inverse of i. This is also known as the “Bitwise complement” or “Logical negation” of the value.

If an input bit is a one, that position is a zero on output. Conversely any input bit that is zero is a one on output.

Options

Result

The result has the value obtained by complementing i bit-by-bit according to the following truth table:

   >    I   |  NOT(I)
   >    ----#----------
   >    1   |   0
   >    0   |   1

That is, every input bit is flipped.

Examples

Sample program

program demo_not
implicit none
integer :: i
  ! basics
   i=-13741
   print *,'the input value',i,'represented in bits is'
   write(*,'(1x,b32.32,1x,i0)') i, i
   i=not(i)
   print *,'on output it is',i
   write(*,'(1x,b32.32,1x,i0)') i, i
   print *, " on a two's complement machine flip the bits and add 1"
   print *, " to get the value with the sign changed, for example."
   print *, 1234, not(1234)+1
   print *, -1234, not(-1234)+1
   print *, " of course 'x=-x' works just fine and more generally."
end program demo_not

Results:

  > the input value      -13741 represented in bits is
  > 11111111111111111100101001010011 -13741
  > on output it is       13740
  > 00000000000000000011010110101100 13740
  >  on a two's complement machine flip the bits and add 1
  >  to get the value with the sign changed, for example.
  >        1234       -1234
  >       -1234        1234
  >  of course 'x=-x' works just fine and more generally.

Standard

Fortran 95

See Also

iand(3), ior(3), ieor(3), ibits(3), ibset(3),

ibclr(3)

Fortran intrinsic descriptions (license: MIT) @urbanjost

null

Name

null(3) - [TRANSFORMATIONAL] Function that returns a disassociated pointer

Synopsis

    ptr => null( [mold] )
     function null(mold)

      type(TYPE(kind=**)),pointer,optional :: mold

Characteristics

Description

null(3) returns a disassociated pointer.

If mold is present, a disassociated pointer of the same type is returned, otherwise the type is determined by context.

In Fortran 95, mold is optional. Please note that Fortran 2003 includes cases where it is required.

Options

Result

A disassociated pointer or an unallocated allocatable entity.

Examples

Sample program:

!program demo_null
module showit
implicit none
private
character(len=*),parameter :: g='(*(g0,1x))'
public gen
! a generic interface that only differs in the
! type of the pointer the second argument is
interface gen
 module procedure s1
 module procedure s2
end interface

contains

subroutine s1 (j, pi)
 integer j
 integer, pointer :: pi
   if(associated(pi))then
      write(*,g)'Two integers in S1:,',j,'and',pi
   else
      write(*,g)'One integer in S1:,',j
   endif
end subroutine s1

subroutine s2 (k, pr)
 integer k
 real, pointer :: pr
   if(associated(pr))then
      write(*,g)'integer and real in S2:,',k,'and',pr
   else
      write(*,g)'One integer in S2:,',k
   endif
end subroutine s2

end module showit

program demo_null
use showit, only : gen

real,target :: x = 200.0
integer,target :: i = 100

real, pointer :: real_ptr
integer, pointer :: integer_ptr

! so how do we call S1() or S2() with a disassociated pointer?

! the answer is the null() function with a mold value

! since s1() and s2() both have a first integer
! argument the NULL() pointer must be associated
! to a real or integer type via the mold option
! so the following can distinguish whether s1(1)
! or s2() is called, even though the pointers are
! not associated or defined

call gen (1, null (real_ptr) )    ! invokes s2
call gen (2, null (integer_ptr) ) ! invokes s1
real_ptr => x
integer_ptr => i
call gen (3, real_ptr ) ! invokes s2
call gen (4, integer_ptr ) ! invokes s1

end program demo_null

Results:

  > One integer in S2:, 1
  > One integer in S1:, 2
  > integer and real in S2:, 3 and 200.000000
  > Two integers in S1:, 4 and 100

Standard

Fortran 95

See Also

associated(3)

Fortran intrinsic descriptions (license: MIT) @urbanjost

num_images

Name

num_images(3) - [COLLECTIVE] Number of images

Synopsis

    result = num_images([team|team_number])
     integer function num_images (team)

      type(TEAM_TYPE),intent(in),optional    :: team
      integer(kind=KIND),intent(in),optional :: team_number

Characteristics

Description

num_images(3) Returns the number of images.

Options

Result

The number of images in the specified team, or in the current team if no team is specified.

Examples

Sample program:

program demo_num_images
implicit none
integer :: value[*]
real    :: p[*]
integer :: i

   value = this_image()
   sync all
   if (this_image() == 1) then
     do i = 1, num_images()
       write(*,'(2(a,i0))') 'value[', i, '] is ', value[i]
     end do
   endif

 ! The following code uses image 1 to read data and
 ! broadcast it to other images.
   if (this_image()==1) then
      p=1234.5678
      do i = 2, num_images()
         p[i] = p
      end do
   end if
   sync all

end program demo_num_images

Standard

Fortran 2008 . With DISTANCE or FAILED argument, TS 18508

See Also

this_image(3), image_index(3)

Fortran intrinsic descriptions (license: MIT) @urbanjost

out_of_range

Name

out_of_range(3) - [TYPE:CONVERSION] Whether a numeric value can be converted safely to another type

Synopsis

    result = out_of_range (x, mold [, round])
     elemental logical function(x, mold, round)

      type(TYPE(kind=**)),intent(in) :: x
      type(TYPE(kind=**)),intent(in) :: mold
      logical,intent(in),optional    :: round

Characteristics

Description

out_of_range(3) determines whether a value x can be converted safely to a real or integer variable the same type and kind as mold.

For example, if int8 is the kind name for an 8-bit binary integer type, then for

    logical :: L1, L2
    L1=out_of_range(-128.5, 0_int8)
    L2=out_of_range(-128.5, 0_int8,.true.)
    end

L1 likely will have the value .false. because the value will be truncated to -128.0, which is a representable integer number on a two’s complement machine.

L2 will be .true. because it will be rounded to -129.0, which is not likely to be a representable eight-bit integer.

Options

Result

From the standard:

Case (i): If mold is of type integer, and round is absent or present with the value false, the result is true if and only if the value of X is an IEEE infinity or NaN, or if the integer with largest magnitude that lies between zero and X inclusive is not representable by objects with the type and kind of mold.

Case (ii): If mold is of type integer, and round is present with the value true, the result is true if and only if the value of X is an IEEE infinity or NaN, or if the integer nearest X, or the integer of greater magnitude if two integers are equally near to X, is not representable by objects with the type and kind of mold.

Case (iii): Otherwise, the result is true if and only if the value of X is an IEEE infinity or NaN that is not supported by objects of the type and kind of mold, or if X is a finite number and the result of rounding the value of X (according to the IEEE rounding mode if appropriate) to the extended model for the kind of mold has magnitude larger than that of the largest finite number with the same sign as X that is representable by objects with the type and kind of mold.

NOTE

mold is required to be a scalar because the only information taken from it is its type and kind. Allowing an array mold would require that it be conformable with x. round is scalar because allowing an array rounding mode would have severe performance difficulties on many processors.

Examples

Sample program:

program demo_out_of_range
use, intrinsic :: iso_fortran_env, only : int8, int16, int32, int64
use, intrinsic :: iso_fortran_env, only : real32, real64, real128
implicit none
integer            :: i
integer(kind=int8) :: i8, j8

    ! compilers are not required to produce an error on out of range.
    ! here storing the default integers into 1-byte integers
    ! incorrectly can have unexpected results
    do i=127,130
       i8=i
       j8=-i
       ! OUT_OF_RANGE(3) can let you check if the value will fit
       write(*,*)i8,j8,' might have expected',i,-i, &
        & out_of_range( i,i8), &
        & out_of_range(-i,i8)
    enddo
    write(*,*) 'RANGE IS ',-1-huge(0_int8),'TO',huge(0_int8)
    ! the real -128.5 is truncated to -128 and is in range
    write(*,*) out_of_range (  -128.5, 0_int8)         ! false

    ! the real -128.5 is rounded to -129 and is not in range
    write(*,*) out_of_range (  -128.5, 0_int8, .true.) ! true

end program demo_out_of_range

Results:

  >  127 -127  might have expected         127        -127 F F
  > -128 -128  might have expected         128        -128 T F
  > -127  127  might have expected         129        -129 T T
  > -126  126  might have expected         130        -130 T T
  > RANGE IS         -128 TO  127
  > F
  > T

Standard

FORTRAN 2018

See also

Fortran intrinsic descriptions (license: MIT) @urbanjost

pack

Name

pack(3) - [ARRAY:CONSTRUCTION] Pack an array into an array of rank one

Synopsis

    result = pack( array, mask [,vector] )
     TYPE(kind=KIND) function pack(array,mask,vector)

      TYPE(kind=KIND),option(in) :: array(..)
      logical  :: mask(..)
      TYPE(kind=KIND),option(in),optional :: vector(*)

Characteristics

Description

pack(3) stores the elements of array in an array of rank one.

The beginning of the resulting array is made up of elements whose mask equals .true.. Afterwards, remaining positions are filled with elements taken from vector

Options

vector shall have at least as many elements as there are in array.

Result

The result is an array of rank one and the same type as that of array. If vector is present, the result size is that of vector, the number of .true. values in mask otherwise.

If mask is scalar with the value .true., in which case the result size is the size of array.

Examples

Sample program:

    program demo_pack
    implicit none
    integer, allocatable :: m(:)
    character(len=10) :: c(4)

     ! gathering nonzero elements from an array:
       m = [ 1, 0, 0, 0, 5, 0 ]
       write(*, fmt="(*(i0, ' '))") pack(m, m /= 0)

     ! Gathering nonzero elements from an array and appending elements
     ! from VECTOR till the size of the mask array (or array size if the
     ! mask is scalar):
       m = [ 1, 0, 0, 2 ]
       write(*, fmt="(*(i0, ' '))") pack(m, m /= 0, [ 0, 0, 3, 4 ])
       write(*, fmt="(*(i0, ' '))") pack(m, m /= 0 )

     ! select strings whose second character is "a"
       c = [ character(len=10) :: 'ape', 'bat', 'cat', 'dog']
       write(*, fmt="(*(g0, ' '))") pack(c, c(:)(2:2) == 'a' )

     ! creating a quicksort using PACK(3f)
       block
       intrinsic random_seed, random_number
       real :: x(10)
          call random_seed()
          call random_number(x)
          write (*,"(a10,*(1x,f0.3))") "initial",x
          write (*,"(a10,*(1x,f0.3))") "sorted",qsort(x)
       endblock
    contains
    !
    ! concise quicksort from @arjen and @beliavsky shows recursion,
    ! array sections, and vectorized comparisons.
    !
    pure recursive function qsort(values) result(sorted)
    intrinsic pack, size
    real, intent(in) :: values(:)
    real             :: sorted(size(values))
       if (size(values) > 1) then
          sorted = &
          & [qsort(pack(values(2:),values(2:)<values(1))), values(1), &
          & qsort(pack(values(2:),values(2:)>=values(1)))]
       else
          sorted = values
       endif
    end function qsort
    end program demo_pack

Result:

    > 1 5
    > 1 2 3 4
    > 1 2
    > bat        cat
    >    initial .833 .367 .958 .454 .122 .602 .418 .942 .566 .400
    >     sorted .122 .367 .400 .418 .454 .566 .602 .833 .942 .958

Standard

Fortran 95

See Also

merge(3), spread(3), unpack(3)

Fortran intrinsic descriptions (license: MIT) @urbanjost

parity

Name

parity(3) - [ARRAY:REDUCTION] Array reduction by .NEQV. operation

Synopsis

    result = parity( mask [,dim] )
     logical(kind=KIND) function parity(mask, dim)

      type(logical(kind=KIND)),intent(in)        :: mask(..)
      type(integer(kind=**)),intent(in),optional :: dim

Characteristics

Description

parity(3) calculates the parity array (i.e. the reduction using .neqv.) of mask along dimension dim if dim is present and not 1. Otherwise, it returns the parity of the entire mask array as a scalar.

Options

Result

The result is of the same type as mask.

If dim is absent, a scalar with the parity of all elements in mask is returned: .true. if an odd number of elements are .true. and .false. otherwise.

If MASK has rank one, PARITY (MASK, DIM) is equal to PARITY (MASK). Otherwise, the result is an array of parity values with dimension dim dropped.

Examples

Sample program:

program demo_parity
implicit none
logical, parameter :: T=.true., F=.false.
logical :: x(3,4)
  ! basics
   print *, parity([T,F])
   print *, parity([T,F,F])
   print *, parity([T,F,F,T])
   print *, parity([T,F,F,T,T])
   x(1,:)=[T,T,T,T]
   x(2,:)=[T,T,T,T]
   x(3,:)=[T,T,T,T]
   print *, parity(x)
   print *, parity(x,dim=1)
   print *, parity(x,dim=2)
end program demo_parity

Results:

 >  T
 >  T
 >  F
 >  T
 >  F
 >  T T T T
 >  F F F

Standard

Fortran 2008

See also

Fortran intrinsic descriptions (license: MIT) @urbanjost

popcnt

Name

popcnt(3) - [BIT:COUNT] Number of bits set

Synopsis

    result = popcnt(i)
     elemental integer function popcnt(i)

      integer(kind=KIND), intent(in) :: i

Characteristics

Description

popcnt(3) returns the number of bits set to one in the binary representation of an integer.

Options

Result

The number of bits set to one in i.

Examples

Sample program:

program demo_popcnt
use, intrinsic :: iso_fortran_env, only : integer_kinds, &
   & int8, int16, int32, int64
implicit none
character(len=*),parameter :: pretty='(b64,1x,i0)'
  ! basic usage
   print pretty, 127,     popcnt(127)
   print pretty, int(b"01010"), popcnt(int(b"01010"))

  ! any kind of an integer can be used
   print pretty, huge(0_int8),  popcnt(huge(0_int8))
   print pretty, huge(0_int16), popcnt(huge(0_int16))
   print pretty, huge(0_int32), popcnt(huge(0_int32))
   print pretty, huge(0_int64), popcnt(huge(0_int64))
end program demo_popcnt

Results:

Note that on most machines the first bit is the sign bit, and a zero is used for positive values; but that this is system-dependent. These are typical values, where the huge(3) function has set all but the first bit to 1.

 >                                                         1111111 7
 >                                                            1010 2
 >                                                         1111111 7
 >                                                 111111111111111 15
 >                                 1111111111111111111111111111111 31
 > 111111111111111111111111111111111111111111111111111111111111111 63

Standard

Fortran 2008

See Also

There are many procedures that operator or query values at the bit level:

poppar(3), leadz(3), trailz(3) atomic_and(3), atomic_fetch_and(3), atomic_fetch_or(3), atomic_fetch_xor(3), atomic_or(3), atomic_xor(3), bge(3), bgt(3), bit_size(3), ble(3), blt(3), btest(3), dshiftl(3), dshiftr(3), iall(3), iand(3), iany(3), ibclr(3), ibits(3), ibset(3), ieor(3), ior(3), iparity(3), ishftc(3), ishft(3), maskl(3), maskr(3), merge_bits(3), mvbits(3), not(3), shifta(3), shiftl(3), shiftr(3), storage_size(3)

Fortran intrinsic descriptions (license: MIT) @urbanjost

poppar

Name

poppar(3) - [BIT:COUNT] Parity of the number of bits set

Synopsis

    result = poppar(i)
     elemental integer function poppar(i)

      integer(kind=KIND), intent(in) :: i

Characteristics

Description

poppar(3) returns the parity of an integer’s binary representation (i.e., the parity of the number of bits set).

The parity is expressed as

Options

Result

The return value is equal to 0 if i has an even number of bits set and 1 if an odd number of bits are set.

Examples

Sample program:

program demo_poppar
use, intrinsic :: iso_fortran_env, only : integer_kinds, &
   & int8, int16, int32, int64
implicit none
character(len=*),parameter :: pretty='(b64,1x,i0)'
   ! basic usage
   print pretty, 127,     poppar(127)
   print pretty, 128,     poppar(128)
   print pretty, int(b"01010"), poppar(int(b"01010"))

   ! any kind of an integer can be used
   print pretty, huge(0_int8),  poppar(huge(0_int8))
   print pretty, huge(0_int16), poppar(huge(0_int16))
   print pretty, huge(0_int32), poppar(huge(0_int32))
   print pretty, huge(0_int64), poppar(huge(0_int64))
end program demo_poppar

Results:

 >                                                          1111111 1
 >                                                         10000000 1
 >                                                             1010 0
 >                                  1111111111111111111111111111111 1
 >                                                          1111111 1
 >                                                  111111111111111 1
 >                                  1111111111111111111111111111111 1
 >  111111111111111111111111111111111111111111111111111111111111111 1

Standard

Fortran 2008

See Also

There are many procedures that operator or query values at the bit level:

popcnt(3), leadz(3), trailz(3) atomic_and(3), atomic_fetch_and(3), atomic_fetch_or(3), atomic_fetch_xor(3), atomic_or(3), atomic_xor(3), bge(3), bgt(3), bit_size(3), ble(3), blt(3), btest(3), dshiftl(3), dshiftr(3), iall(3), iand(3), iany(3), ibclr(3), ibits(3), ibset(3), ieor(3), ior(3), iparity(3), ishftc(3), ishft(3), maskl(3), maskr(3), merge_bits(3), mvbits(3), not(3), shifta(3), shiftl(3), shiftr(3), storage_size(3)

Fortran intrinsic descriptions (license: MIT) @urbanjost

precision

Name

precision(3) - [MODEL:NUMERIC] Decimal precision of a real kind

Synopsis

    result = precision(x)
     integer function precision(x)

      TYPE(kind=**),intent(in) :: x

Characteristics

Description

precision(3) returns the decimal precision in the model of the type of x.

Options

Result

The precision of values of the type and kind of x ### Examples

Sample program:

program demo_precision
use,intrinsic :: iso_fortran_env, only : dp=>real64,sp=>real32
implicit none
real(kind=sp)    :: x(2)
complex(kind=dp) :: y

   print *, precision(x), range(x)
   print *, precision(y), range(y)

end program demo_precision

Results:

  >           6          37
  >          15         307

Standard

Fortran 95

See Also

digits(3), epsilon(3), exponent(3), fraction(3), huge(3), maxexponent(3), minexponent(3), nearest(3), radix(3), range(3), rrspacing(3), scale(3), set_exponent(3), spacing(3), tiny(3)

Fortran intrinsic descriptions (license: MIT) @urbanjost

present

Name

present(3) - [STATE:INQUIRY] Determine whether an optional dummy argument is specified

Synopsis

    result = present(a)
     logical function present (a)

      type(TYPE(kind=KIND)) :: a(..)

Characteristics

Description

present(3) can be used in a procedure to determine if an optional dummy argument was present on the current call to the procedure.

a shall be the name of an optional dummy argument that is accessible in the subprogram in which the present(3) function reference appears. There are no other requirements on a.

Note when an argument is not present when the current procedure is invoked, you may only pass it as an optional argument to another procedure or pass it as an argument to present.

Options

Result

Returns .true. if the optional argument a is present (was passed on the call to the procedure) , or .false. otherwise.

Examples

Sample program:

program demo_present
implicit none
integer :: answer
   ! argument to func() is not present
   answer=func()
   write(*,*) answer
   ! argument to func() is present
   answer=func(1492)
   write(*,*) answer
contains
!
integer function func(x)
! the optional characteristic on this definition allows this variable
! to not be specified on a call; and also allows it to subsequently
! be passed to PRESENT(3):
integer, intent(in), optional :: x
integer :: x_local
   !
   ! basic
   if(present(x))then
     ! if present, you can use x like any other variable.
     x_local=x
   else
     ! if not, you cannot define or reference x except to
     ! pass it as an optional parameter to another procedure
     ! or in a call to present(3)
     x_local=0
   endif
   !
   func=x_local**2
   !
   ! passing the argument on to other procedures
   ! so something like this is a bad idea because x is used
   ! as the first argument to merge(3) when it might not be
   ! present
   ! xlocal=merge(x,0,present(x)) ! NO!!
   !
   ! We can pass it to another procedure if another
   ! procedure declares the argument as optional as well,
   ! or we have tested that X is present
   call tattle('optional argument x',x)
   if(present(x))call not_optional(x)
end function
!
subroutine tattle(label,arg)
character(len=*),intent(in) :: label
integer,intent(in),optional :: arg
   if(present(arg))then
      write(*,*)label,' is present'
   else
      write(*,*)label,' is not present'
   endif
end subroutine tattle
!
subroutine not_optional(arg)
integer,intent(in) :: arg
   write(*,*)'already tested X is defined',arg
end subroutine not_optional
!
end program demo_present

Results:

  > optional argument x is not present
  >           0
  > optional argument x is present
  > already tested X is defined 1492
  >     2226064

Standard

Fortran 95

Fortran intrinsic descriptions (license: MIT) @urbanjost

product

Name

product(3) - [ARRAY:REDUCTION] Product of array elements

Synopsis

    result = product(array [,dim] [,mask])
     NUMERIC function product(array, dim, mask)

      NUMERIC,intent(in) :: array(..)
      integer(kind=**),intent(in),optional :: dim
      logical(kind=**),intent(in),optional :: mask(..)

Characteristics

Description

product(3) multiplies together all the selected elements of array, or along dimension dim if the corresponding element in mask is .true..

If dim is absent, a scalar with the product of all elements in array is returned. (Note a zero-sized array returns 1).

When dim is present, If the masked array has a dimension of one (ie. is a vector) the result is a scalar. Otherwise, an array of rank n-1, where n equals the rank of array, and a shape similar to that of array with dimension dim dropped is returned.

Options

Result

The result is of the same type as array.

Examples

Sample program:

program demo_product
implicit none
character(len=*),parameter :: all='(*(g0,1x))' ! a handy format
character(len=1),parameter :: nl=new_line('a')

NO_DIM: block
!    If DIM is not specified, the result is the product of all the
!    selected array elements.
integer :: i,n, p1, p2
integer,allocatable :: array(:)
   ! all elements are selected by default
   do n=1,10
      print all, 'factorial of ',n,' is ', product([(real(i),i=1,n)])
   enddo

   ! using a mask
   array=[10,12,13,15,20,25,30]
   p1=product(array, mask=mod(array, 2)==1) ! only odd elements
   p2=product(array, mask=mod(array, 2)/=1) ! only even elements
   print all, nl,'product of all elements',product(array) ! all elements
   print all, ' odd * even =',nl,p1,'*',p2,'=',p1*p2

   ! NOTE: If ARRAY is a zero-sized array, the result is equal to one
   print all
   print all, 'zero-sized array=>',product([integer :: ])
   ! NOTE: If nothing in the mask is true, this also results in a null
   !       array
   print all, 'all elements have a false mask=>', &
            & product(array,mask=.false.)

endblock NO_DIM

WITH_DIM: block
integer :: rect(2,3)
integer :: box(2,3,4)

!  lets fill a few arrays
   rect = reshape([ &
     1, 2, 3,       &
     4, 5, 6        &
   ],shape(rect),order=[2,1])
   call print_matrix_int('rect',rect)

!  Find the product of each column in RECT.
   print all, 'product of columns=',product(rect, dim = 1)

! Find the product of each row in RECT.
   print all, 'product of rows=',product(rect, dim = 2)

! now lets try a box
   box(:,:,1)=rect
   box(:,:,2)=rect*(+10)
   box(:,:,3)=rect*(-10)
   box(:,:,4)=rect*2
   ! lets look at the values
   call print_matrix_int('box 1',box(:,:,1))
   call print_matrix_int('box 2',box(:,:,2))
   call print_matrix_int('box 3',box(:,:,3))
   call print_matrix_int('box 4',box(:,:,4))

   ! remember without dim= even a box produces a scalar
   print all, 'no dim gives a scalar',product(real(box))

   ! only one plane has negative values, so note all the "1" values
   ! for vectors with no elements
   call print_matrix_int('negative values', &
   & product(box,mask=box < 0,dim=1))

!   If DIM is specified and ARRAY has rank greater than one, the
!   result is a new array in which dimension DIM has been eliminated.

   ! pick a dimension to multiply though
   call print_matrix_int('dim=1',product(box,dim=1))

   call print_matrix_int('dim=2',product(box,dim=2))

   call print_matrix_int('dim=3',product(box,dim=3))

endblock WITH_DIM

contains

subroutine print_matrix_int(title,arr)
implicit none

!@(#) print small 2d integer arrays in row-column format

character(len=*),intent(in)  :: title
integer,intent(in)           :: arr(:,:)
integer                      :: i
character(len=:),allocatable :: biggest

   print all
   print all, trim(title),':(',shape(arr),')'  ! print title
   biggest='           '  ! make buffer to write integer into
   ! find how many characters to use for integers
   write(biggest,'(i0)')ceiling(log10(max(1.0,real(maxval(abs(arr))))))+2
   ! use this format to write a row
   biggest='(" > [",*(i'//trim(biggest)//':,","))'
   ! print one row of array at a time
   do i=1,size(arr,dim=1)
      write(*,fmt=biggest,advance='no')arr(i,:)
      write(*,'(" ]")')
   enddo

end subroutine print_matrix_int

end program demo_product

Results:

 > factorial of  1  is  1.00000000
 > factorial of  2  is  2.00000000
 > factorial of  3  is  6.00000000
 > factorial of  4  is  24.0000000
 > factorial of  5  is  120.000000
 > factorial of  6  is  720.000000
 > factorial of  7  is  5040.00000
 > factorial of  8  is  40320.0000
 > factorial of  9  is  362880.000
 > factorial of  10  is  3628800.00
 >
 >  product of all elements 351000000
 >  odd * even =
 >  4875 * 72000 = 351000000
 >
 > zero-sized array=> 1
 > all elements have a false mask=> 1
 >
 > rect :( 2 3 )
 >  > [  1,  2,  3 ]
 >  > [  4,  5,  6 ]
 > product of columns= 4 10 18
 > product of rows= 6 120
 >
 > box 1 :( 2 3 )
 >  > [  1,  2,  3 ]
 >  > [  4,  5,  6 ]
 >
 > box 2 :( 2 3 )
 >  > [  10,  20,  30 ]
 >  > [  40,  50,  60 ]
 >
 > box 3 :( 2 3 )
 >  > [ -10, -20, -30 ]
 >  > [ -40, -50, -60 ]
 >
 > box 4 :( 2 3 )
 >  > [   2,   4,   6 ]
 >  > [   8,  10,  12 ]
 > no dim gives a scalar 0.171992703E+26
 >
 > negative values :( 3 4 )
 >  > [     1,     1,   400,     1 ]
 >  > [     1,     1,  1000,     1 ]
 >  > [     1,     1,  1800,     1 ]
 >
 > dim=1 :( 3 4 )
 >  > [     4,   400,   400,    16 ]
 >  > [    10,  1000,  1000,    40 ]
 >  > [    18,  1800,  1800,    72 ]
 >
 > dim=2 :( 2 4 )
 >  > [       6,    6000,   -6000,      48 ]
 >  > [     120,  120000, -120000,     960 ]
 >
 > dim=3 :( 2 3 )
 >  > [    -200,   -3200,  -16200 ]
 >  > [  -51200, -125000, -259200 ]

Standard

Fortran 95

See Also

sum(3), note that an element by element multiplication is done directly using the star character.

Fortran intrinsic descriptions (license: MIT) @urbanjost

radix

Name

radix(3) - [MODEL:NUMERIC] Base of a numeric model

Synopsis

   result = radix(x)
    integer function radix(x)

     TYPE(kind=**),intent(in) :: x(..)

Characteristics

Description

radix(3) returns the base of the internal model representing the numeric entity x.

In a positional numeral system, the radix or base is the number of unique digits, including the digit zero, used to represent numbers.

This function helps to represent the internal computing model generically, but will be 2 (representing a binary machine) for any common platform for all the numeric types.

Options

Result

The returned value indicates what base is internally used to represent the type of numeric value x represents.

Examples

Sample program:

program demo_radix
implicit none
   print *, "The radix for the default integer kind is", radix(0)
   print *, "The radix for the default real kind is", radix(0.0)
   print *, "The radix for the doubleprecision real kind is", radix(0.0d0)
end program demo_radix

Results:

 >  The radix for the default integer kind is           2
 >  The radix for the default real kind is           2
 >  The radix for the doubleprecision real kind is           2

Standard

Fortran 95

See Also

digits(3), epsilon(3), exponent(3), fraction(3), huge(3), maxexponent(3), minexponent(3), nearest(3), precision(3), range(3), rrspacing(3), scale(3), set_exponent(3), spacing(3), tiny(3)

Fortran intrinsic descriptions (license: MIT) @urbanjost

random_init

Name

random_init(3) - [MATHEMATICS:RANDOM] Initializes the state of the pseudorandom number generator

Synopsis

    call random_init(repeatable, image_distinct)

     logical,intent(in) :: repeatable
     logical,intent(in) :: image_distinct

Characteristics

Description

Initializes the state of the pseudorandom number generator used by random_number.

Options

repeatable
If it is .true., the seed is set to a processor-dependent value that is the same each time random_init is called from the same image. The term “same image” means a single instance of program execution. The sequence of random numbers is different for repeated execution of the program.

If it is .false., the seed is set to a processor-dependent value.

image_distinct
If it is .true., the seed is set to a processor-dependent value that is distinct from the seed set by a call to random_initin another image. If it is .false., the seed is set to a value that does depend on which image called random_init.

Examples

Sample program:

    program demo_random_init
    implicit none
    real x(3), y(3)
       call random_init(.true., .true.)
       call random_number(x)
       call random_init(.true., .true.)
       call random_number(y)
       ! x and y should be the same sequence
       if ( any(x /= y) ) stop "x(:) and y(:) are not all equal"
       write(*,*)x
       write(*,*)y
    end program demo_random_init

Results:

RUN 1:

 >   0.825262189      0.191325366      0.155503273
 >   0.825262189      0.191325366      0.155503273

RUN 2:

 >   0.825262189      0.191325366      0.155503273
 >   0.825262189      0.191325366      0.155503273

Standard

Fortran 2018

See also

random_number, random_seed

_Fortran intrinsic descriptions

random_number

Name

random_number(3) - [MATHEMATICS:RANDOM] Pseudo-random number

Synopsis

    call random_number(harvest)
     subroutine random_number(harvest)

      real,intent(out) :: harvest(..)

Characteristics

Description

random_number(3) returns a single pseudorandom number or an array of pseudorandom numbers from the uniform distribution over the range 0 <= x < 1.

Options

Examples

Sample program:

program demo_random_number
use, intrinsic :: iso_fortran_env, only : dp=>real64
implicit none
integer, allocatable :: seed(:)
integer              :: n
integer              :: first,last
integer              :: i
integer              :: rand_int
integer,allocatable  :: count(:)
real(kind=dp)        :: rand_val
   call random_seed(size = n)
   allocate(seed(n))
   call random_seed(get=seed)
   first=1
   last=10
   allocate(count(last-first+1))
   ! To have a discrete uniform distribution on the integers
   ! [first, first+1, ..., last-1, last] carve the continuous
   ! distribution up into last+1-first equal sized chunks,
   ! mapping each chunk to an integer.
   !
   ! One way is:
   !   call random_number(rand_val)
   ! choose one from last-first+1 integers
   !   rand_int = first + FLOOR((last+1-first)*rand_val)
      count=0
      ! generate a lot of random integers from 1 to 10 and count them.
      ! with a large number of values you should get about the same
      ! number of each value
      do i=1,100000000
         call random_number(rand_val)
         rand_int=first+floor((last+1-first)*rand_val)
         if(rand_int.ge.first.and.rand_int.le.last)then
            count(rand_int)=count(rand_int)+1
         else
            write(*,*)rand_int,' is out of range'
         endif
      enddo
      write(*,'(i0,1x,i0)')(i,count(i),i=1,size(count))
end program demo_random_number

Results:

 >  1 10003588
 >  2 10000104
 >  3 10000169
 >  4 9997996
 >  5 9995349
 >  6 10001304
 >  7 10001909
 >  8 9999133
 >  9 10000252
 >  10 10000196

Standard

Fortran 95

See Also

random_seed(3)

Fortran intrinsic descriptions

random_seed

Name

random_seed(3) - [MATHEMATICS:RANDOM] Initialize a pseudo-random number sequence

Synopsis

    call random_seed( [size] [,put] [,get] )
     subroutine random_seed( size, put, get )

      integer,intent(out),optional :: size
      integer,intent(in),optional :: put(*)
      integer,intent(out),optional :: get(*)

Characteristics

Description

random_seed(3) restarts or queries the state of the pseudorandom number generator used by random_number.

If random_seed is called without arguments, it is seeded with random data retrieved from the operating system.

Options

Examples

Sample program:

    program demo_random_seed
    implicit none
    integer, allocatable :: seed(:)
    integer :: n

       call random_seed(size = n)
       allocate(seed(n))
       call random_seed(get=seed)
       write (*, *) seed

    end program demo_random_seed

Results:

 >    -674862499 -1750483360  -183136071  -317862567   682500039
 >    349459   344020729 -1725483289

Standard

Fortran 95

See Also

random_number(3)

Fortran intrinsic descriptions

range

Name

range(3) - [MODEL:NUMERIC] Decimal exponent range of a numeric kind

Synopsis

    result = range(x)
      integer function range (x)

       TYPE(kind=KIND),intent(in) :: x

Characteristics

Description

range(3) returns the decimal exponent range in the model of the type of x.

Since x is only used to determine the type and kind being interrogated, the value need not be defined.

Options

Result

Case (i)

For an integer argument, the result has the value

Case (ii)

For a real argument, the result has the value

Case (iii)

For a complex argument, the result has the value

Examples

Sample program:

program demo_range
use,intrinsic :: iso_fortran_env, only : dp=>real64,sp=>real32
implicit none
real(kind=sp)    :: x(2)
complex(kind=dp) :: y
   print *, precision(x), range(x)
   print *, precision(y), range(y)
end program demo_range

Results:

 >            6          37
 >           15         307

Standard

Fortran 95

See Also

digits(3), epsilon(3), exponent(3), fraction(3), huge(3), maxexponent(3), minexponent(3), nearest(3), precision(3), radix(3), rrspacing(3), scale(3), set_exponent(3), spacing(3), tiny(3)

Fortran intrinsic descriptions (license: MIT) @urbanjost

rank

Name

rank(3) - [ARRAY:INQUIRY] Rank of a data object

Synopsis

    result = rank(a)
     integer function rank(a)

      type(TYPE(kind=**)),intent(in) :: a(..)

Characteristics

Description

rank(3) returns the rank of a scalar or array data object.

The rank of an array is the number of dimensions it has (zero for a scalar).

Options

Result

For arrays, their rank is returned; for scalars zero is returned.

Examples

Sample program:

program demo_rank
implicit none

! a bunch of data objects to query
integer           :: a
real, allocatable :: b(:,:)
real, pointer     :: c(:)
complex           :: d

! make up a type
type mytype
   integer :: int
   real :: float
   character :: char
end type mytype
type(mytype) :: any_thing(1,2,3,4,5)

  ! basics
   print *, 'rank of scalar a=',rank(a)
   ! you can query this array even though it is not allocated
   print *, 'rank of matrix b=',rank(b)
   print *, 'rank of vector pointer c=',rank(c)
   print *, 'rank of complex scalar d=',rank(d)

  ! you can query any type, not just intrinsics
   print *, 'rank of any arbitrary type=',rank(any_thing)

  ! an assumed-rank object may be queried
   call query_int(10)
   call query_int([20,30])
   call query_int( reshape([40,50,60,70],[2,2]) )

  ! you can even query an unlimited polymorphic entity
   call query_anything(10.0)
   call query_anything([.true.,.false.])
   call query_anything( reshape([40.0,50.0,60.0,70.0],[2,2]) )

contains

subroutine query_int(data_object)
! It is hard to do much with something dimensioned
! name(..) if not calling C except inside of a
! SELECT_RANK construct but one thing you can
! do is call the inquiry functions ...
integer,intent(in) :: data_object(..)
character(len=*),parameter :: all='(*(g0,1x))'

   if(rank(data_object).eq.0)then
      print all,&
      & 'passed a scalar to an assumed rank,  &
      & rank=',rank(data_object)
   else
      print all,&
      & 'passed an array to an assumed rank,  &
      & rank=',rank(data_object)
   endif

end subroutine query_int

subroutine query_anything(data_object)
class(*),intent(in) ::data_object(..)
character(len=*),parameter :: all='(*(g0,1x))'
  if(rank(data_object).eq.0)then
    print all,&
    &'passed a scalar to an unlimited polymorphic rank=', &
    & rank(data_object)
  else
    print all,&
    & 'passed an array to an unlimited polymorphic, rank=', &
    & rank(data_object)
  endif
end subroutine query_anything

end program demo_rank

Results:

  >  rank of scalar a=           0
  >  rank of matrix b=           2
  >  rank of vector pointer c=           1
  >  rank of complex scalar d=           0
  >  rank of any arbitrary type=           5
  > passed a scalar to an assumed rank,   rank= 0
  > passed an array to an assumed rank,   rank= 1
  > passed an array to an assumed rank,   rank= 2
  > passed a scalar to an unlimited polymorphic rank= 0
  > passed an array to an unlimited polymorphic, rank= 1
  > passed an array to an unlimited polymorphic, rank= 2

Standard

See also

Array inquiry:

State Inquiry:

Kind Inquiry:

Bit Inquiry:

Fortran intrinsic descriptions (license: MIT) @urbanjost

real

Name

real(3) - [TYPE:CONVERSION] Convert to real type

Synopsis

  result = real(x [,kind])
   elemental real(kind=KIND) function real(x,KIND)

    TYPE(kind=**),intent(in) :: x
    integer(kind=**),intent(in),optional :: KIND

Characteristics

Description

real(3) converts its argument x to a real type.

The real part of a complex value is returned. For complex values this is similar to the modern complex-part-designator %RE which also designates the real part of a complex value.

      z=(3.0,4.0)     ! if z is a complex value
      print *, z%re == real(z) ! these expressions are equivalent

Options

Result

  1. real(x) converts x to a default real type if x is an integer or real variable.

  2. real(x) converts a complex value to a real type with the magnitude of the real component of the input with kind type parameter the same as x.

  3. real(x, kind) is converted to a real type with kind type parameter kind if x is a complex, integer, or real variable.

Examples

Sample program:

program demo_real
use,intrinsic :: iso_fortran_env, only : dp=>real64
implicit none
complex              :: zr = (1.0, 2.0)
doubleprecision      :: xd=huge(3.0d0)
complex(kind=dp) :: zd=cmplx(4.0e0_dp,5.0e0_dp,kind=dp)

   print *, real(zr), aimag(zr)
   print *, dble(zd), aimag(zd)

   write(*,*)xd,real(xd,kind=kind(0.0d0)),dble(xd)
end program demo_real

Results:

 > 1.00000000       2.00000000
 > 4.0000000000000000      5.0000000000000000
 > 1.7976931348623157E+308 1.7976931348623157E+308 1.7976931348623157E+30

Standard

FORTRAN 77

See Also

Fortran has strong support for complex values, including many intrinsics that take or produce complex values in addition to algebraic and logical expressions:

abs(3), acosh(3), acos(3), asinh(3), asin(3), atan2(3), atanh(3), atan(3), cosh(3), cos(3), co_sum(3), dble(3), dot_product(3), exp(3), int(3), is_contiguous(3), kind(3), log(3), matmul(3), precision(3), product(3), range(3), rank(3), sinh(3), sin(3), sqrt(3), storage_size(3), sum(3), tanh(3), tan(3), unpack(3),

Fortran intrinsic descriptions (license: MIT) @urbanjost

reduce

Name

reduce(3) - [ARRAY:TRANSFORMATIONAL] General reduction of an array

Synopsis

There are two forms to this function:

   result = reduce(array, operation [,mask]  [,identity]  [,ordered] )

or

   result = reduce (array, operation, dim  &
   & [,mask] [,identity] [,ordered] )
    type(TYPE(kind=KIND)) function reduce &
    & (array, operation, dim, mask, identity, ordered )

     type(TYPE(kind=KIND)),intent(in) :: array
     pure function                  :: operation
     integer,intent(in),optional    :: dim
     logical,optional               :: mask
     type(TYPE),intent(in),optional :: identity
     logical,intent(in),optional    :: ordered

Characteristics

Description

reduce(3) reduces a list of conditionally selected values from an array to a single value by iteratively applying a binary function.

Common in functional programming, a reduce function applies a binary operator (a pure function with two arguments) to all elements cumulatively.

reduce is a “higher-order” function; ie. it is a function that receives other functions as arguments.

The reduce function receives a binary operator (a function with two arguments, just like the basic arithmetic operators). It is first applied to two unused values in the list to generate an accumulator value which is subsequently used as the first argument to the function as the function is recursively applied to all the remaining selected values in the input array.

Options

Result

The result is of the same type and type parameters as array. It is scalar if dim does not appear.

If dim is present, it indicates the one dimension along which to perform the reduction, and the resultant array has a rank reduced by one relative to the input array.

Examples

The following examples all use the function MY_MULT, which returns the product of its two real arguments.

   program demo_reduce
   implicit none
   character(len=*),parameter :: f='("[",*(g0,",",1x),"]")'
   integer,allocatable :: arr(:), b(:,:)

   ! Basic usage:
      ! the product of the elements of an array
      arr=[1, 2, 3, 4 ]
      write(*,*) arr
      write(*,*) 'product=', reduce(arr, my_mult)
      write(*,*) 'sum=', reduce(arr, my_sum)

   ! Examples of masking:
      ! the product of only the positive elements of an array
      arr=[1, -1, 2, -2, 3, -3 ]
      write(*,*)'positive value product=',reduce(arr, my_mult, mask=arr>0)
   ! sum values ignoring negative values
      write(*,*)'sum positive values=',reduce(arr, my_sum, mask=arr>0)

   ! a single-valued array returns the single value as the
   ! calls to the operator stop when only one element remains
      arr=[ 1234 ]
      write(*,*)'single value sum',reduce(arr, my_sum )
      write(*,*)'single value product',reduce(arr, my_mult )

   ! Example of operations along a dimension:
   !  If B is the array   1 3 5
   !                      2 4 6
      b=reshape([1,2,3,4,5,6],[2,3])
      write(*,f) REDUCE(B, MY_MULT),'should be [720]'
      write(*,f) REDUCE(B, MY_MULT, DIM=1),'should be [2,12,30]'
      write(*,f) REDUCE(B, MY_MULT, DIM=2),'should be [15, 48]'

   contains

   pure function my_mult(a,b) result(c)
   integer,intent(in) :: a, b
   integer            :: c
      c=a*b
   end function my_mult

   pure function my_sum(a,b) result(c)
   integer,intent(in) :: a, b
   integer            :: c
      c=a+b
   end function my_sum

   end program demo_reduce

Results:

     >  1 2 3 4
     >  product= 24
     >  sum=     10
     >  positive value sum= 6
     >  sum positive values= 6
     >  single value sum     1234
     >  single value product 1234
     > [720, should be [720],
     > [2, 12, 30, should be [2,12,30],
     > [15, 48, should be [15, 48],

Standard

Fortran 2018

See Also

Resources

Fortran intrinsic descriptions (license: MIT) @urbanjost

repeat

Name

repeat(3) - [CHARACTER] Repeated string concatenation

Synopsis

    result = repeat(string, ncopies)
     character(len=len(string)*ncopies) function repeat(string, ncopies)

      character(len=*),intent(in)   :: string
      integer(kind=**),intent(in)   :: ncopies

Characteristics

Description

repeat(3) concatenates copies of a string.

Options

Result

A new string built up from ncopies copies of string.

Examples

Sample program:

program demo_repeat
implicit none
    write(*,'(a)') repeat("^v", 35)         ! line break
    write(*,'(a)') repeat("_", 70)          ! line break
    write(*,'(a)') repeat("1234567890", 7)  ! number line
    write(*,'(a)') repeat("         |", 7)  !
end program demo_repeat

Results:

 > ^v^v^v^v^v^v^v^v^v^v^v^v^v^v^v^v^v^v^v^v^v^v^v^v^v^v^v^v^v^v^v^v^v^v^v
 > ______________________________________________________________________
 > 1234567890123456789012345678901234567890123456789012345678901234567890
 >          |         |         |         |         |         |         |

Standard

Fortran 95

See Also

Functions that perform operations on character strings:

Fortran intrinsic descriptions (license: MIT) @urbanjost

reshape

Name

reshape(3) - [ARRAY:RESHAPE] Function to reshape an array

Synopsis

    result = reshape( source, shape [,pad] [,order] )
     type(TYPE(kind=KIND)) function reshape

      type(TYPE(kind=KIND)),intent(in)          :: source(..)
      integer(kind=**),intent(in)               :: shape(:)
      type(TYPE(kind=KIND)),intent(in),optional :: pad(..)
      integer(kind=**),intent(in),optional      :: order(:)

Characteristics

Description

reshape constructs an array of arbitrary shape shape using the elements from source and possibly pad to fill it.

If necessary, the new array may be padded with elements from pad or permuted as defined by order.

Among many other uses, reshape can be used to reorder a Fortran array to match C array ordering before the array is passed from Fortran to a C procedure.

Options

   if(.not.present(pad))then
      if(size(source) < product(shape))then
        stop 'not enough elements in the old array to fill the new one'
      endif
   endif

Result

The result is an array of shape shape with the same type and type parameters as source. It is first filled with the values of elements of source, with the remainder filled with repeated copies of pad until all elements are filled. The new array may be smaller than source.

Examples

Sample program:

program demo_reshape
implicit none
! notice the use of "shape(box)" on the RHS
integer :: box(3,4)=reshape([1,2,3,4,5,6,7,8,9,10,11,12],shape(box))
integer,allocatable :: v(:,:)
integer :: rc(2)
   ! basics0
    ! what is the current shape of the array?
    call printi('shape of box is ',box)
    ! change the shape
    call printi('reshaped ',reshape(box,[2,6]))
    call printi('reshaped ',reshape(box,[4,3]))

   ! fill in row column order using order
    v=reshape([1,2,3,4,10,20,30,40,100,200,300,400],[1,12])
    call printi('here is some data to shape',v)
    call printi('normally fills columns first ',reshape([v],[3,4]))
    call printi('fill rows first', reshape([v],[3,4],order=[2,1]))

    ! if we take the data and put in back in filling
    ! rows first instead of columns, and flipping the
    ! height and width of the box we not only fill in
    ! a vector using row-column order we actually
    ! transpose it.
    rc(2:1:-1)=shape(box)
    ! copy the data in changing column number fastest
    v=reshape(box,rc,order=[2,1])
    call printi('reshaped and reordered',v)
    ! of course we could have just done a transpose
    call printi('transposed',transpose(box))

   ! making the result bigger than source using pad
    v=reshape(box,rc*2,pad=[-1,-2,-3],order=[2,1])
    call printi('bigger and padded and reordered',v)
contains

subroutine printi(title,arr)
implicit none

!@(#) print small 2d integer arrays in row-column format

character(len=*),parameter :: all='(*(g0,1x))' ! a handy format
character(len=*),intent(in)  :: title
integer,intent(in)           :: arr(:,:)
integer                      :: i
character(len=:),allocatable :: biggest

   print all
   print all, trim(title),':(',shape(arr),')'  ! print title
   biggest='           '  ! make buffer to write integer into
   ! find how many characters to use for integers
   write(biggest,'(i0)')ceiling(log10(max(1.0,real(maxval(abs(arr))))))+2
   ! use this format to write a row
   biggest='(" > [",*(i'//trim(biggest)//':,","))'
   ! print one row of array at a time
   do i=1,size(arr,dim=1)
      write(*,fmt=biggest,advance='no')arr(i,:)
      write(*,'(" ]")')
   enddo

end subroutine printi

end program demo_reshape

Results:

   shape of box is :( 3 4 )
    > [   1,   4,   7,  10 ]
    > [   2,   5,   8,  11 ]
    > [   3,   6,   9,  12 ]

   reshaped :( 2 6 )
    > [   1,   3,   5,   7,   9,  11 ]
    > [   2,   4,   6,   8,  10,  12 ]

   reshaped :( 4 3 )
    > [   1,   5,   9 ]
    > [   2,   6,  10 ]
    > [   3,   7,  11 ]
    > [   4,   8,  12 ]

   here is some data to shape :( 1 12 )
    > [   1,   2,   3,   4,  10,  20,  30,  40, 100, 200, 300, 400 ]

   normally fills columns first :( 3 4 )
    > [    1,    4,   30,  200 ]
    > [    2,   10,   40,  300 ]
    > [    3,   20,  100,  400 ]

   fill rows first :( 3 4 )
    > [    1,    2,    3,    4 ]
    > [   10,   20,   30,   40 ]
    > [  100,  200,  300,  400 ]

   reshaped and reordered :( 4 3 )
    > [   1,   2,   3 ]
    > [   4,   5,   6 ]
    > [   7,   8,   9 ]
    > [  10,  11,  12 ]

   transposed :( 4 3 )
    > [   1,   2,   3 ]
    > [   4,   5,   6 ]
    > [   7,   8,   9 ]
    > [  10,  11,  12 ]

   bigger and padded and reordered :( 8 6 )
    > [   1,   2,   3,   4,   5,   6 ]
    > [   7,   8,   9,  10,  11,  12 ]
    > [  -1,  -2,  -3,  -1,  -2,  -3 ]
    > [  -1,  -2,  -3,  -1,  -2,  -3 ]
    > [  -1,  -2,  -3,  -1,  -2,  -3 ]
    > [  -1,  -2,  -3,  -1,  -2,  -3 ]
    > [  -1,  -2,  -3,  -1,  -2,  -3 ]
    > [  -1,  -2,  -3,  -1,  -2,  -3 ]

Standard

Fortran 95

See Also

shape(3), pack(3), transpose(3)

Fortran intrinsic descriptions (license: MIT) @urbanjost

rrspacing

Name

rrspacing(3) - [MODEL_COMPONENTS] Reciprocal of the relative spacing of a numeric type

Synopsis

    result = rrspacing(x)
     elemental real(kind=KIND) function rrspacing(x)

      real(kind=KIND),intent(in) :: x

Characteristics

Description

rrspacing(3) returns the reciprocal of the relative spacing of model numbers near x.

Options

Result

The return value is of the same type and kind as x. The value returned is equal to abs(fraction(x)) * float(radix(x))**digits(x).

Examples

Sample program:

program demo_rrspacing
implicit none
integer, parameter :: sgl = selected_real_kind(p=6, r=37)
integer, parameter :: dbl = selected_real_kind(p=13, r=200)
character(len=*),parameter :: gen='(*(g0))', nl=new_line('A')
real(kind=sgl) :: x
   x=-3.0_sgl
   print gen, &
   'rrspacing(',x,'_sgl)=', rrspacing(x),                       nl, &
   'rrspacing(x)=abs(fraction(x))*float(radix(x))**digits(x)',  nl, &
   'so this should be the same as rrspacing():',                nl, &
   abs( fraction(x) ) * float( radix(x) )**digits(x),           nl, &
   'RRSPACING (-3.0) has the value 0.75x2**24 for reals',       nl, &
   'on current typical platforms. For reference:',              nl, &
   '   0.75*2**24=', 0.75*2**24,                                nl, &
   'sign should not matter, so',rrspacing(x)==rrspacing(-x),    nl, &
   'note the kind of the value is significant',                 nl, &
   rrspacing(-3.0_dbl),                                         nl, &
   'for common platforms rrspacing(487923.3d0)=>',              nl, &
   '   8.382458680573952E+015',                                 nl, &
   rrspacing(487923.3d0),                                       nl, &
   ' '
end program demo_rrspacing
 > rrspacing(-3.00000000_sgl)=12582912.0
 > rrspacing(x)=abs(fraction(x))*float(radix(x))**digits(x)
 > so this should be the same as rrspacing():
 > 12582912.0
 > RRSPACING (-3.0) has the value 0.75x2**24 for reals
 > on current typical platforms. For reference:
 > 0.75*2**24=12582912.0
 > sign should not matter, soT
 > note the kind of the value is significant
 > 6755399441055744.0
 > for common platforms rrspacing(487923.3d0)=>8.382458680573952E+015
 > 8382458465825587.0

Standard

Fortran 90

See Also

digits(3), epsilon(3), exponent(3), fraction(3), huge(3), maxexponent(3), minexponent(3), nearest(3), precision(3), radix(3), range(3), scale(3), set_exponent(3), spacing(3), tiny(3)

Fortran intrinsic descriptions

same_type_as

Name

same_type_as(3) - [STATE:INQUIRY] Query dynamic types for equality

Synopsis

    result = same_type_as(a, b)
     logical same_type_as(a, b)

      type(TYPE(kind=KIND)),intent(in) :: a
      type(TYPE(kind=KIND)),intent(in) :: b

Characteristics

Description

same_type_as(3) queries the dynamic types of objects for equality.

Options

Result

If the dynamic type of a or b is extensible, the result is true if and only if the dynamic type of a is the same as the dynamic type of b. If neither a nor b has extensible dynamic type, the result is processor dependent.

NOTE1

The dynamic type of a disassociated pointer or unallocated allocatable variable is its declared type. An unlimited polymorphic entity has no declared type.

NOTE2

The test performed by SAME_TYPE_AS is not the same as the test performed by the type guard TYPE IS. The test performed by SAME_TYPE_AS does not consider kind type parameters.

Sample program:

  ! program demo_same_type_as
  module M_ether
  implicit none
  private

  type   :: dot
    real :: x=0
    real :: y=0
  end type dot

  type, extends(dot) :: point
    real :: z=0
  end type point

  type something_else
  end type something_else

  public :: dot
  public :: point
  public :: something_else

  end module M_ether

  program demo_same_type_as
  use M_ether, only : dot, point, something_else
  implicit none
  type(dot) :: dad, mom
  type(point) :: me
  type(something_else) :: alien

   write(*,*)same_type_as(me,dad),'I am descended from Dad, but equal?'
   write(*,*)same_type_as(me,me) ,'I am what I am'
   write(*,*)same_type_as(dad,mom) ,'what a pair!'

   write(*,*)same_type_as(dad,me),'no paradox here'
   write(*,*)same_type_as(dad,alien),'no relation'

   call pointers()
   contains
   subroutine pointers()
   ! Given the declarations and assignments
   type t1
      real c
   end type
   type, extends(t1) :: t2
   end type
   class(t1), pointer :: p, q, r
      allocate (p, q)
      allocate (t2 :: r)
      ! the result of SAME_TYPE_AS (P, Q) will be true, and the result
      ! of SAME_TYPE_AS (P, R) will be false.
      write(*,*)'(P,Q)',same_type_as(p,q),"mind your P's and Q's"
      write(*,*)'(P,R)',same_type_as(p,r)
   end subroutine pointers

  end program demo_same_type_as

Results:

  >  F I am descended from Dad, but equal?
  >  T I am what I am
  >  T what a pair!
  >  F no paradox here
  >  F no relation
  >  (P,Q) T mind your P's and Q's
  >  (P,R) F

Standard

Fortran 2003

See Also

extends_type_of(3)

Fortran intrinsic descriptions

scale

Name

scale(3) - [MODEL:COMPONENTS] Scale a real value by a whole power of the radix

Synopsis

    result = scale(x, i)
     elemental real(kind=KIND) function scale(x, i)

      real(kind=KIND),intent(in)   :: x
      integer(kind=**),intent(in)  :: i

Characteristics

Description

scale(3) returns x * radix(x)**i.

It is almost certain the radix(base) of the platform is two, therefore scale(3) is generally the same as **x*2**i**

Options

Result

The return value is x * radix(x)**i, assuming that value can be represented by a value of the type and kind of x.

Examples

Sample program:

program demo_scale
implicit none
real :: x
complex :: c
integer :: i
   x = 1.0
   print *, (scale(x,i),i=1,5)
   x = 3.0
   print *, (scale(x,i),i=1,5)
   print *, (scale(log(1.0),i),i=1,5)
   ! on modern machines radix(x) is almost certainly 2
   x = 178.1387e-4
   i = 5
   print *, x, i, scale(x, i), x*radix(x)**i
   ! x*radix(x)**i is the same except roundoff errors are not restricted
   i = 2
   print *, x, i, scale(x, i), x*radix(x)**i
   ! relatively easy to do complex values as well
   c=(3.0,4.0)
   print *, c, i, scale_complex(c, i)!, c*radix(c)**i
contains
function scale_complex(x, n)
! example supporting complex value for default kinds
complex, intent(in) :: x
integer, intent(in) :: n
complex :: scale_complex
   scale_complex=cmplx(scale(x%re, n), scale(x%im, n), kind=kind(x%im))
end function scale_complex
end program demo_scale

Results:

 > 2.00000000 4.00000000  8.00000000     16.0000000 32.0000000
 > 6.00000000 12.0000000 24.0000000      48.0000000 96.0000000
 > 0.00000000 0.00000000  0.00000000     0.00000000 0.00000000
 > 1.78138707E-02    5   0.570043862      0.570043862
 > 1.78138707E-02    2   7.12554827E-02   7.12554827E-02
 > (3.00000000,4.00000000) 2 (12.0000000,16.0000000)

Standard

Fortran 95

See Also

digits(3), epsilon(3), exponent(3), fraction(3), huge(3), maxexponent(3), minexponent(3), nearest(3), precision(3), radix(3), range(3), rrspacing(3), set_exponent(3), spacing(3), tiny(3)

Fortran intrinsic descriptions (license: MIT) @urbanjost

scan

Name

scan(3) - [CHARACTER:SEARCH] Scan a string for the presence of a set of characters

Synopsis

    result = scan( string, set, [,back] [,kind] )
     elemental integer(kind=KIND) function scan(string,set,back,kind)

      character(len=*,kind=**),intent(in) :: string
      character(len=*,kind=**),intent(in) :: set
      logical,intent(in),optional :: back
      integer,intent(in),optional :: kind

Characteristics

Description

scan(3) scans a string for any of the characters in a set of characters.

If back is either absent or equals .false., this function returns the position of the leftmost character of STRING that is in set. If back equals .true., the rightmost position is returned. If no character of set is found in string, the result is zero.

Options

Result

If back is absent or is present with the value false and if string contains at least one character that is in set, the value of the result is the position of the leftmost character of string that is in set.

If back is present with the value true and if string contains at least one character that is in set, the value of the result is the position of the rightmost character of string that is in set.

The value of the result is zero if no character of STRING is in SET or if the length of STRING or SET is zero.

Examples

Sample program:

program demo_scan
implicit none
   write(*,*) scan("fortran", "ao")          ! 2, found 'o'
   write(*,*) scan("fortran", "ao", .true.)  ! 6, found 'a'
   write(*,*) scan("fortran", "c++")         ! 0, found none
end program demo_scan

Results:

 >            2
 >            6
 >            0

Standard

Fortran 95 , with KIND argument - Fortran 2003

See Also

Functions that perform operations on character strings, return lengths of arguments, and search for certain arguments:

Fortran intrinsic descriptions (license: MIT) @urbanjost

selected_char_kind

Name

selected_char_kind(3) - [KIND] Select character kind such as “Unicode”

Synopsis

    result = selected_char_kind(name)
     integer function selected_char_kind(name)

      character(len=*),intent(in) :: name

Characteristics

Description

selected_char_kind(3) returns a kind parameter value for the character set named name.

If a name is not supported, -1 is returned. Otherwise the result is a value equal to that kind type parameter value.

The list of supported names is processor-dependent except for “DEFAULT”.

The NAME is interpreted without respect to case or trailing blanks.

Options

Result

Examples

Sample program:

Linux
program demo_selected_char_kind
use iso_fortran_env
implicit none

intrinsic date_and_time,selected_char_kind

! set some aliases for common character kinds
! as the numbers can vary from platform to platform

integer, parameter :: default = selected_char_kind ("default")
integer, parameter :: ascii =   selected_char_kind ("ascii")
integer, parameter :: ucs4  =   selected_char_kind ('ISO_10646')
integer, parameter :: utf8  =   selected_char_kind ('utf-8')

! assuming ASCII and UCS4 are supported (ie. not equal to -1)
! define some string variables
character(len=26, kind=ascii ) :: alphabet
character(len=30, kind=ucs4  ) :: hello_world
character(len=30, kind=ucs4  ) :: string

   write(*,*)'ASCII     ',&
    & merge('Supported    ','Not Supported',ascii /= -1)
   write(*,*)'ISO_10646 ',&
    & merge('Supported    ','Not Supported',ucs4 /= -1)
   write(*,*)'UTF-8     ',&
    & merge('Supported    ','Not Supported',utf8 /= -1)

   if(default.eq.ascii)then
       write(*,*)'ASCII is the default on this processor'
   endif

  ! for constants the kind precedes the value, somewhat like a
  ! BOZ constant
   alphabet = ascii_"abcdefghijklmnopqrstuvwxyz"
   write (*,*) alphabet

   hello_world = ucs4_'Hello World and Ni Hao -- ' &
                 // char (int (z'4F60'), ucs4)     &
                 // char (int (z'597D'), ucs4)

  ! an encoding option is required on OPEN for non-default I/O
   if(ucs4 /= -1 )then
      open (output_unit, encoding='UTF-8')
      write (*,*) trim (hello_world)
   else
      write (*,*) 'cannot use utf-8'
   endif

   call create_date_string(string)
   write (*,*) trim (string)

contains

! The following produces a Japanese date stamp.
subroutine create_date_string(string)
intrinsic date_and_time,selected_char_kind
integer,parameter :: ucs4 = selected_char_kind("ISO_10646")
character(len=1,kind=ucs4),parameter :: &
       nen =   char(int( z'5e74' ),ucs4), & ! year
       gatsu = char(int( z'6708' ),ucs4), & ! month
       nichi = char(int( z'65e5' ),ucs4)    ! day
character(len= *, kind= ucs4) string
integer values(8)
   call date_and_time(values=values)
   write(string,101) values(1),nen,values(2),gatsu,values(3),nichi
 101 format(*(i0,a))
end subroutine create_date_string

end program demo_selected_char_kind

Results:

The results are very processor-dependent

 >  ASCII     Supported
 >  ISO_10646 Supported
 >  UTF-8     Not Supported
 >  ASCII is the default on this processor
 >  abcdefghijklmnopqrstuvwxyz
 >  Hello World and Ni Hao -- 你好
 >  2022年10月15日

Standard

Fortran 2003

See also

selected_int_kind(3), selected_real_kind(3)

achar(3), char(3), ichar(3), iachar(3)

Fortran intrinsic descriptions (license: MIT) @urbanjost

selected_int_kind

Name

selected_int_kind(3) - [KIND] Choose integer kind

Synopsis

    result = selected_int_kind(r)
    integer function selected_int_kind(r)

     integer(kind=KIND),intent(in) :: r

Characteristics

Description

selected_int_kind(3) return the kind value of the smallest integer type that can represent all values ranging from -10**r (exclusive) to 10**r (exclusive). If there is no integer kind that accommodates this range, selected_int_kind returns -1.

Options

Result

The result has a value equal to the value of the kind type parameter of an integer type that represents all values in the requested range.

if no such kind type parameter is available on the processor, the result is -1.

If more than one kind type parameter meets the criterion, the value returned is the one with the smallest decimal exponent range, unless there are several such values, in which case the smallest of these kind values is returned.

Examples

Sample program:

program demo_selected_int_kind
implicit none
integer,parameter :: k5 = selected_int_kind(5)
integer,parameter :: k15 = selected_int_kind(15)
integer(kind=k5) :: i5
integer(kind=k15) :: i15

    print *, huge(i5), huge(i15)

    ! the following inequalities are always true
    print *, huge(i5) >= 10_k5**5-1
    print *, huge(i15) >= 10_k15**15-1
end program demo_selected_int_kind

Results:

  >   2147483647  9223372036854775807
  >  T
  >  T

Standard

Fortran 95

See Also

aint(3), anint(3), int(3), nint(3), ceiling(3), floor(3)

Fortran intrinsic descriptions (license: MIT) @urbanjost

selected_real_kind

Name

selected_real_kind(3) - [KIND] Choose real kind

Synopsis

    result = selected_real_kind([p] [,r] [,radix] )
    integer function selected_int_kind(r)

     real(kind=KIND),intent(in),optional :: p
     real(kind=KIND),intent(in),optional :: r
     real(kind=KIND),intent(in),optional :: radix

Characteristics

Description

selected_real_kind(3) return the kind value of a real data type with decimal precision of at least p digits, exponent range of at least r, and with a radix of radix. That is, if such a kind exists

If the requested kind does not exist, -1 is returned.

At least one argument shall be present.

Options

Result

selected_real_kind returns the value of the kind type parameter of a real data type with decimal precision of at least p digits, a decimal exponent range of at least R, and with the requested radix.

If p or r is absent, the result value is the same as if it were present with the value zero.

If the radix parameter is absent, there is no requirement on the radix of the selected kind and real kinds with any radix can be returned.

If more than one real data type meet the criteria, the kind of the data type with the smallest decimal precision is returned. If no real data type matches the criteria, the result is

Examples

Sample program:

program demo_selected_real_kind
implicit none
integer,parameter :: p6 = selected_real_kind(6)
integer,parameter :: p10r100 = selected_real_kind(10,100)
integer,parameter :: r400 = selected_real_kind(r=400)
real(kind=p6) :: x
real(kind=p10r100) :: y
real(kind=r400) :: z

   print *, precision(x), range(x)
   print *, precision(y), range(y)
   print *, precision(z), range(z)
end program demo_selected_real_kind

Results:

  >            6          37
  >           15         307
  >           18        4931

Standard

Fortran 95 ; with RADIX - Fortran 2008

See Also

precision(3), range(3), radix(3)

Fortran intrinsic descriptions (license: MIT) @urbanjost

set_exponent

Name

set_exponent(3) - [MODEL:COMPONENTS] real value with specified exponent

Synopsis

    result = set_exponent(x, i)
     elemental real(kind=KIND) function set_exponent(x,i)

      real(kind=KIND),intent(in) :: x
      integer(kind=**),intent(in) :: i

Characteristics

Description

set_exponent(3) returns the real number whose fractional part is that of x and whose exponent part is i.

Options

Result

The return value is of the same type and kind as x. The real number whose fractional part is that of x and whose exponent part if i is returned; it is fraction(x) * radix(x)**i.

If x has the value zero, the result has the same value as x.

If x is an IEEE infinity, the result is an IEEE NaN.

If x is an IEEE NaN, the result is the same NaN.

Examples

Sample program:

program demo_setexp
implicit none
real :: x = 178.1387e-4
integer :: i = 17
   print *, set_exponent(x, i), fraction(x) * radix(x)**i
end program demo_setexp

Results:

  >   74716.7891       74716.7891

Standard

Fortran 95

See Also

digits(3), epsilon(3), exponent(3), fraction(3), huge(3), maxexponent(3), minexponent(3), nearest(3), precision(3), radix(3), range(3), rrspacing(3), scale(3), spacing(3), tiny(3)

Fortran intrinsic descriptions

shape

Name

shape(3) - [ARRAY:INQUIRY] Determine the shape of an array or scalar

Synopsis

  result = shape( source [,kind] )
   integer(kind=KIND) function shape( source, KIND )

    type(TYPE(kind=**)),intent(in)       :: source(..)
    integer(kind=**),intent(in),optional :: KIND

Characteristics

Description

shape(3) queries the shape of an array.

Options

Result

An integer array of rank one with as many elements as source has dimensions.

The elements of the resulting array correspond to the extent of source along the respective dimensions.

If source is a scalar, the result is an empty array (a rank-one array of size zero).

Examples

Sample program:

program demo_shape
implicit none
character(len=*),parameter :: all='(*(g0,1x))'
integer, dimension(-1:1, -1:2) :: a
   print all, 'shape of array=',shape(a)
   print all, 'shape of constant=',shape(42)
   print all, 'size of shape of constant=',size(shape(42))
   print all, 'ubound of array=',ubound(a)
   print all, 'lbound of array=',lbound(a)
end program demo_shape

Results:

 > shape of array= 3 4
 > shape of constant=
 > size of shape of constant= 0
 > ubound of array= 1 2
 > lbound of array= -1 -1

Standard

Fortran 95 ; with KIND argument Fortran 2003

See Also

Array inquiry:

State Inquiry:

Kind Inquiry:

Bit Inquiry:

Fortran intrinsic descriptions (license: MIT) @urbanjost

shifta

Name

shifta(3) - [BIT:SHIFT] Right shift with fill

Synopsis

    result = shifta(i, shift )
     elemental integer(kind=KIND) function shifta(i, shift)

      integer(kind=KIND),intent(in) :: i
      integer(kind=**),intent(in) :: shift

Characteristics

Description

shifta(3) returns a value corresponding to i with all of the bits shifted right by shift places and the vacated bits on the left filled with the value of the original left-most bit.

Options

Result

The result has the value obtained by shifting the bits of i to the right shift bits and replicating the leftmost bit of i in the left shift bits (Note the leftmost bit in “two’s complement” representation is the sign bit).

Bits shifted out from the right end are lost.

If shift is zero the result is i.

Examples

Sample program:

program demo_shifta
use,intrinsic :: iso_fortran_env, only : int8, int16, int32, int64
implicit none
integer(kind=int32) :: ival
integer             :: shift
integer(kind=int32) :: oval
integer(kind=int32),allocatable :: ivals(:)
integer             :: i
integer(kind=int8)  :: arr(2,2)=reshape([2,4,8,16],[2,2])

  ! basic usage
  write(*,*)shifta(100,3)

  ! loop through some interesting values
   shift=5

   ivals=[ -1, -0, +0, +1, &
   & int(b"01010101010101010101010101010101"), &
   & int(b"10101010101010101010101010101010"), &
   & int(b"00000000000000000000000000011111") ]

   ! does your platform distinguish between +0 and -0?
   ! note the original leftmost bit is used to fill in the vacated bits

   write(*,'(/,"SHIFT =  ",i0)') shift
   do i=1,size(ivals)
      ival=ivals(i)
      write(*,'(  "I =      ",b32.32," == ",i0)') ival,ival
      oval=shifta(ival,shift)
      write(*,'(  "RESULT = ",b32.32," == ",i0)') oval,oval
   enddo
   ! elemental
   write(*,*)"characteristics of the result are the same as input"
   write(*,'(*(g0,1x))') &
     & "kind=",kind(shifta(arr,3)), "shape=",shape(shifta(arr,3)), &
     & "size=",size(shifta(arr,3)) !, "rank=",rank(shifta(arr,3))

end program demo_shifta

Results:

 >           12
 >
 > SHIFT =  5
 > I =      11111111111111111111111111111111 == -1
 > RESULT = 11111111111111111111111111111111 == -1
 > I =      00000000000000000000000000000000 == 0
 > RESULT = 00000000000000000000000000000000 == 0
 > I =      00000000000000000000000000000000 == 0
 > RESULT = 00000000000000000000000000000000 == 0
 > I =      00000000000000000000000000000001 == 1
 > RESULT = 00000000000000000000000000000000 == 0
 > I =      01010101010101010101010101010101 == 1431655765
 > RESULT = 00000010101010101010101010101010 == 44739242
 > I =      10101010101010101010101010101010 == -1431655766
 > RESULT = 11111101010101010101010101010101 == -44739243
 > I =      00000000000000000000000000011111 == 31
 > RESULT = 00000000000000000000000000000000 == 0
 >  characteristics of the result are the same as input
 > kind= 1 shape= 2 2 size= 4

Standard

Fortran 2008

See Also

shiftl(3), shiftr(3), ishft(3), ishftc(3)

Fortran intrinsic descriptions (license: MIT) @urbanjost

shiftl

Name

shiftl(3) - [BIT:SHIFT] Shift bits left

Synopsis

    result = shiftl( i, shift )
     elemental integer(kind=KIND) function shiftl(i, shift)

      integer(kind=KIND),intent(in) :: i
      integer(kind=**),intent(in) :: shift

Characteristics

Description

shiftl(3) returns a value corresponding to i with all of the bits shifted left by shift places.

Bits shifted out from the left end are lost, and bits shifted in from the right end are set to 0.

If the absolute value of shift is greater than bit_size(i), the value is undefined.

For example, for a 16-bit integer left-shifted five …

    >  |a|b|c|d|e|f|g|h|i|j|k|l|m|n|o|p| <- original 16-bit example
    >  |f|g|h|i|j|k|l|m|n|o|p|           <- left-shifted five
    >  |f|g|h|i|j|k|l|m|n|o|p|0|0|0|0|0| <- right-padded with zeros

Note the value of the result is the same as ishft (i, shift).

Options

Result

The return value is of type integer and of the same kind as i.

Examples

Sample program:

program demo_shiftl
use,intrinsic :: iso_fortran_env, only : int8, int16, int32, int64
implicit none
integer             :: shift
integer(kind=int32) :: oval
integer(kind=int32) :: ival
integer(kind=int32),allocatable :: ivals(:)
integer             :: i

  print *, ' basic usage'
  ival=100
  write(*,*)ival, shiftl(ival,3)

 ! elemental (input values may be conformant arrays)
  print *, ' elemental'

 ! loop through some ivalues
   shift=9
   ivals=[ &
   & int(b"01010101010101010101010101010101"), &
   & int(b"10101010101010101010101010101010"), &
   & int(b"11111111111111111111111111111111") ]

   write(*,'(/,"SHIFT =  ",i0)') shift
   do i=1,size(ivals)
      ! print initial value as binary and decimal
      write(*,'(  "I =      ",b32.32," == ",i0)') ivals(i),ivals(i)
      ! print shifted value as binary and decimal
      oval=shiftl(ivals(i),shift)
      write(*,'(  "RESULT = ",b32.32," == ",i0)') oval,oval
   enddo

  ! more about elemental
   ELEM : block
   integer(kind=int8)  :: arr(2,2)=reshape([2,4,8,16],[2,2])
   write(*,*)"characteristics of the result are the same as input"
   write(*,'(*(g0,1x))') &
     & "kind=",kind(shiftl(arr,3)), "shape=",shape(shiftl(arr,3)), &
     & "size=",size(shiftl(arr,3)) !, "rank=",rank(shiftl(arr,3))
   endblock ELEM

end program demo_shiftl

Results:

 >    basic usage
 >           100         800
 >    elemental
 >
 >  SHIFT =  9
 >  I =      01010101010101010101010101010101 == 1431655765
 >  RESULT = 10101010101010101010101000000000 == -1431655936
 >  I =      10101010101010101010101010101010 == -1431655766
 >  RESULT = 01010101010101010101010000000000 == 1431655424
 >  I =      11111111111111111111111111111111 == -1
 >  RESULT = 11111111111111111111111000000000 == -512
 >   characteristics of the result are the same as input
 >  kind= 1 shape= 2 2 size= 4

Standard

Fortran 2008

See Also

shifta(3), shiftr(3), ishft(3), ishftc(3)

Fortran intrinsic descriptions (license: MIT) @urbanjost

shiftr

Name

shiftr(3) - [BIT:SHIFT] Shift bits right

Synopsis

    result = shiftr( i, shift )
     elemental integer(kind=KIND) function shiftr(i, shift)

      integer(kind=KIND),intent(in) :: i
      integer(kind=**),intent(in) :: shift

Characteristics

Description

shiftr(3) returns a value corresponding to i with all of the bits shifted right by shift places.

If the absolute value of shift is greater than bit_size(i), the value is undefined.

Bits shifted out from the right end are lost, and bits shifted in from the left end are set to 0.

For example, for a 16-bit integer right-shifted five …

    >  |a|b|c|d|e|f|g|h|i|j|k|l|m|n|o|p| <- original 16-bit example
    >            |a|b|c|d|e|f|g|h|i|j|k| <- right-shifted five
    >  |0|0|0|0|0|f|g|h|i|j|k|l|m|n|o|p| <- left-padded with zeros

Note the value of the result is the same as ishft (i, -shift).

Options

Result

The remaining bits shifted right shift positions. Vacated positions on the left are filled with zeros.

Examples

Sample program:

program demo_shiftr
use,intrinsic :: iso_fortran_env, only : int8, int16, int32, int64
implicit none
integer             :: shift
integer(kind=int32) :: oval
integer(kind=int32) :: ival
integer(kind=int32),allocatable :: ivals(:)
integer             :: i

  print *,' basic usage'
  ival=100
  write(*,*)ival, shiftr(100,3)

  ! elemental (input values may be conformant arrays)
  print *,' elemental'
   shift=9
   ivals=[ &
   & int(b"01010101010101010101010101010101"), &
   & int(b"10101010101010101010101010101010"), &
   & int(b"11111111111111111111111111111111") ]

   write(*,'(/,"SHIFT =  ",i0)') shift
   do i=1,size(ivals)
      ! print initial value as binary and decimal
      write(*,'(  "I =      ",b32.32," == ",i0)') ivals(i),ivals(i)
      ! print shifted value as binary and decimal
      oval=shiftr(ivals(i),shift)
      write(*,'(  "RESULT = ",b32.32," == ",i0,/)') oval,oval
   enddo

   ! more on elemental
   ELEM : block
   integer(kind=int8)  :: arr(2,2)=reshape([2,4,8,16],[2,2])
   write(*,*)"characteristics of the result are the same as input"
   write(*,'(*(g0,1x))') &
     & "kind=",kind(shiftr(arr,3)), "shape=",shape(shiftr(arr,3)), &
     & "size=",size(shiftr(arr,3)) !, "rank=",rank(shiftr(arr,3))
   endblock ELEM

end program demo_shiftr

Results:

  >    basic usage
  >           100          12
  >    elemental
  >
  >  SHIFT =  9
  >  I =      01010101010101010101010101010101 == 1431655765
  >  RESULT = 00000000001010101010101010101010 == 2796202
  >
  >  I =      10101010101010101010101010101010 == -1431655766
  >  RESULT = 00000000010101010101010101010101 == 5592405
  >
  >  I =      11111111111111111111111111111111 == -1
  >  RESULT = 00000000011111111111111111111111 == 8388607
  >
  >   characteristics of the result are the same as input
  >  kind= 1 shape= 2 2 size= 4

Standard

Fortran 2008

See Also

shifta(3), shiftl(3), ishft(3), ishftc(3)

Fortran intrinsic descriptions (license: MIT) @urbanjost

sign

Name

sign(3) - [NUMERIC] Sign copying function

Synopsis

    result = sign(a, b)
     elemental type(TYPE(kind=KIND))function sign(a, b)

      type(TYPE(kind=KIND)),intent(in) :: a, b

Characteristics

Description

sign(3) returns a value with the magnitude of a but with the sign of b.

For processors that distinguish between positive and negative zeros sign() may be used to distinguish between real values 0.0 and -0.0. SIGN (1.0, -0.0) will return -1.0 when a negative zero is distinguishable.

Options

Result

a value with the magnitude of a with the sign of b. That is,

Examples

Sample program:

program demo_sign
implicit none
  ! basics
   print *,  sign( -12,  1 )
   print *,  sign( -12,  0 )
   print *,  sign( -12, -1 )
   print *,  sign(  12,  1 )
   print *,  sign(  12,  0 )
   print *,  sign(  12, -1 )

   if(sign(1.0,-0.0)== -1.0)then
      print *, 'this processor distinguishes +0 from -0'
   else
      print *, 'this processor does not distinguish +0 from -0'
   endif

   print *,  'elemental', sign( -12.0, [1.0, 0.0, -1.0] )

end program demo_sign

Results:

    >        12
    >        12
    >       -12
    >        12
    >        12
    >       -12
    > this processor does not distinguish +0 from -0
    > elemental   12.00000       12.00000      -12.00000

Standard

FORTRAN 77

See also

abs(3)

Fortran intrinsic descriptions (license: MIT) @urbanjost

sind

Name

sind(3) - [MATHEMATICS:TRIGONOMETRIC] Degree sine function

Synopsis

    result = sind(x)
     elemental real(kind=KIND) function sind(x)

      real(kind=KIND) :: x

Characteristics

Description

sind(3) computes the sine of an angle given the size of the angle in degrees.

The sine of an angle in a right-angled triangle is the ratio of the length of the side opposite the given angle divided by the length of the hypotenuse.

Options

Result

The return value contains the processor-dependent approximation of the sine of x, which is regarded as a value in degrees.

Examples

sind(180.0) has the value 0.0 (approximately).

Sample program:

program sample_sind
implicit none
   write(*,*)'sind(0.0)=',sind(0.0)
   write(*,*)'sind(45.0)=',sind(45.0)
   write(*,*)'sind(90.0)=',sind(90.0)
   write(*,*)'sind(180.0)=',sind(180.0)
   write(*,*)'sind(270.0)=',sind(270.0)
   write(*,*)'sind(720.0)=',sind(720.0)
   write(*,*)'sind(-720.0d0)=',sind(-720.0d0)
end program sample_sind

Extended Example

Haversine Formula

From the article on “Haversine formula” in Wikipedia:

   The haversine formula is an equation important in navigation,
   giving great-circle distances between two points on a sphere from
   their longitudes and latitudes.

So to show the great-circle distance between the Nashville International Airport (BNA) in TN, USA, and the Los Angeles International Airport (LAX) in CA, USA you would start with their latitude and longitude, commonly given as

  BNA: N 36 degrees 7.2',   W 86 degrees 40.2'
  LAX: N 33 degrees 56.4',  W 118 degrees 24.0'

which converted to floating-point values in degrees is:

 - BNA
   latitude=36.12, longitude=-86.67

 - LAX
   latitude=33.94, longitude=-118.40

And then use the haversine formula to roughly calculate the distance along the surface of the Earth between the locations:

Sample program:

program demo_sin
implicit none
real :: d
    d = haversine(36.12,-86.67, 33.94,-118.40) ! BNA to LAX
    print '(A,F9.4,A)', 'distance: ',d,' km'
contains
function haversine(latA,lonA,latB,lonB) result (dist)
!
! calculate great circle distance in kilometers
! given latitude and longitude in degrees
!
real,intent(in) :: latA,lonA,latB,lonB
real :: a,c,dist,delta_lat,delta_lon,lat1,lat2
real,parameter :: radius = 6371 ! mean earth radius in kilometers,
! recommended by the International Union of Geodesy and Geophysics

   delta_lat = latB-latA
   delta_lon = lonB-lonA
   lat1 = latA
   lat2 = latB
   a = (sind(delta_lat/2))**2 + &
          & cosd(lat1)*cosd(lat2)*(sind(delta_lon/2))**2
   c = 2*asin(sqrt(a))
   dist = radius*c
end function haversine
end program demo_sin

Results:

 > distance: 2886.4446 km

Standard

Fortran 2023

See Also

asin(3), cos(3), tan(3), acosh(3), acos(3), asinh(3), atan2(3), atanh(3), acosh(3), asinh(3), atanh(3)

Resources

Fortran intrinsic descriptions (license: MIT) @urbanjost

sinh

Name

sinh(3) - [MATHEMATICS:TRIGONOMETRIC] Hyperbolic sine function

Synopsis

    result = sinh(x)
     elemental TYPE(kind=KIND) function sinh(x)

      TYPE(kind=KIND) :: x

Characteristics

Description

sinh(3) computes the hyperbolic sine of x.

The hyperbolic sine of x is defined mathematically as:

     sinh(x) = (exp(x) - exp(-x)) / 2.0

Options

Result

The result has a value equal to a processor-dependent approximation to sinh(X). If X is of type complex its imaginary part is regarded as a value in radians.

Examples

Sample program:

program demo_sinh
use, intrinsic :: iso_fortran_env, only : real32, real64, real128
implicit none
real(kind=real64) :: x = - 1.0_real64
real(kind=real64) :: nan, inf
character(len=20) :: line

  ! basics
   print *, sinh(x)
   print *, (exp(x)-exp(-x))/2.0

  ! sinh(3) is elemental and can handle an array
   print *, sinh([x,2.0*x,x/3.0])

   ! a NaN input returns NaN
   line='NAN'
   read(line,*) nan
   print *, sinh(nan)

   ! a Inf input returns Inf
   line='Infinity'
   read(line,*) inf
   print *, sinh(inf)

   ! an overflow returns Inf
   x=huge(0.0d0)
   print *, sinh(x)

end program demo_sinh

Results:

 > -1.1752011936438014
 > -1.1752011936438014
 > -1.1752011936438014       -3.6268604078470190      -0.33954055725615012
 >                      NaN
 >                 Infinity
 >                 Infinity

Standard

Fortran 95 , for a complex argument Fortran 2008

See Also

asinh(3)

Resources

Fortran intrinsic descriptions (license: MIT) @urbanjost

sin

Name

sin(3) - [MATHEMATICS:TRIGONOMETRIC] Sine function

Synopsis

    result = sin(x)
     elemental TYPE(kind=KIND) function sin(x)

      TYPE(kind=KIND) :: x

Characteristics

Description

sin(3) computes the sine of an angle given the size of the angle in radians.

The sine of an angle in a right-angled triangle is the ratio of the length of the side opposite the given angle divided by the length of the hypotenuse.

Options

Result

The return value contains the processor-dependent approximation of the sine of x

If X is of type real, it is regarded as a value in radians.

If X is of type complex, its real part is regarded as a value in radians.

Examples

Sample program:

program sample_sin
implicit none
real :: x = 0.0
   x = sin(x)
   write(*,*)'X=',x
end program sample_sin

Results:

 >  X=  0.0000000E+00

Extended Example

Haversine Formula

From the article on “Haversine formula” in Wikipedia:

   The haversine formula is an equation important in navigation,
   giving great-circle distances between two points on a sphere from
   their longitudes and latitudes.

So to show the great-circle distance between the Nashville International Airport (BNA) in TN, USA, and the Los Angeles International Airport (LAX) in CA, USA you would start with their latitude and longitude, commonly given as

  BNA: N 36 degrees 7.2',   W 86 degrees 40.2'
  LAX: N 33 degrees 56.4',  W 118 degrees 24.0'

which converted to floating-point values in degrees is:

 - BNA
   latitude=36.12, longitude=-86.67

 - LAX
   latitude=33.94, longitude=-118.40

And then use the haversine formula to roughly calculate the distance along the surface of the Earth between the locations:

Sample program:

program demo_sin
implicit none
real :: d
    d = haversine(36.12,-86.67, 33.94,-118.40) ! BNA to LAX
    print '(A,F9.4,A)', 'distance: ',d,' km'
contains
function haversine(latA,lonA,latB,lonB) result (dist)
!
! calculate great circle distance in kilometers
! given latitude and longitude in degrees
!
real,intent(in) :: latA,lonA,latB,lonB
real :: a,c,dist,delta_lat,delta_lon,lat1,lat2
real,parameter :: radius = 6371 ! mean earth radius in kilometers,
! recommended by the International Union of Geodesy and Geophysics

! generate constant pi/180
real, parameter :: deg_to_rad = atan(1.0)/45.0
   delta_lat = deg_to_rad*(latB-latA)
   delta_lon = deg_to_rad*(lonB-lonA)
   lat1 = deg_to_rad*(latA)
   lat2 = deg_to_rad*(latB)
   a = (sin(delta_lat/2))**2 + &
          & cos(lat1)*cos(lat2)*(sin(delta_lon/2))**2
   c = 2*asin(sqrt(a))
   dist = radius*c
end function haversine
end program demo_sin

Results:

 > distance: 2886.4446 km

Standard

FORTRAN 77

See Also

asin(3), cos(3), tan(3), acosh(3), acos(3), asinh(3), atan2(3), atanh(3), acosh(3), asinh(3), atanh(3)

Resources

Fortran intrinsic descriptions (license: MIT) @urbanjost

sinpi

Name

sinpi(3) - [MATHEMATICS:TRIGONOMETRIC] Circular sine function

Synopsis

    result = sinpi(x)
     elemental real(kind=KIND) function sinpi(x)

      real(kind=KIND) :: x

Characteristics

Description

sinpi(3) computes the circular sine of an angle given the size of the angle in half-revolutions.

sinpi(X) is approximately equal to sin(x*PI).

The sine of an angle in a right-angled triangle is the ratio of the length of the side opposite the given angle divided by the length of the hypotenuse.

Options

Result

The return value contains the processor-dependent approximation of the sine of x.

Examples

Example. sinpi(1.0) has the value 0.0 (approximately).

Sample program:

program demo_sinpi
implicit none
real    :: x
integer :: i
real,parameter :: PI=acos(-1.0)
   do i=0,8
      x=i*0.25
      write(*,*)'x=',x,' sinpi(x)=',sinpi(x)
   enddo
end program demo_sinpi

Results:

 > x=   0.00000000  sinpi(x)=   0.00000000
 > x=  0.250000000  sinpi(x)=   0.707106769
 > x=  0.500000000  sinpi(x)=   1.00000000
 > x=  0.750000000  sinpi(x)=   0.707106769
 > x=   1.00000000  sinpi(x)=  -8.74227766E-08
 > x=   1.25000000  sinpi(x)=  -0.707106888
 > x=   1.50000000  sinpi(x)=  -1.00000000
 > x=   1.75000000  sinpi(x)=  -0.707106531
 > x=   2.00000000  sinpi(x)=   1.74845553E-07

Standard

fortran 2023

See Also

Resources

Fortran intrinsic descriptions (license: MIT) @urbanjost

size

Name

size(3) - [ARRAY:INQUIRY] Determine the size of an array or extent of one dimension

Synopsis

    result = size(array [,dim] [,kind])
     integer(kind=KIND) function size(array,dim,kind)

      type(TYPE(kind=KIND)),intent(in) :: array(..)
      integer(kind=**),intent(in),optional :: dim
      integer(kind=**),intent(in),optional :: KIND

Characteristics

Description

size(3) returns the total number of elements in an array, or if dim is specified returns the number of elements along that dimension.

size(3) determines the extent of array along a specified dimension dim, or the total number of elements in array if dim is absent.

Options

Result

If dim is not present array is assumed-rank, the result has a value equal to PRODUCT(SHAPE(ARRAY,KIND)). Otherwise, the result has a value equal to the total number of elements of array.

If dim is present the number of elements along that dimension are returned, except that if ARRAY is assumed-rank and associated with an assumed-size array and DIM is present with a value equal to the rank of array, the value is -1.

NOTE1

If array is assumed-rank and has rank zero, dim cannot be present since it cannot satisfy the requirement

1 <= DIM <= 0.

Examples

Sample program:

program demo_size
implicit none
integer :: arr(0:2,-5:5)
   write(*,*)'SIZE of simple two-dimensional array'
   write(*,*)'SIZE(arr)       :total count of elements:',size(arr)
   write(*,*)'SIZE(arr,DIM=1) :number of rows         :',size(arr,dim=1)
   write(*,*)'SIZE(arr,DIM=2) :number of columns      :',size(arr,dim=2)

   ! pass the same array to a procedure that passes the value two
   ! different ways
   call interfaced(arr,arr)
contains

subroutine interfaced(arr1,arr2)
! notice the difference in the array specification
! for arr1 and arr2.
integer,intent(in) :: arr1(:,:)
integer,intent(in) :: arr2(2,*)
   !
   write(*,*)'interfaced assumed-shape array'
   write(*,*)'SIZE(arr1)        :',size(arr1)
   write(*,*)'SIZE(arr1,DIM=1)  :',size(arr1,dim=1)
   write(*,*)'SIZE(arr1,DIM=2)  :',size(arr1,dim=2)

!  write(*,*)'SIZE(arr2)        :',size(arr2)
   write(*,*)'SIZE(arr2,DIM=1)  :',size(arr2,dim=1)
!
! CANNOT DETERMINE SIZE OF ASSUMED SIZE ARRAY LAST DIMENSION
!  write(*,*)'SIZE(arr2,DIM=2)  :',size(arr2,dim=2)

end subroutine interfaced

end program demo_size

Results:

  > SIZE of simple two-dimensional array
  > SIZE(arr)       :total count of elements:          33
  > SIZE(arr,DIM=1) :number of rows         :           3
  > SIZE(arr,DIM=2) :number of columns      :          11
  > interfaced assumed-shape array
  > SIZE(arr1)        :          33
  > SIZE(arr1,DIM=1)  :           3
  > SIZE(arr1,DIM=2)  :          11
  > SIZE(arr2,DIM=1)  :           2

Standard

Fortran 95 , with kind argument - Fortran 2003

See Also

Array inquiry:

State Inquiry:

Kind Inquiry:

Bit Inquiry:

Fortran intrinsic descriptions (license: MIT) @urbanjost

spacing

Name

spacing(3) - [MODEL_COMPONENTS] Smallest distance between two numbers of a given type

Synopsis

    result = spacing(x)
     elemental real(kind=KIND) function spacing(x)

      real(kind=KIND), intent(in) :: x

Characteristics

Description

spacing(3) determines the distance between the argument x and the nearest adjacent number of the same type.

Options

Result

If x does not have the value zero and is not an IEEE infinity or NaN, the result has the value nearest to x for values of the same type and kind assuming the value is representable.

Otherwise, the value is the same as tiny(x). + zero produces tiny(x) + IEEE Infinity produces an IEEE Nan + if an IEEE NaN, that NaN is returned

If there are two extended model values equally near to x, the value of greater absolute value is taken.

Examples

Sample program:

program demo_spacing
implicit none
integer, parameter :: sgl = selected_real_kind(p=6, r=37)
integer, parameter :: dbl = selected_real_kind(p=13, r=200)

   write(*,*) spacing(1.0_sgl)
   write(*,*) nearest(1.0_sgl,+1.0),nearest(1.0_sgl,+1.0)-1.0

   write(*,*) spacing(1.0_dbl)
end program demo_spacing

Results:

Typical values …

  >  1.1920929E-07
  >   1.000000      1.1920929E-07
  >  0.9999999     -5.9604645E-08
  >  2.220446049250313E-016

Standard

Fortran 95

See Also

digits(3), epsilon(3), exponent(3), fraction(3), huge(3), maxexponent(3), minexponent(3), nearest(3), precision(3), radix(3), range(3), rrspacing(3), scale(3), set_exponent(3), tiny(3)

Fortran intrinsic descriptions (license: MIT) @urbanjost

split

Name

split(3) - [CHARACTER:SPLIT] Parse a string into tokens, one at a time.

Synopsis

     call split (string, set, pos [, back])

      character(kind=KIND),intent(in)       :: string
      character(len=*,kind=KIND),intent(in) :: set
      integer,intent(inout)                 :: pos
      logical,intent(in),optional           :: back

Characteristics

Description

Find the extent of consecutive tokens in a string. Given a string and a position to start looking for a token return the position of the end of the token. A set of separator characters may be specified as well as the direction of parsing.

Typically consecutive calls are used to parse a string into a set of tokens by stepping through the start and end positions of each token.

Options

Example

Sample program:

program demo_split
   !use m_strings, only: split=>split2020
   implicit none
   character (len=:), allocatable :: input
   integer :: position, istart, iend
   input = "one,last example,,x,, ,,"
   position = 0
   ! write a number line
   write(*,'(t3,a)') repeat('1234567890',6)
   ! display the input line
   write(*,'(t3,a)') input
   ! step through the input string locating the bounds of the
   ! next token and printing it
   do while (position < len(input))
      istart = position + 1
      call split (input, set=', ', pos=position)
      iend = position - 1
      if(iend >= istart)then
         print '(t3,a,1x,i0,1x,i0)', input (istart:iend),istart,iend
      else
         ! maybe ignore null fields, maybe not ...
         write(*,'(t3,*(g0))')'null between ',iend,' and ',istart
      endif
   end do
end program demo_split

Results:

 >   123456789012345678901234567890123456789012345678901234567890
 >   one,last example,,x,, ,,
 >   one 1 3
 >   last 5 8
 >   example 10 16
 >   null between 17 and 18
 >   x 19 19
 >   null between 20 and 21
 >   null between 21 and 22
 >   null between 22 and 23
 >   null between 23 and 24

Standard

Fortran 2023

See Also

Fortran intrinsic descriptions (license: MIT) @urbanjost

spread

Name

spread(3) - [ARRAY:CONSTRUCTION] Add a dimension and replicate data

Synopsis

    result = spread(source, dim, ncopies)
     TYPE(kind=KIND) function spread(source, dim, ncopies)

      TYPE(kind=KIND)             :: source(..)
      integer(kind=**),intent(in) :: dim
      integer(kind=**),intent(in) :: ncopies

Characteristics

Description

spread(3) replicates a source array along a specified dimension dim. The copy is repeated ncopies times.

So to add additional rows to a matrix dim=1 would be used, but to add additional rows dim=2 would be used, for example.

If source is scalar, the size of the resulting vector is ncopies and each element of the result has a value equal to source.

Options

Result

The result is an array of the same type as source and has rank n+1 where n equals the rank of source.

Examples

Sample program:

program demo_spread
implicit none

integer a1(4,3), a2(3,4), v(4), s

   write(*,'(a)' ) &
   'TEST SPREAD(3)                                      ', &
   '  SPREAD(3) is a FORTRAN90 function which replicates', &
   '  an array by adding a dimension.                   ', &
   ' '

   s = 99
   call printi('suppose we have a scalar S',s)

   write(*,*) 'to add a new dimension (1) of extent 4 call'
   call printi('spread( s, dim=1, ncopies=4 )',spread ( s, 1, 4 ))

   v = [ 1, 2, 3, 4 ]
   call printi(' first we will set V to',v)

   write(*,'(a)')' and then do "spread ( v, dim=2, ncopies=3 )"'
   a1 = spread ( v, dim=2, ncopies=3 )
   call printi('uses v as a column and makes 3 columns',a1)

   a2 = spread ( v, 1, 3 )
   call printi(' spread(v,1,3) uses v as a row and makes 3 rows',a2)

contains
! CONVENIENCE ROUTINE; NOT DIRECTLY CONNECTED TO SPREAD(3)
subroutine printi(title,a)
use, intrinsic :: iso_fortran_env, only : stderr=>ERROR_UNIT,&
 & stdin=>INPUT_UNIT, stdout=>OUTPUT_UNIT
implicit none

!@(#) print small 2d integer scalar, vector, matrix in row-column format

character(len=*),parameter   :: all='(" ",*(g0,1x))'
character(len=*),intent(in)  :: title
character(len=20)            :: row
integer,intent(in)           :: a(..)
integer                      :: i

   write(*,all,advance='no')trim(title)
   ! select rank of input
   select rank(a)
   rank (0); write(*,'(a)')' (a scalar)'
      write(*,'(" > [ ",i0," ]")')a
   rank (1); write(*,'(a)')' (a vector)'
      ! find how many characters to use for integers
      write(row,'(i0)')ceiling(log10(max(1.0,real(maxval(abs(a))))))+2
      ! use this format to write a row
      row='(" > [",*(i'//trim(row)//':,","))'
      do i=1,size(a)
         write(*,fmt=row,advance='no')a(i)
         write(*,'(" ]")')
      enddo
   rank (2); write(*,'(a)')' (a matrix) '
      ! find how many characters to use for integers
      write(row,'(i0)')ceiling(log10(max(1.0,real(maxval(abs(a))))))+2
      ! use this format to write a row
      row='(" > [",*(i'//trim(row)//':,","))'
      do i=1,size(a,dim=1)
         write(*,fmt=row,advance='no')a(i,:)
         write(*,'(" ]")')
      enddo
   rank default
      write(stderr,*)'*printi* did not expect rank=', rank(a), &
       & 'shape=', shape(a),'size=',size(a)
      stop '*printi* unexpected rank'
   end select
   write(*,all) '>shape=',shape(a),',rank=',rank(a),',size=',size(a)
   write(*,*)

end subroutine printi

end program demo_spread

Results:

 > TEST SPREAD(3)
 >   SPREAD(3) is a FORTRAN90 function which replicates
 >   an array by adding a dimension.
 >
 >  suppose we have a scalar S  (a scalar)
 >  > [ 99 ]
 >  >shape= ,rank= 0 ,size= 1
 >
 >  to add a new dimension (1) of extent 4 call
 >  spread( s, dim=1, ncopies=4 )  (a vector)
 >  > [  99 ]
 >  > [  99 ]
 >  > [  99 ]
 >  > [   0 ]
 >  >shape= 4 ,rank= 1 ,size= 4
 >
 >   first we will set V to  (a vector)
 >  > [  1 ]
 >  > [  2 ]
 >  > [  3 ]
 >  > [  4 ]
 >  >shape= 4 ,rank= 1 ,size= 4
 >
 >  and then do "spread ( v, dim=2, ncopies=3 )"
 >  uses v as a column and makes 3 columns  (a matrix)
 >  > [  1,  1,  1 ]
 >  > [  2,  2,  2 ]
 >  > [  3,  3,  3 ]
 >  > [  4,  4,  4 ]
 >  >shape= 4 3 ,rank= 2 ,size= 12
 >
 >   spread(v,1,3) uses v as a row and makes 3 rows  (a matrix)
 >  > [  1,  2,  3,  4 ]
 >  > [  1,  2,  3,  4 ]
 >  > [  1,  2,  3,  4 ]
 >  >shape= 3 4 ,rank= 2 ,size= 12
 >

Standard

Fortran 95

See Also

merge(3), pack(3), unpack(3)

Fortran intrinsic descriptions (license: MIT) @urbanjost

sqrt

Name

sqrt(3) - [MATHEMATICS] Square-root function

Synopsis

    result = sqrt(x)
     elemental TYPE(kind=KIND) function sqrt(x)

      TYPE(kind=KIND),intent(in) :: x

Characteristics

Description

sqrt(3) computes the principal square root of x.

The number whose square root is being considered is known as the radicand.

In mathematics, a square root of a radicand x is a number y such that y*y = x.

Every nonnegative radicand x has two square roots of the same unique magnitude, one positive and one negative. The nonnegative square root is called the principal square root.

The principal square root of 9 is 3, for example, even though (-3)*(-3) is also 9.

Square roots of negative numbers are a special case of complex numbers, where with complex input the components of the radicand need not be positive in order to have a valid square root.

Options

Result

The principal square root of x is returned.

For a complex result the real part is greater than or equal to zero.

When the real part of the result is zero, the imaginary part has the same sign as the imaginary part of x.

Examples

Sample program:

program demo_sqrt
use, intrinsic :: iso_fortran_env, only : real32, real64, real128
implicit none
real(kind=real64) :: x, x2
complex :: z, z2

  ! basics
   x = 2.0_real64
   ! complex
   z = (1.0, 2.0)
   write(*,*)'input values ',x,z

   x2 = sqrt(x)
   z2 = sqrt(z)
   write(*,*)'output values ',x2,z2

  ! elemental
  write(*,*)'elemental',sqrt([64.0,121.0,30.0])

  ! alternatives
   x2 = x**0.5
   z2 = z**0.5
   write(*,*)'alternatively',x2,z2

end program demo_sqrt

Results:

  > input values    2.00000000000000      (1.000000,2.000000)
  > output values    1.41421356237310      (1.272020,0.7861513)
  > elemental   8.000000       11.00000       5.477226
  > alternatively   1.41421356237310      (1.272020,0.7861513)

Standard

FORTRAN 77

See also

exp(3), log(3), log10(3)

Fortran intrinsic descriptions (license: MIT) @urbanjost

storage_size

Name

storage_size(3) - [BIT:INQUIRY] Storage size in bits

Synopsis

    result = storage_size(a [,KIND] )
     integer(kind=KIND) storage_size(a,KIND)

      type(TYPE(kind=**)) :: a
      integer,intent(in),optional :: KIND

Characteristics

Description

storage_size(3) returns the storage size of argument a in bits.

Options

Result

The result value is the size expressed in bits for an element of an array that has the dynamic type and type parameters of a.

If the type and type parameters are such that storage association applies, the result is consistent with the named constants defined in the intrinsic module ISO_FORTRAN_ENV.

NOTE1

An array element might take “type” more bits to store than an isolated scalar, since any hardware-imposed alignment requirements for array elements might not apply to a simple scalar variable.

NOTE2

This is intended to be the size in memory that an object takes when it is stored; this might differ from the size it takes during expression handling (which might be the native register size) or when stored in a file. If an object is never stored in memory but only in a register, this function nonetheless returns the size it would take if it were stored in memory.

Examples

Sample program

program demo_storage_size
implicit none

   ! a default real, integer, and logical are the same storage size
   write(*,*)'size of integer       ',storage_size(0)
   write(*,*)'size of real          ',storage_size(0.0)
   write(*,*)'size of logical       ',storage_size(.true.)
   write(*,*)'size of complex       ',storage_size((0.0,0.0))

   ! note the size of an element of the array, not the storage size of
   ! the entire array is returned for array arguments
   write(*,*)'size of integer array ',storage_size([0,1,2,3,4,5,6,7,8,9])

end program demo_storage_size

Results:

  > size of integer                 32
  > size of real                    32
  > size of logical                 32
  > size of complex                 64
  > size of integer array           32

Standard

Fortran 2008

See Also

c_sizeof(3)

Fortran intrinsic descriptions

sum

Name

sum(3) - [ARRAY:REDUCTION] Sum the elements of an array

Synopsis

   result = sum(array [,dim[,mask]] | [mask] )
     TYPE(kind=KIND) function sum(array, dim, mask)

      TYPE(kind=KIND),intent(in) :: array(..)
      integer(kind=**),intent(in),optional :: dim
      logical(kind=**),intent(in),optional :: mask(..)

Characteristics

Description

sum(3) adds the elements of array.

When only array is specified all elements are summed, but groups of sums may be returned along the dimension specified by dim and/or elements to add may be selected by a logical mask.

No method is designated for how the sum is conducted, so whether or not accumulated error is compensated for is processor-dependent.

Options

Result

If dim is absent, a scalar with the sum of all selected elements in array is returned. Otherwise, an array of rank n-1, where n equals the rank of array, and a shape similar to that of array with dimension dim dropped is returned. Since a vector has a rank of one, the result is a scalar (if n==1, n-1 is zero; and a rank of zero means a scalar).

Examples

Sample program:

program demo_sum
implicit none
integer :: vector(5) , matrix(3,4), box(5,6,7)

   vector = [ 1, 2, -3, 4, 5 ]

   matrix(1,:)=[  -1,   2,    -3,   4    ]
   matrix(2,:)=[  10,   -20,  30,   -40  ]
   matrix(3,:)=[  100,  200, -300,  400  ]

   box=11

  ! basics
   print *, 'sum all elements:',sum(vector)
   print *, 'real :',sum([11.0,-5.0,20.0])
   print *, 'complex :',sum([(1.1,-3.3),(4.0,5.0),(8.0,-6.0)])
  ! with MASK option
   print *, 'sum odd elements:',sum(vector, mask=mod(vector, 2)==1)
   print *, 'sum positive values:', sum(vector, mask=vector>0)

   call printi('the input array', matrix )
   call printi('sum of all elements in matrix', sum(matrix) )
   call printi('sum of positive elements', sum(matrix,matrix>=0) )
  ! along dimensions
   call printi('sum along rows', sum(matrix,dim=1) )
   call printi('sum along columns', sum(matrix,dim=2) )
   call printi('sum of a vector is always a scalar', sum(vector,dim=1) )
   call printi('sum of a volume by row', sum(box,dim=1) )
   call printi('sum of a volume by column', sum(box,dim=2) )
   call printi('sum of a volume by depth', sum(box,dim=3) )

contains
! CONVENIENCE ROUTINE; NOT DIRECTLY CONNECTED TO SPREAD(3)
subroutine printi(title,a)
use, intrinsic :: iso_fortran_env, only : stderr=>ERROR_UNIT,&
 & stdin=>INPUT_UNIT, stdout=>OUTPUT_UNIT
implicit none

!@(#) print small 2d integer scalar, vector, matrix in row-column format

character(len=*),intent(in)  :: title
integer,intent(in)           :: a(..)

character(len=*),parameter   :: all='(" ",*(g0,1x))'
character(len=20)            :: row
integer,allocatable          :: b(:,:)
integer                      :: i
   write(*,all,advance='no')trim(title)
   ! copy everything to a matrix to keep code simple
   select rank(a)
   rank (0); write(*,'(a)')' (a scalar)'; b=reshape([a],[1,1])
   rank (1); write(*,'(a)')' (a vector)'; b=reshape(a,[size(a),1])
   rank (2); write(*,'(a)')' (a matrix)'; b=a
   rank default; stop '*printi* unexpected rank'
   end select
   ! find how many characters to use for integers
   write(row,'(i0)')ceiling(log10(max(1.0,real(maxval(abs(b))))))+2
   ! use this format to write a row
   row='(" > [",*(i'//trim(row)//':,","))'
   do i=1,size(b,dim=1)
      write(*,fmt=row,advance='no')b(i,:)
      write(*,'(" ]")')
   enddo
   write(*,all) '>shape=',shape(a),',rank=',rank(a),',size=',size(a)
   write(*,*)
end subroutine printi
end program demo_sum

Results:

 >  sum all elements:           9
 >  real :   26.0000000
 >  complex :            (13.1000004,-4.30000019)
 >  sum odd elements:           6
 >  sum positive values:          12
 >  the input array  (a matrix)
 >  > [   -1,    2,   -3,    4 ]
 >  > [   10,  -20,   30,  -40 ]
 >  > [  100,  200, -300,  400 ]
 >  >shape= 3 4 ,rank= 2 ,size= 12
 >
 >  sum of all elements in matrix  (a scalar)
 >  > [  382 ]
 >  >shape= ,rank= 0 ,size= 1
 >
 >  sum of positive elements  (a scalar)
 >  > [  746 ]
 >  >shape= ,rank= 0 ,size= 1
 >
 >  sum along rows  (a vector)
 >  > [  109 ]
 >  > [  182 ]
 >  > [ -273 ]
 >  > [  364 ]
 >  >shape= 4 ,rank= 1 ,size= 4
 >
 >  sum along columns  (a vector)
 >  > [    2 ]
 >  > [  -20 ]
 >  > [  400 ]
 >  >shape= 3 ,rank= 1 ,size= 3
 >
 >  sum of a vector is always a scalar  (a scalar)
 >  > [  9 ]
 >  >shape= ,rank= 0 ,size= 1
 >
 >  sum of a volume by row  (a matrix)
 >  > [  55,  55,  55,  55,  55,  55,  55 ]
 >  > [  55,  55,  55,  55,  55,  55,  55 ]
 >  > [  55,  55,  55,  55,  55,  55,  55 ]
 >  > [  55,  55,  55,  55,  55,  55,  55 ]
 >  > [  55,  55,  55,  55,  55,  55,  55 ]
 >  > [  55,  55,  55,  55,  55,  55, 113 ]
 >  >shape= 6 7 ,rank= 2 ,size= 42
 >
 >  sum of a volume by column  (a matrix)
 >  > [  66,  66,  66,  66,  66,  66,  66 ]
 >  > [  66,  66,  66,  66,  66,  66,  66 ]
 >  > [  66,  66,  66,  66,  66,  66,  66 ]
 >  > [  66,  66,  66,  66,  66,  66,  66 ]
 >  > [  66,  66,  66,  66,  66,  66,**** ]
 >  >shape= 5 7 ,rank= 2 ,size= 35
 >
 >  sum of a volume by depth  (a matrix)
 >  > [  77,  77,  77,  77,  77,  77 ]
 >  > [  77,  77,  77,  77,  77,  77 ]
 >  > [  77,  77,  77,  77,  77,  77 ]
 >  > [  77,  77,  77,  77,  77,  77 ]
 >  > [  77,  77,  77,  77,  77,4193 ]
 >  >shape= 5 6 ,rank= 2 ,size= 30
 >

Standard

Fortran 95

See Also

Fortran intrinsic descriptions (license: MIT) @urbanjost

system_clock

Name

system_clock(3) - [SYSTEM:TIME] Query system clock

Synopsis

    call system_clock([count] [,count_rate] [,count_max] )
     subroutine system_clock(count, count_rate, count_max)

      integer(kind=**),intent(out),optional    :: count
      type(TYPE(kind=**)),intent(out),optional :: count_rate
      integer(kind=**),intent(out),optional    :: count_max

Characteristics

Description

system_clock(3) lets you measure durations of time with the precision of the smallest time increment generally available on a system by returning processor-dependent values based on the current value of the processor clock.

system_clock is typically used to measure short time intervals (system clocks may be 24-hour clocks or measure processor clock ticks since boot, for example). It is most often used for measuring or tracking the time spent in code blocks in lieu of using profiling tools.

count_rate and count_max are assumed constant (even though CPU rates can vary on a single platform).

Whether an image has no clock, has a single clock of its own, or shares a clock with another image, is processor dependent.

If there is no clock, or querying the clock fails, count is set to -huge(count), and count_rate and count_max are set to zero.

The accuracy of the measurements may depend on the kind of the arguments!

Timing-related procedures are obviously processor and system-dependent. More specific information may generally be found in compiler-specific documentation.

Options

Examples

If the processor clock is a 24-hour clock that registers time at approximately 18.20648193 ticks per second, at 11:30 A.M. the reference

      call system_clock (count = c, count_rate = r, count_max = m)

defines

      C = (11*3600+30*60)*18.20648193 = 753748,
      R = 18.20648193, and
      M = 24*3600*18.20648193-1 = 1573039.

Sample program:

program demo_system_clock
use, intrinsic :: iso_fortran_env, only: wp => real64, int32, int64
implicit none
character(len=*), parameter :: g = '(1x,*(g0,1x))'

integer(kind=int64) :: count64, count_rate64, count_max64
integer(kind=int64) :: start64, finish64

integer(kind=int32) :: count32, count_rate32, count_max32
integer(kind=int32) :: start32, finish32

real(kind=wp)       :: time_read
real(kind=wp)       :: sum
integer             :: i

   print g, 'accuracy may vary with argument type!'

   print g, 'query all arguments'

   call system_clock(count64, count_rate64, count_max64)
   print g, 'COUNT_MAX(64bit)=', count_max64
   print g, 'COUNT_RATE(64bit)=', count_rate64
   print g, 'CURRENT COUNT(64bit)=', count64

   call system_clock(count32, count_rate32, count_max32)
   print g, 'COUNT_MAX(32bit)=', count_max32
   print g, 'COUNT_RATE(32bit)=', count_rate32
   print g, 'CURRENT COUNT(32bit)=', count32

   print g, 'time some computation'
   call system_clock(start64)

   ! some code to time
   sum = 0.0_wp
   do i = -0, huge(0) - 1
      sum = sum + sqrt(real(i))
   end do
   print g, 'SUM=', sum

   call system_clock(finish64)

   time_read = (finish64 - start64)/real(count_rate64, wp)
   write (*, '(1x,a,1x,g0,1x,a)') 'time : ', time_read, ' seconds'

end program demo_system_clock

Results:

 >  accuracy may vary with argument type!
 >  query all arguments
 >  COUNT_MAX(64bit)= 9223372036854775807
 >  COUNT_RATE(64bit)= 1000000000
 >  CURRENT COUNT(64bit)= 1105422387865806
 >  COUNT_MAX(32bit)= 2147483647
 >  COUNT_RATE(32bit)= 1000
 >  CURRENT COUNT(32bit)= 1105422387
 >  time some computation
 >  SUM= 66344288183024.266
 >  time :  6.1341038460000004  seconds

Standard

Fortran 95

See Also

date_and_time(3), cpu_time(3)

Fortran intrinsic descriptions

tand

Name

tand(3) - [MATHEMATICS:TRIGONOMETRIC] Degree Tangent function

Synopsis

result = tand(x)
 elemental real(kind=KIND) function tand(x)

  real(kind=KIND),intent(in) :: x

Characteristics

Description

tand(3) computes the degree tangent of x.

Options

Result

The return value is a processor-dependent approximation to the tangent of the value x where x is regarded as a value in degrees.

Examples

tand(180.0) has the value 0.0 (approximately).

Sample program:

program demo_tand
use, intrinsic :: iso_fortran_env, only : real32, real64, real128
implicit none
real(kind=real64) :: x = 0.5_real64
     write(*,*)x, tand(x)
end program demo_tand

Result:

  > 0.50000000000000000        8.7268677907587893E-003

Standard

Fortran 2023

See Also

atand(3), atan(3), atan2d(3), atan2(3), cosd(3), sind(3)

Fortran intrinsic descriptions (license: MIT) @urbanjost

tanh

Name

tanh(3) - [MATHEMATICS:TRIGONOMETRIC] Hyperbolic tangent function

Synopsis

    result = tanh(x)
     elemental TYPE(kind=KIND) function tanh(x)

      TYPE(kind=KIND),intent(in) :: x

Characteristics

Description

tanh(3) computes the hyperbolic tangent of x.

Options

Result

Returns the hyperbolic tangent of x.

If x is complex, the imaginary part of the result is regarded as a radian value.

If x is real, the return value lies in the range

      -1 <= tanh(x) <= 1.

Examples

Sample program:

program demo_tanh
use, intrinsic :: iso_fortran_env, only : real32, real64, real128
implicit none
real(kind=real64) :: x = 2.1_real64
   write(*,*)x, tanh(x)
end program demo_tanh

Results:

  >   2.1000000000000001       0.97045193661345386

Standard

FORTRAN 77 , for a complex argument Fortran 2008

See Also

atanh(3)

Resources

Fortran intrinsic descriptions

tan

Name

tan(3) - [MATHEMATICS:TRIGONOMETRIC] Tangent function

Synopsis

result = tan(x)
 elemental TYPE(kind=KIND) function tan(x)

  TYPE(kind=KIND),intent(in) :: x

Characteristics

Description

tan(3) computes the tangent of x.

Options

Result

The return value is the tangent of the value x.

Examples

Sample program:

program demo_tan
use, intrinsic :: iso_fortran_env, only : real32, real64, real128
implicit none
real(kind=real64) :: x = 0.165_real64
     write(*,*)x, tan(x)
end program demo_tan

Results:

  >  0.16500000000000001       0.16651386310913616

Standard

FORTRAN 77 . For a complex argument, Fortran 2008 .

See Also

atan(3), atan2(3), cos(3), sin(3)

Fortran intrinsic descriptions (license: MIT) @urbanjost

tanpi

Name

tanpi(3) - [MATHEMATICS:TRIGONOMETRIC] Circular tangent function

Synopsis

result = tanpi(x)
 elemental real(kind=KIND) function tanpi(x)

  real(kind=KIND),intent(in) :: x

Characteristics

Description

tanpi(3) computes the Circular Tangent of x in half-revolutions.

The result has a value equal to a processor-dependent approximation to the tangent of X, which is regarded as a value in half-revolutions; thus, TANPI (X) is approximately equal to tan(X*PI).

Options

Result

The return value is the tangent of the value x.

Examples

Example: TAND(1.0) has the value 0.0 (approximately).

Sample program:

program demo_tanpi
use, intrinsic :: iso_fortran_env, only : real64
implicit none
integer :: i
real(kind=real64) :: x
   do i=0,8
      x=0.250000000d0*i
      write(*,101)x, tanpi(x), tanpi(x)*180.0d0
   enddo
101 format(g0,t23,g0,t50,g0)
end program demo_tanpi

Results:

 > .000000000000000    0.000000000000000          0.000000000000000
 > .2500000000000000   0.9999999999999999       180.0000000000000
 > .5000000000000000   0.1633123935319537E+17     0.2939623083575166E+19
 > .7500000000000000  -1.000000000000000       -180.0000000000000
 > 1.000000000000000  -0.1224646799147353E-15    -0.2204364238465236E-13
 > 1.250000000000000   0.9999999999999997       179.9999999999999
 > 1.500000000000000  5443746451065123.           0.9798743611917221E+18
 > 1.750000000000000  -1.000000000000000       -180.0000000000001
 > 2.000000000000000  -0.2449293598294706E-15    -0.4408728476930472E-13

Standard

Fortran 2023

See Also

atand(3), atand(3), atan2pi(3), atan2d(3)

Fortran intrinsic descriptions (license: MIT) @urbanjost

this_image

Name

this_image(3) - [COLLECTIVE] Cosubscript index of this image

Synopsis

result = this_image() | = this_image(distance) | = this_image(coarray,dim)
   integer function this_image( distance ,coarray, dim )

    type(TYPE(kind=**)),optional :: coarray[*]
    integer,intent(in),optional  :: distance
    integer,intent(in),optional  :: dim

Characteristics

Description

this_image(3) returns the cosubscript for this image.

Options

Result

Default integer. If coarray is not present, it is scalar; if distance is not present or has value 0, its value is the image index on the invoking image for the current team, for values smaller or equal distance to the initial team, it returns the image index on the ancestor team which has a distance of distance from the invoking team. If distance is larger than the distance to the initial team, the image index of the initial team is returned. Otherwise when the coarray is present, if dim is not present, a rank-1 array with corank elements is returned, containing the cosubscripts for coarray specifying the invoking image. If dim is present, a scalar is returned, with the value of the dim element of this_image(coarray).

Examples

Sample program:

program demo_this_image
implicit none
integer :: value[*]
integer :: i
   value = this_image()
   sync all
   if (this_image() == 1) then
      do i = 1, num_images()
         write(*,'(2(a,i0))') 'value[', i, '] is ', value[i]
      end do
   endif
end program demo_this_image

Results:

 >  value[1] is 1

Standard

Fortran 2008. With DISTANCE argument, TS 18508

See Also

num_images(3), image_index(3)

Fortran intrinsic descriptions

tiny

Name

tiny(3) - [MODEL:NUMERIC] Smallest positive number of a real kind

Synopsis

    result = tiny(x)
     real(kind=KIND) function tiny(x)

      real(kind=KIND) :: x

Characteristics

Description

tiny(3) returns the smallest positive (non zero) number of the type and kind of x.

For real x

   result = 2.0**(minexponent(x)-1)

Options

Result

The smallest positive value for the real type of the specified kind.

Examples

Sample program:

program demo_tiny
implicit none
   print *, 'default real is from', tiny(0.0), 'to',huge(0.0)
   print *, 'doubleprecision is from ', tiny(0.0d0), 'to',huge(0.0d0)
end program demo_tiny

Results:

 > default real is from 1.17549435E-38 to 3.40282347E+38
 > doubleprecision is from 2.2250738585072014E-308 to
 > 1.7976931348623157E+308

Standard

Fortran 95

See Also

digits(3), epsilon(3), exponent(3), fraction(3), huge(3), maxexponent(3), minexponent(3), nearest(3), precision(3), radix(3), range(3), rrspacing(3), scale(3), set_exponent(3), spacing(3)

Fortran intrinsic descriptions (license: MIT) @urbanjost

tokenize

Name

tokenize(3) - [CHARACTER:PARSE] Parse a string into tokens.

Synopsis

TOKEN form (returns array of strings)

    subroutine tokenize(string, set, tokens [, separator])

     character(len=*),intent(in) :: string
     character(len=*),intent(in) :: set
     character(len=:),allocatable,intent(out) :: tokens(:)
     character(len=1),allocatable,intent(out),optional :: separator(:)

ARRAY BOUNDS form (returns arrays defining token positions)

    subroutine tokenize (string, set, first, last)

     character(len=*),intent(in) :: string
     character(len=*),intent(in) :: set
     integer,allocatable,intent(out) :: first(:)
     integer,allocatable,intent(out) :: last(:)

Characteristics

To reiterate, string, set, tokens and separator must all be of the same CHARACTER kind type parameter.

Description

tokenize(3) parses a string into tokens. There are two forms of the subroutine tokenize(3).

Since the token form pads all the tokens to the same length the original number of trailing spaces of each token accept for the longest is lost.

The array bounds form retains information regarding the exact token length even when padded by spaces.

Options

Examples

Sample of uses

    program demo_tokenize
    !use M_strings, only : tokenize=>split2020
    implicit none
    ! some useful formats
    character(len=*),parameter :: brackets='(*("[",g0,"]":,","))'
    character(len=*),parameter :: a_commas='(a,*(g0:,","))'
    character(len=*),parameter :: space='(*(g0:,1x))'
    character(len=*),parameter :: gen='(*(g0))'

    ! Execution of TOKEN form (return array of tokens)

    block
       character (len=:), allocatable :: string
       character (len=:), allocatable :: tokens(:)
       character (len=:), allocatable :: kludge(:)
       integer                        :: i
       string = '  first,second ,third       '
       call tokenize(string, set=';,', tokens=tokens )
       write(*,brackets)tokens

       string = '  first , second ,third       '
       call tokenize(string, set=' ,', tokens=tokens )
       write(*,brackets)(trim(tokens(i)),i=1,size(tokens))
       ! remove blank tokens
       ! <<<
       !tokens=pack(tokens, tokens /= '' )
       ! gfortran 13.1.0 bug -- concatenate //'' and use scratch
       ! variable KLUDGE. JSU: 2024-08-18
       kludge=pack(tokens//'', tokens /= '' )
       ! >>>
       write(*,brackets)kludge

    endblock

    ! Execution of BOUNDS form (return position of tokens)

    block
       character (len=:), allocatable :: string
       character (len=*),parameter :: set = " ,"
       integer, allocatable        :: first(:), last(:)
       write(*,gen)repeat('1234567890',6)
       string = 'first,second,,fourth'
       write(*,gen)string
       call tokenize (string, set, first, last)
       write(*,a_commas)'FIRST=',first
       write(*,a_commas)'LAST=',last
       write(*,a_commas)'HAS LENGTH=',last-first.gt.0
    endblock

    end program demo_tokenize

Results:

 > [  first     ],[second      ],[third       ]
 > [],[first],[],[],[second],[],[third],[],[],[],[],[]
 > [first ],[second],[third ]
 > 123456789012345678901234567890123456789012345678901234567890
 > first,second,,fourth
 > FIRST=1,7,14,15
 > LAST=5,12,13,20
 > HAS LENGTH=T,T,F,T

Standard

Fortran 2023

See Also

Fortran intrinsic descriptions (license: MIT) @urbanjost

trailz

Name

trailz(3) - [BIT:COUNT] Number of trailing zero bits of an integer

Synopsis

 result = trailz(i)
  elemental integer function trailz(i)

   integer(kind=**),intent(in) :: i

Characteristics

Description

trailz(3) returns the number of trailing zero bits of an integer value.

Options

Result

The number of trailing rightmost zero bits in an integer value after the last non-zero bit.

       >      right-most non-zero bit
       >                 V
       >  |0|0|0|1|1|1|0|1|0|0|0|0|0|0|
       >  ^               |___________| trailing zero bits
       >   bit_size(i)

If all the bits of i are zero, the result is the size of the input value in bits, ie. bit_size(i).

The result may also be seen as the position of the rightmost 1 bit in i, starting with the rightmost bit being zero and counting to the left.

Examples

Sample program:

program demo_trailz

! some common integer kinds
use, intrinsic :: iso_fortran_env, only : &
 & integer_kinds, int8, int16, int32, int64

implicit none

! a handy format
character(len=*),parameter :: &
 & show = '(1x,"value=",i4,", value(bits)=",b32.32,1x,", trailz=",i3)'

integer(kind=int64) :: bigi
  ! basics
   write(*,*)'Note default integer is',bit_size(0),'bits'
   print  show,  -1, -1,  trailz(-1)
   print  show,   0,  0,  trailz(0)
   print  show,   1,  1,  trailz(1)
   print  show,  96, 96,  trailz(96)
  ! elemental
   print *, 'elemental and any integer kind:'
   bigi=2**5
   write(*,*) trailz( [ bigi, bigi*256, bigi/2 ] )
   write(*,'(1x,b64.64)')[ bigi, bigi*256, bigi/2 ]

end program demo_trailz

Results:

 >  Note default integer is          32 bits
 >  value=  -1, value(bits)=11111111111111111111111111111111 , trailz=  0
 >  value=   0, value(bits)=00000000000000000000000000000000 , trailz= 32
 >  value=   1, value(bits)=00000000000000000000000000000001 , trailz=  0
 >  value=  96, value(bits)=00000000000000000000000001100000 , trailz=  5
 >  elemental and any integer kind:
 >            5          13           4
 >  0000000000000000000000000000000000000000000000000000000000100000
 >  0000000000000000000000000000000000000000000000000010000000000000
 >  0000000000000000000000000000000000000000000000000000000000010000

Standard

Fortran 2008

See Also

bit_size(3), popcnt(3), poppar(3), leadz(3)

Fortran intrinsic descriptions (license: MIT) @urbanjost

transfer

Name

transfer(3) - [TYPE:MOLD] Transfer bit patterns

Synopsis

    result = transfer(source, mold [,size] )
     type(TYPE(kind=KIND)) function transfer(source,mold,size)

      type(TYPE(kind=KIND)),intent(in) :: source(..)
      type(TYPE(kind=KIND)),intent(in) :: mold(..)
      integer(kind=**),intent(in),optional :: size

Characteristics

Description

transfer(3) copies the bitwise representation of source in memory into a variable or array of the same type and type parameters as mold.

This is approximately equivalent to the C concept of “casting” one type to another.

Options

If size is absent but mold is an array (of any size or shape), the result is a one-dimensional array of the minimum length needed to contain the entirety of the bitwise representation of source.

If size is absent and mold is a scalar, the result is a scalar.

Result

The result has the bit level representation of source.

If the bitwise representation of the result is longer than that of source, then the leading bits of the result correspond to those of source but any trailing bits are filled arbitrarily.

When the resulting bit representation does not correspond to a valid representation of a variable of the same type as mold, the results are undefined, and subsequent operations on the result cannot be guaranteed to produce sensible behavior. For example, it is possible to create logical variables for which var and .not.var both appear to be true.

Examples

Sample program:

program demo_transfer
use,intrinsic :: iso_fortran_env, only : int32, real32
integer(kind=int32) :: i = 2143289344
real(kind=real32)   :: x
character(len=10)   :: string
character(len=1)    :: chars(10)
   x=transfer(i, 1.0)    ! prints "nan" on i686
   ! the bit patterns are the same
   write(*,'(b0,1x,g0)')x,x ! create a NaN
   write(*,'(b0,1x,g0)')i,i

   ! a string to an array of characters
   string='abcdefghij'
   chars=transfer(string,chars)
   write(*,'(*("[",a,"]":,1x))')string
   write(*,'(*("[",a,"]":,1x))')chars
end program demo_transfer

Results:

 > 1111111110000000000000000000000 NaN
 > 1111111110000000000000000000000 2143289344
 > [abcdefghij]
 > [a] [b] [c] [d] [e] [f] [g] [h] [i] [j]

Comments

Joe Krahn: Fortran uses molding rather than casting.

Casting, as in C, is an in-place reinterpretation. A cast is a device that is built around an object to change its shape.

Fortran transfer(3) reinterprets data out-of-place. It can be considered molding rather than casting. A mold is a device that confers a shape onto an object placed into it.

The advantage of molding is that data is always valid in the context of the variable that holds it. For many cases, a decent compiler should optimize transfer(3) into a simple assignment.

There are disadvantages of this approach. It is problematic to define a union of data types because you must know the largest data object, which can vary by compiler or compile options. In many cases, an EQUIVALENCE would be far more effective, but Fortran Standards committees seem oblivious to the benefits of EQUIVALENCE when used sparingly.

Standard

Fortran 90

See also

-equivalence(7) - alias storage

Fortran intrinsic descriptions

transpose

Name

transpose(3) - [ARRAY:MANIPULATION] Transpose an array of rank two

Synopsis

    result = transpose(matrix)
     function transpose(matrix)

      type(TYPE(kind=KIND))            :: transpose(N,M)
      type(TYPE(kind=KIND)),intent(in) :: matrix(M,N)

Characteristics

Description

transpose(3) transposes an array of rank two.

An array is transposed by interchanging the rows and columns of the given matrix. That is, element (i,j) of the result has the value of element (j,i) of the input for all (i,j).

Options

Result

The transpose of the input array. The result has the same type as matrix, and has shape [ m, n ] if matrix has shape [ n, m ].

Examples

Sample program:

program demo_transpose
implicit none
integer,save :: xx(3,5)= reshape([&
    1,  2,  3,  4,  5,    &
   10, 20, 30, 40, 50,    &
   11, 22, 33, 44, -1055  &
 ],shape(xx),order=[2,1])

call print_matrix_int('xx array:',xx)
call print_matrix_int('xx array transposed:',transpose(xx))

contains

subroutine print_matrix_int(title,arr)
! print small 2d integer arrays in row-column format
implicit none
character(len=*),intent(in)  :: title
integer,intent(in)           :: arr(:,:)
integer                      :: i
character(len=:),allocatable :: biggest
   write(*,*)trim(title)  ! print title
   biggest='           '  ! make buffer to write integer into
   ! find how many characters to use for integers
   write(biggest,'(i0)')ceiling(log10(max(1.0,real(maxval(abs(arr))))))+2
   ! use this format to write a row
   biggest='(" > [",*(i'//trim(biggest)//':,","))'
   ! print one row of array at a time
   do i=1,size(arr,dim=1)
      write(*,fmt=biggest,advance='no')arr(i,:)
      write(*,'(" ]")')
   enddo
end subroutine print_matrix_int

end program demo_transpose

Results:

    xx array:
    > [     1,     2,     3,     4,     5 ]
    > [    10,    20,    30,    40,    50 ]
    > [    11,    22,    33,    44, -1055 ]
    xx array transposed:
    > [     1,    10,    11 ]
    > [     2,    20,    22 ]
    > [     3,    30,    33 ]
    > [     4,    40,    44 ]
    > [     5,    50, -1055 ]

Standard

Fortran 95

See also

Fortran intrinsic descriptions (license: MIT) @urbanjost

trim

Name

trim(3) - [CHARACTER:WHITESPACE] Remove trailing blank characters from a string

Synopsis

    result = trim(string)
     character(len=:,kind=KIND) function trim(string)

      character(len=*,kind=KIND),intent(in) :: string

Characteristics

Description

trim(3) removes trailing blank characters from a string.

Options

Result

The result is the same as string except trailing blanks are removed.

If string is composed entirely of blanks or has zero length, the result has zero length.

Examples

Sample program:

program demo_trim
implicit none
character(len=:), allocatable :: str, strs(:)
character(len=*),parameter :: brackets='( *("[",a,"]":,1x) )'
integer :: i

   str='   trailing    '
   print brackets, str,trim(str) ! trims it

   str='   leading'
   print brackets, str,trim(str) ! no effect

   str='            '
   print brackets, str,trim(str) ! becomes zero length
   print *,  len(str), len(trim('               '))

  ! array elements are all the same length, so you often
  ! want to print them
   strs=[character(len=10) :: "Z"," a b c","ABC",""]

   write(*,*)'untrimmed:'
   ! everything prints as ten characters; nice for neat columns
   print brackets, (strs(i), i=1,size(strs))
   print brackets, (strs(i), i=size(strs),1,-1)
   write(*,*)'trimmed:'
   ! everything prints trimmed
   print brackets, (trim(strs(i)), i=1,size(strs))
   print brackets, (trim(strs(i)), i=size(strs),1,-1)

end program demo_trim

Results:

    > [   trailing    ] [   trailing]
    > [   leading] [   leading]
    > [            ] []
    >           12           0
    >  untrimmed:
    > [Z         ] [ a b c    ] [ABC       ] [          ]
    > [          ] [ABC       ] [ a b c    ] [Z         ]
    >  trimmed:
    > [Z] [ a b c] [ABC] []
    > [] [ABC] [ a b c] [Z]

Standard

Fortran 95

See Also

Functions that perform operations on character strings, return lengths of arguments, and search for certain arguments:

Fortran intrinsic descriptions (license: MIT) @urbanjost

ubound

Name

ubound(3) - [ARRAY:INQUIRY] Upper dimension bounds of an array

Synopsis

    result = ubound(array [,dim] [,kind] )
     elemental TYPE(kind=KIND) function ubound(array,dim,kind)

      TYPE(kind=KIND),intent(in)           :: array
      integer(kind=**),intent(in),optional :: dim
      integer(kind=**),intent(in),optional :: kind

Characteristics

Description

ubound(3) returns the upper bounds of an array, or a single upper bound along the dim dimension.

Options

Result

The return value is of type integer and of kind kind. If kind is absent, the return value is of default integer kind.

If dim is absent, the result is an array of the upper bounds of each dimension of the array.

If dim is present, the result is a scalar corresponding to the upper bound of the array along that dimension.

If array is an expression rather than a whole array or array structure component, or if it has a zero extent along the relevant dimension, the upper bound is taken to be the number of elements along the relevant dimension.

NOTE1 If ARRAY is assumed-rank and has rank zero, DIM cannot be present since it cannot satisfy the requirement 1 <= DIM <= 0.

Examples

Note this function should not be used on assumed-size arrays or in any function without an explicit interface. Errors can occur if there is no interface defined.

Sample program

! program demo_ubound
module m2_bounds
implicit none

contains

subroutine msub(arr)
!!integer,intent(in) :: arr(*)  ! cannot be assumed-size array
integer,intent(in) :: arr(:)
   write(*,*)'MSUB: LOWER=',lbound(arr),'UPPER=',ubound(arr), &
   & 'SIZE=',size(arr)
end subroutine msub

end module m2_bounds
!
program demo_ubound
use m2_bounds, only : msub
implicit none
interface
   subroutine esub(arr)
   integer,intent(in) :: arr(:)
   end subroutine esub
end interface
integer :: arr(-10:10)
   write(*,*)'MAIN: LOWER=',lbound(arr),'UPPER=',ubound(arr), &
   & 'SIZE=',size(arr)
   call csub()
   call msub(arr)
   call esub(arr)
contains
subroutine csub
   write(*,*)'CSUB: LOWER=',lbound(arr),'UPPER=',ubound(arr), &
   & 'SIZE=',size(arr)
end subroutine csub

end

subroutine esub(arr)
implicit none
integer,intent(in) :: arr(:)
   ! WARNING: IF CALLED WITHOUT AN EXPLICIT INTERFACE
   ! THIS WILL GIVE UNDEFINED ANSWERS (like 0,0,0)
   write(*,*)'ESUB: LOWER=',lbound(arr),'UPPER=',ubound(arr), &
   & 'SIZE=',size(arr)
end subroutine esub
!end program demo_ubound

Results:

 >  MAIN: LOWER=         -10 UPPER=          10 SIZE=          21
 >  CSUB: LOWER=         -10 UPPER=          10 SIZE=          21
 >  MSUB: LOWER=           1 UPPER=          21 SIZE=          21
 >  ESUB: LOWER=           1 UPPER=          21 SIZE=          21

Standard

Fortran 95 , with KIND argument Fortran 2003

See Also

Array inquiry:

co_ubound(3), co_lbound(3)

State Inquiry:

Kind Inquiry:

Bit Inquiry:

Fortran intrinsic descriptions (license: MIT) @urbanjost

ucobound

Name

ucobound(3) - [COLLECTIVE] Upper codimension bounds of an array

Synopsis

    result = ucobound(coarray [,dim] [,kind] )

Characteristics

Description

ucobound(3) returns the upper cobounds of a coarray, or a single upper cobound along the dim codimension.

Options

Result

The return value is of type integer and of kind kind. If kind is absent, the return value is of default integer kind. If dim is absent, the result is an array of the lower cobounds of coarray. If dim is present, the result is a scalar corresponding to the lower cobound of the array along that codimension.

Standard

Fortran 2008

See Also

lcobound(3), lbound(3), ubound(3)

unpack

Name

unpack(3) - [ARRAY:CONSTRUCTION] Scatter the elements of a vector into an array using a mask

Synopsis

    result = unpack(vector, mask, field)
     type(TYPE(kind=KIND)) unpack(vector, mask, field)

      type(TYPE(kind=KIND)),intent(in) :: vector(:)
      logical,intent(in)               :: mask(..)
      type(TYPE(kind=KIND)),intent(in) :: field(..)

Characteristics

Description

unpack(3) scatters the elements of vector into a copy of an array field of any rank using .true. values from mask in array element order to specify placement of the vector values.

So a copy of field is generated with select elements replaced with values from vector. This allows for complex replacement patterns that would be difficult when using array syntax or multiple assignment statements, particularly when the replacements are conditional.

Options

Result

The element of the result that corresponds to the ith true element of mask, in array element order, has the value vector(i) for i = 1, 2, . . ., t, where t is the number of true values in mask. Each other element has a value equal to field if field is scalar or to the corresponding element of field if it is an array.

The resulting array corresponds to field with .true. elements of mask replaced by values from vector in array element order.

Examples

Particular values may be “scattered” to particular positions in an array by using

                       1 0 0
    If M is the array  0 1 0
                       0 0 1

    V is the array [1, 2, 3],
                               . T .
    and Q is the logical mask  T . .
                               . . T
    where "T" represents true and "." represents false, then the result of

    UNPACK (V, MASK = Q, FIELD = M) has the value

      1 2 0
      1 1 0
      0 0 3

    and the result of UNPACK (V, MASK = Q, FIELD = 0) has the value

      0 2 0
      1 0 0
      0 0 3

Sample program:

program demo_unpack
implicit none
logical,parameter :: T=.true., F=.false.

integer :: vector(2)  = [1,1]

! mask and field must conform
integer,parameter :: r=2, c=2
logical :: mask(r,c)  = reshape([ T,F,F,T ],[2,2])
integer :: field(r,c) = 0, unity(2,2)

   ! basic usage
   unity = unpack( vector, mask, field )
   call print_matrix_int('unity=', unity)

   ! if FIELD is a scalar it is used to fill all the elements
   ! not assigned to by the vector and mask.
   call print_matrix_int('scalar field',         &
   & unpack(                                     &
   & vector=[ 1, 2, 3, 4 ],                      &
   & mask=reshape([ T,F,T,F,F,F,T,F,T ], [3,3]), &
   & field=0) )

contains

subroutine print_matrix_int(title,arr)
! convenience routine:
! just prints small integer arrays in row-column format
implicit none
character(len=*),intent(in)  :: title
integer,intent(in)           :: arr(:,:)
integer                      :: i
character(len=:),allocatable :: biggest

   write(*,*)trim(title)
   ! make buffer to write integer into
   biggest='           '
   ! find how many characters to use for integers
   write(biggest,'(i0)')ceiling(log10(max(1.0,real(maxval(abs(arr))))))+2
   ! use this format to write a row
   biggest='("  [",*(i'//trim(biggest)//':,","))'
   ! print one row of array at a time
   do i=1,size(arr,dim=1)
      write(*,fmt=biggest,advance='no')arr(i,:)
      write(*,'(" ]")')
   enddo
end subroutine print_matrix_int

end program demo_unpack

Results:

   > unity=
   >  [ 1, 0 ]
   >  [ 0, 1 ]
   > scalar field
   >  [  1,  0,  3 ]
   >  [  0,  0,  0 ]
   >  [  2,  0,  4 ]

Standard

Fortran 95

See Also

merge(3), pack(3), spread(3)

Fortran intrinsic descriptions (license: MIT) @urbanjost

verify

Name

verify(3) - [CHARACTER:SEARCH] Position of a character in a string of characters that does not appear in a given set of characters.

Synopsis

    result = verify(string, set [,back] [,kind] )
     elemental integer(kind=KIND) function verify(string,set,back,KIND)

      character(len=*,kind=**),intent(in) :: string
      character(len=*,kind=**),intent(in) :: set
      logical,intent(in),optional :: back
      integer,intent(in),optional :: KIND

Characteristics

Description

verify(3) verifies that all the characters in string belong to the set of characters in set by identifying the position of the first character in the string that is not in the set.

This makes it easy to verify strings are all uppercase or lowercase, follow a basic syntax, only contain printable characters, and many of the conditions tested for with the C routines isalnum(3c), isalpha(3c), isascii(3c), isblank(3c), iscntrl(3c), isdigit(3c), isgraph(3c), islower(3c), isprint(3c), ispunct(3c), isspace(3c), isupper(3c), and isxdigit(3c); but for a string as well as an array of strings.

Options

Result

If all characters of string are found in set, the result is zero.

If string is of zero length a zero (0) is always returned.

Otherwise, if an unmatched character is found The position of the first or last (if back is .false.) unmatched character in string is returned, starting with position one on the left end of the string.

Examples

Sample program I:

program demo_verify
implicit none
! some useful character sets
character,parameter :: &
 & int*(*)   = '1234567890', &
 & low*(*)   = 'abcdefghijklmnopqrstuvwxyz', &
 & upp*(*)   = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ', &
 & punc*(*)  = "!""#$%&'()*+,-./:;<=>?@[\]^_`{|}~", &
 & blank*(*) = ' ', &
 & tab       = char(11), &
 & prnt*(*) = int//low//upp//blank//punc

character(len=:),allocatable :: string
integer :: i
    print *, 'basics:'
    print *, VERIFY ('ABBA', 'A')                ! has the value 2.
    print *, VERIFY ('ABBA', 'A', BACK = .TRUE.) ! has the value 3.
    print *, VERIFY ('ABBA', 'AB')               ! has the value 0.

   print *,'find first non-uppercase letter'
   ! will produce the location of "d", because there is no match in UPP
   write(*,*) 'something unmatched',verify("ABCdEFG", upp)

   print *,'if everything is matched return zero'
   ! will produce 0 as all letters have a match
   write(*,*) 'everything matched',verify("ffoorrttrraann", "nartrof")

   print *,'easily categorize strings as uppercase, lowercase, ...'
   ! easy C-like functionality but does entire strings not just characters
   write(*,*)'isdigit 123?',verify("123", int) == 0
   write(*,*)'islower abc?',verify("abc", low) == 0
   write(*,*)'isalpha aBc?',verify("aBc", low//upp) == 0
   write(*,*)'isblank aBc dEf?',verify("aBc dEf", blank//tab ) /= 0
   ! check if all printable characters
   string="aB;cde,fgHI!Jklmno PQRSTU vwxyz"
   write(*,*)'isprint?',verify(string,prnt) == 0
   ! this now has a nonprintable tab character in it
   string(10:10)=char(11)
   write(*,*)'isprint?',verify(string,prnt) == 0

   print *,'VERIFY(3) is very powerful using expressions as masks'
   ! verify(3) is often used in a logical expression
   string=" This is NOT all UPPERCASE "
   write(*,*)'all uppercase/spaces?',verify(string, blank//upp) == 0
   string=" This IS all uppercase "
   write(*,*) 'string=['//string//']'
   write(*,*)'all uppercase/spaces?',verify(string, blank//upp) == 0

  ! set and show complex string to be tested
   string='  Check this out. Let me know  '
   ! show the string being examined
   write(*,*) 'string=['//string//']'
   write(*,*) '        '//repeat(int,4) ! number line

   ! the Fortran functions returns a position just not a logical like C
   print *, 'returning a position not just a logical is useful'
   ! which can be very useful for parsing strings
   write(*,*)'first non-blank character',verify(string, blank)
   write(*,*)'last non-blank character',verify(string, blank,back=.true.)
   write(*,*)'first non-letter non-blank',verify(string,low//upp//blank)

  !VERIFY(3) is elemental so you can check an array of strings in one call
  print *, 'elemental'
   ! are strings all letters (or blanks)?
   write(*,*) 'array of strings',verify( &
   ! strings must all be same length, so force to length 10
   & [character(len=10) :: "YES","ok","000","good one","Nope!"], &
   & low//upp//blank) == 0

   ! rarer, but the set can be an array, not just the strings to test
   ! you could do ISPRINT() this (harder) way :>
   write(*,*)'isprint?',.not.all(verify("aBc", [(char(i),i=32,126)])==1)
   ! instead of this way
   write(*,*)'isprint?',verify("aBc",prnt) == 0

end program demo_verify

Results:

 >  basics:
 >            2
 >            3
 >            0
 >  find first non-uppercase letter
 >  something unmatched           4
 >  if everything is matched return zero
 >  everything matched           0
 >  easily categorize strings as uppercase, lowercase, ...
 >  isdigit 123? T
 >  islower abc? T
 >  isalpha aBc? T
 >  isblank aBc dEf? T
 >  isprint? T
 >  isprint? F
 >  VERIFY(3) is very powerful using expressions as masks
 >  all uppercase/spaces? F
 >  string=[ This IS all uppercase ]
 >  all uppercase/spaces? F
 >  string=[  Check this out. Let me know  ]
 >          1234567890123456789012345678901234567890
 >  returning a position not just a logical is useful
 >  first non-blank character           3
 >  last non-blank character          29
 >  first non-letter non-blank          17
 >  elemental
 >  array of strings T T F T F
 >  isprint? T
 >  isprint? T

Sample program II:

Determine if strings are valid integer representations

program fortran_ints
implicit none
integer :: i
character(len=*),parameter :: ints(*)=[character(len=10) :: &
 '+1 ', &
 '3044848 ', &
 '30.40 ', &
 'September ', &
 '1 2 3', &
 '  -3000 ', &
 ' ']
   ! show the strings to test
   write(*,'("|",*(g0,"|"))') ints
   ! show if strings pass or fail the test done by isint(3)
   write(*,'("|",*(1x,l1,8x,"|"))') isint(ints)

contains

elemental function isint(line) result (lout)
!
! determine if string is a valid integer representation
! ignoring trailing spaces and leading spaces
!
character(len=*),parameter   :: digits='0123456789'
character(len=*),intent(in)  :: line
character(len=:),allocatable :: name
logical                      :: lout
   lout=.false.
   ! make sure at least two characters long to simplify tests
   name=adjustl(line)//'  '
   ! blank string
   if( name == '' )return
   ! allow one leading sign
   if( verify(name(1:1),'+-') == 0 ) name=name(2:)
   ! was just a sign
   if( name == '' )return
   lout=verify(trim(name), digits)  == 0
end function isint

end program fortran_ints

Results:

|+1       |3044848  |30.40    |September|1 2 3    |  -3000  |         |
| T       | T       | F       | F       | F       | T       | F       |

Sample program III:

Determine if strings represent valid Fortran symbol names

program fortran_symbol_name
implicit none
integer :: i
character(len=*),parameter :: symbols(*)=[character(len=10) :: &
 'A_ ', &
 '10 ', &
 'September ', &
 'A B', &
 '_A ', &
 ' ']

   write(*,'("|",*(g0,"|"))') symbols
   write(*,'("|",*(1x,l1,8x,"|"))') fortran_name(symbols)

contains

elemental function fortran_name(line) result (lout)
!
! determine if a string is a valid Fortran name
! ignoring trailing spaces (but not leading spaces)
!
character(len=*),parameter   :: int='0123456789'
character(len=*),parameter   :: lower='abcdefghijklmnopqrstuvwxyz'
character(len=*),parameter   :: upper='ABCDEFGHIJKLMNOPQRSTUVWXYZ'
character(len=*),parameter   :: allowed=upper//lower//int//'_'

character(len=*),intent(in)  :: line
character(len=:),allocatable :: name
logical                      :: lout
   name=trim(line)
   if(len(name).ne.0)then
      ! first character is alphameric
      lout = verify(name(1:1), lower//upper) == 0  &
       ! other characters are allowed in a symbol name
       & .and. verify(name,allowed) == 0           &
       ! allowable length
       & .and. len(name) <= 63
   else
      lout = .false.
   endif
end function fortran_name

end program fortran_symbol_name

Results:

    |A_        |10        |September |A B       |_A        |          |
    | T        | F        | T        | F        | F        | F        |

Sample program IV:

check if string is of form NN-HHHHH

program checkform
! check if string is of form NN-HHHHH
implicit none
character(len=*),parameter :: int='1234567890'
character(len=*),parameter :: hex='abcdefABCDEF0123456789'
logical                    :: lout
character(len=80)          :: chars

   chars='32-af43d'
   lout=.true.

   ! are the first two characters integer characters?
   lout = lout.and.(verify(chars(1:2), int) == 0)

   ! is the third character a dash?
   lout = lout.and.(verify(chars(3:3), '-') == 0)

   ! is remaining string a valid representation of a hex value?
   lout = lout.and.(verify(chars(4:8), hex) == 0)

   if(lout)then
      write(*,*)trim(chars),' passed'
   else
      write(*,*)trim(chars),' failed'
   endif
end program checkform

Results:

    32-af43d passed

Sample program V:

exploring uses of elemental functionality and dusty corners

program more_verify
implicit none
character(len=*),parameter :: &
  & int='0123456789', &
  & low='abcdefghijklmnopqrstuvwxyz', &
  & upp='ABCDEFGHIJKLMNOPQRSTUVWXYZ', &
  & blank=' '
! note character variables in an array have to be of the same length
character(len=6) :: strings(3)=["Go    ","right ","home! "]
character(len=2) :: sets(3)=["do","re","me"]

  ! elemental -- you can use arrays for both strings and for sets

   ! check each string from right to left for non-letter/non-blank
   write(*,*)'last non-letter',verify(strings,upp//low//blank,back=.true.)

   ! even BACK can be an array
   ! find last non-uppercase character in "Howdy "
   ! and first non-lowercase in "there "
   write(*,*) verify(strings(1:2),[upp,low],back=[.true.,.false.])

   ! using a null string for a set is not well defined. Avoid it
   write(*,*) 'null',verify("for tran ", "", .true.) ! 8,length of string?
   ! probably what you expected
   write(*,*) 'blank',verify("for tran ", " ", .true.) ! 7,found 'n'

   ! first character in  "Go    " not in "do",
   ! and first letter in "right " not in "ri"
   ! and first letter in "home! " not in "me"
   write(*,*) verify(strings,sets)

end program more_verify

Results:

    > last non-letter 0 0 5
    > 6 6
    > null 9
    > blank 8
    > 1 2 1

Standard

Fortran 95 , with kind argument - Fortran 2003

See Also

Functions that perform operations on character strings, return lengths of arguments, and search for certain arguments:

Fortran intrinsic descriptions (license: MIT) @urbanjost