Manual Reference Pages  - hypot (3fortran)

NAME

HYPOT(3) - [MATHEMATICS] Returns the Euclidean distance - the distance between a point and the origin.

SYNOPSIS

result = hypot(x, y)

         elemental real(kind=KIND) function hypot(x,y)

real(kind=KIND),intent(in) :: x real(kind=KIND),intent(in) :: y

CHARACTERISTICS

o X,Y and the result shall all be real and of the same KIND.

DESCRIPTION

In mathematics, the Euclidean distance between two points in Euclidean space is the length of a line segment between two points.

HYPOT(X,Y) returns the special case of the Euclidean distance between the point <X,Y> and the origin. It is equal to

    sqrt(x**2+y**2)

without undue underflow or overflow.

OPTIONS

o X : the x value of the point of interest
o Y : the y value of the point of interest

RESULT

The result is the positive magnitude of the distance of the point <X,Y> from the origin <0.0,0.0> .

EXAMPLES

Sample program:

    program demo_hypot
    use, intrinsic :: iso_fortran_env, only : real32, real64, real128
    implicit none
    real(kind=real32) :: x, y
    real(kind=real32),allocatable :: xs(:), ys(:)
    integer :: i
    character(len=*),parameter :: f=’(a,/,SP,*(3x,g0,1x,g0:,/))’

x = 1.e0_real32 y = 0.5e0_real32

write(*,*) write(*,’(*(g0))’)’point <’,x,’,’,y,’> is ’,hypot(x,y) write(*,’(*(g0))’)’units away from the origin’ write(*,*)

! elemental xs=[ x, x**2, x*10.0, x*15.0, -x**2 ] ys=[ y, y**2, -y*20.0, y**2, -y**2 ]

write(*,f)"the points",(xs(i),ys(i),i=1,size(xs)) write(*,f)"have distances from the origin of ",hypot(xs,ys) write(*,f)"the closest is",minval(hypot(xs,ys))

end program demo_hypot

Results:

     >
     > point <1.00000000,0.500000000> is 1.11803401
     > units away from the origin
     >
     > the points
     >    +1.00000000 +0.500000000
     >    +1.00000000 +0.250000000
     >    +10.0000000 -10.0000000
     >    +15.0000000 +0.250000000
     >    -1.00000000 -0.250000000
     > have distances from the origin of
     >    +1.11803401 +1.03077638
     >    +14.1421356 +15.0020828
     >    +1.03077638
     > the closest is
     >    +1.03077638

STANDARD

Fortran 2008

SEE ALSO

o acos(3) - Arccosine (inverse cosine) function
o acosh(3) - Inverse hyperbolic cosine function
o asin(3) - Arcsine function
o asinh(3) - Inverse hyperbolic sine function
o atan(3) - Arctangent AKA inverse tangent function
o atan2(3) - Arctangent (inverse tangent) function
o atanh(3) - Inverse hyperbolic tangent function
o cos(3) - Cosine function
o cosh(3) - Hyperbolic cosine function
o sin(3) - Sine function
o sinh(3) - Hyperbolic sine function
o tan(3) - Tangent function
o tanh(3) - Hyperbolic tangent function
o bessel_j0(3) - Bessel function of the first kind of order 0
o bessel_j1(3) - Bessel function of the first kind of order 1
o bessel_jn(3) - Bessel function of the first kind
o bessel_y0(3) - Bessel function of the second kind of order 0
o bessel_y1(3) - Bessel function of the second kind of order 1
o bessel_yn(3) - Bessel function of the second kind
o erf(3) - Error function
o erfc(3) - Complementary error function
o erfc_scaled(3) - Scaled complementary error function
o exp(3) - Base-e exponential function
o gamma(3) - Gamma function, which yields factorials for positive whole numbers
o hypot(3) - Returns the Euclidean distance - the distance between a point and the origin.
o log(3) - Natural logarithm
o log10(3) - Base 10 or common logarithm
o log_gamma(3) - Logarithm of the absolute value of the Gamma function
o norm2(3) - Euclidean vector norm
o sqrt(3) - Square-root function
o random_init(3) - Initializes the state of the pseudorandom number generator
o random_number(3) - Pseudo-random number
o random_seed(3) - Initialize a pseudo-random number sequence
Fortran intrinsic descriptions (license: MIT) @urbanjost


Nemo Release 3.1 hypot (3fortran) February 19, 2025
Generated by manServer 1.08 from c600d56c-09af-4c06-a419-e01222f887f1 using man macros.