Manual Reference Pages  - atan2 (3fortran)

NAME

ATAN2(3) - [MATHEMATICS:TRIGONOMETRIC] Arctangent (inverse tangent) function

SYNOPSIS

result = atan2(y, x)

         elemental real(kind=KIND) function atan2(y, x)

real,kind=KIND) :: atan2 real,kind=KIND),intent(in) :: y, x

CHARACTERISTICS

o X and Y must be reals of the same kind.
o The return value has the same type and kind as Y and X.

DESCRIPTION

ATAN2(3) computes in radians a processor-dependent approximation of the arctangent of the complex number ( X, Y ) or equivalently the principal value of the arctangent of the value Y/X (which determines a unique angle).

If Y has the value zero, X shall not have the value zero.

The resulting phase lies in the range

      -PI <= ATAN2 (Y,X) <= PI

and is equal to a processor-dependent approximation to a value of arctan(Y/X).

OPTIONS

o Y : The imaginary component of the complex value (X,Y) or the Y component of the point <X,Y>.
o X : The real component of the complex value (X,Y) or the X component of the point <X,Y>.

RESULT

The value returned is by definition the principal value of the complex number (X, Y), or in other terms, the phase of the phasor x+i*y.

The principal value is simply what we get when we adjust a radian value to lie between -PI and PI inclusive,

The classic definition of the arctangent is the angle that is formed in Cartesian coordinates of the line from the origin point <0,0> to the point <X,Y> .

Pictured as a vector it is easy to see that if X and Y are both zero the angle is indeterminate because it sits directly over the origin, so ATAN(0.0,0.0) will produce an error.

Range of returned values by quadrant:

    >                   +PI/2
    >                     |
    >                     |
    >     PI/2 < z < PI   |   0 > z < PI/2
    >                     |
    >   +-PI -------------+---------------- +-0
    >                     |
    >     PI/2 < -z < PI  |   0 < -z < PI/2
    >                     |
    >                     |
    >                   -PI/2
    >
       NOTES:

If the processor distinguishes -0 and +0 then the sign of the returned value is that of Y when Y is zero, else when Y is zero the returned value is always positive.

EXAMPLES

Sample program:

    program demo_atan2
    real    :: z
    complex :: c
     !
     ! basic usage
      ! ATAN2 (1.5574077, 1.0) has the value 1.0 (approximately).
      z=atan2(1.5574077, 1.0)
      write(*,*) ’radians=’,z,’degrees=’,r2d(z)
     !
     ! elemental : arrays
      write(*,*)’elemental’,atan2( [10.0, 20.0], [30.0,40.0] )
     !
     ! elemental : arrays and scalars
      write(*,*)’elemental’,atan2( [10.0, 20.0], 50.0 )
     !
     ! break complex values into real and imaginary components
     ! (note TAN2() can take a complex type value )
      c=(0.0,1.0)
      write(*,*)’complex’,c,atan2( x=c%re, y=c%im )
     !
     ! extended sample converting cartesian coordinates to polar
      COMPLEX_VALS: block
      real                :: ang, radius
      complex,allocatable :: vals(:)
      integer             :: i
     !
      vals=[ &
        !     0            45            90           135
        ( 1.0, 0.0 ), ( 1.0, 1.0 ), ( 0.0, 1.0 ), (-1.0, 1.0 ), &
        !    180           225          270
        (-1.0, 0.0 ), (-1.0,-1.0 ), ( 0.0,-1.0 ) ]  
      do i=1,size(vals)
         call cartesian_to_polar(vals(i), radius,ang)
         write(*,101)vals(i),ang,r2d(ang),radius
      enddo
      101 format( ’X= ’,f5.2,’ Y= ’,f5.2,’ ANGLE= ’,g0, &
      & T38,’DEGREES= ’,g0.4, T54,’DISTANCE=’,g0)
     endblock COMPLEX_VALS
    !
    contains
    !
    elemental real function r2d(radians)
    ! input radians to convert to degrees
    doubleprecision,parameter :: DEGREE=0.017453292519943d0 ! radians
    real,intent(in)           :: radians
       r2d=radians / DEGREE ! do the conversion
    end function r2d
    !
    subroutine cartesian_to_polar(xy,radius,inclination)
    ! return angle in radians in range 0 to 2*PI
    implicit none
    complex,intent(in)  :: xy
    real,intent(out) :: radius,inclination
       radius=abs( xy )
       ! arbitrarily set angle to zero when radius is zero
       inclination=merge(0.0,atan2(x=xy%re, y=xy%im),radius==0.0)
       ! bring into range 0 <= inclination < 2*PI
       if(inclination < 0.0)inclination=inclination+2*atan2(0.0d0,-1.0d0)
    end subroutine cartesian_to_polar
    !
    end program demo_atan2

Results:

> radians= 1.00000000 degrees= 57.2957802 > elemental 0.321750551 0.463647604 > elemental 0.197395563 0.380506366 > complex (0.00000000,1.00000000) 1.57079637 > X= 1.00 Y= 0.00 ANGLE= 0.00000000 DEGREES= 0.000 DISTANCE=1.00000000 > X= 1.00 Y= 1.00 ANGLE= 0.785398185 DEGREES= 45.00 DISTANCE=1.41421354 > X= 0.00 Y= 1.00 ANGLE= 1.57079637 DEGREES= 90.00 DISTANCE=1.00000000 > X= -1.00 Y= 1.00 ANGLE= 2.35619450 DEGREES= 135.0 DISTANCE=1.41421354 > X= -1.00 Y= 0.00 ANGLE= 3.14159274 DEGREES= 180.0 DISTANCE=1.00000000 > X= -1.00 Y= -1.00 ANGLE= 3.92699075 DEGREES= 225.0 DISTANCE=1.41421354 > X= 0.00 Y= -1.00 ANGLE= 4.71238899 DEGREES= 270.0 DISTANCE=1.00000000

# STANDARD

FORTRAN 77

# SEE ALSO

- [**atan**(3)](#atan) - [**tan**(3)](#tan) - [**tan2**(3)](#tan2)

# RESOURCES

- [arctan:wikipedia](https://en.wikipedia.org/wiki/Inverse_trigonometric_functions) _Fortran intrinsic descriptions (license: MIT) \@urbanjost_


Nemo Release 3.1 atan2 (3fortran) February 19, 2025
Generated by manServer 1.08 from 8203cd38-3cf9-4bad-802c-f8ba032a6354 using man macros.